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Abstract
The recently derived Hybrid-Incidence Susceptible-Transmissible-Removed (HI-STR)
prototype is a deterministic compartment model for epidemics and an alternative to
the Susceptible-Infected-Removed (SIR) model. The HI-STR predicts that pathogen
transmission depends on host population characteristics including population size,
population density and social behaviour common within that population.
The HI-STR prototype is applied to the ancestral Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV2) to show that the original estimates of the
Coronavirus Disease 2019 (COVID-19) basic reproduction numberR0 for the United
Kingdom (UK) could have been projected onto the individual states of the United
States of America (USA) prior to being detected in the USA.
The Imperial College London (ICL) group’s estimate ofR0 for the UK is projected

onto each USA state. The difference between these projections and the ICL’s
estimates for USA states is either not statistically significant on the paired Student
t-test or not epidemiologically significant.
The SARS-CoV2 Delta variant’sR0 is also projected from the UK to the USA to prove

that projection can be applied to a Variant of Concern (VOC). Projection provides
both a localised baseline for evaluating the implementation of an intervention policy
and a mechanism for anticipating the impact of a VOC before local manifestation.
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1 Introduction
Motivation The COVID-19 pandemic highlighted the need to anticipate the impact of
a novel pathogen on healthcare [1–4] or the economy [5, 6]. One of the impact factors is
the basic reproduction number R0 [7], a demographic concept that has been repurposed
for infectious disease epidemiology [8–12]. R0 represents the average number of suscep-
tible people a host infects in a completely susceptible population whilst that host is in its
infected state [13, 14]. Based on estimates of R0 for COVID-19’s causative agent SARS-
CoV2, various categories of predictive [1, 15–18], forecast [19–21] and regression [22–25]
models have been constructed to anticipate healthcare system demand.

The COVID-19 pandemic’s infections have been periodic [24–28]. Continuous feedback
control loops like prevalence-dependent contact rates [29] and intervention fatigue [30]
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may contribute. Equally, irregular events like relaxation of previous restrictions, super-
spreader events and migration [30] result in perturbations in the rate of new infections or
the active infections [26]. Cyclical events like seasonal host behaviour, pathogen biology,
migration or waning immunity [28, 30] result in periodic infection perturbations [25]. The
superposition of these perturbations manifest as pandemic waves [31].

For the COVID-19 pandemic, some subsequent waves of infection have been associated
with mutations to the ancestral (wild-type) SARS-CoV2 in some countries [30, 32–36].
Paradoxically, these distinct variant waves may be a consequence of SARS-CoV2’s slow
virion mutation rate [35, 37–39]. Even if the virion mutation rate is constant, the time
to accumulate the appropriate number of mutations at the appropriate loci of a virion’s
genome in a sufficiently gregarious individual and sufficiently connected geographical lo-
cation to collectively constitute a VOC may vary [35, 37, 38]. Thus the timing and the im-
pact of these events will be treated as random [35], and prediction requires manifestation
in at least one region. This paper projects the impact of a random event like a novel VOC
from a region in which it has manifested to one in which it has not [32]. We propose that
the distinct collection and distribution of clinical manifestations, pathologies and mortal-
ity of each of the SARS-CoV2 VOCs [40–42] can be treated as a novel pandemic and that
COVID-19 is the collective manifestation of this family of overlapping pandemics [43].
These VOCs’ distinct transmission dynamics [32, 44–47] provide additional justification
for this approach.

Implicitly, each VOC contender is a potential new pandemic [30, 39, 48–50]. For the
particular case where the contender and incumbent VOC do not form a mixture and,
instead, the contender rapidly replaces the incumbent, the reproduction number R(t) for
the SARS-CoV2 variant family at the time of transition t0 represents the challenger VOC’s
R0. This R0 represents an upperbound of the challenger VOC’s impact in anticipation
of it outcompeting and supplanting the incumbent [51]. It is an upperbound because by
definition the R0 assumes complete susceptibility to the new variant.

The HI-STR[52] model is a deterministic, compartment model prototype constructed to
replace two assumptions of Kermack–McKendrick’s SIR prototype [53–55]. It replaces the
assumption that the removal rate from a compartment is proportional to the size of that
compartment with the more biologically appropriate assumption that the transmissible
period is fixed and, consequently, the removal rate is the same as the entrance rate one
transmissible period ago [52]. It also replaces Hamer’s mass action law with its chemistry
precursor – the law of mass action [56]. The latter allows the derivation of a population
density-dependent R0 [22, 23, 52].

The HI-STR model differs from existing compartment models by predicting that R0 is
not only a pathogen property but also depends on the host population’s characteristics,
including population size N , density ρn [23] and social behaviour [30, 57–59] common
to that population. This paper describes a novel method of foretelling local R0 in iso-
lated populations with similar social behaviour. The method is designated projection. It
proposes that if an estimate of R0 exists for an isolated population y (y

̂R0), then the pro-
jection of y

̂R0 onto an isolated population z (z
˜R0) with similar social behaviour is

z
˜R0

y ̂R0
= B

√

zρ̂2
n × ẑN

yρ̂2
n × ŷN

, (1)
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Figure 1 Epidemiology prophesy taxonomy

whereB is specific for that pathogen variant’s transmission dynamics in those populations
with similar social behaviour. The symbol ˆ represents an estimate.

Background The omnipresent SIR compartment model for the temporal evolution of
an infectious disease proposes that the individuals of an homogenous population can be
grouped into three compartments: susceptible, infected and removed [53–55]. Suscepti-
ble implies capable of contracting a pathogen, infected implies capable of replicating and
spreading the pathogen, and removed refers to either recovery (expulsion of the pathogen
and immunity) or death. Additional compartments [1, 60] and stratified or heterogenous
populations [61–64] result in sophisticated deterministic, compartment models.

An infectious epidemiology modelling taxonomy is proposed (Fig. 1) to distinguish be-
tween foretell’s common synonyms [65] in mathematical epidemiology. This taxonomy
proposes that deterministic, compartment models are a subcategory of Differential Equa-
tion (DE), orthodox, predictive models. Predictive (mechanistic [66]) models presuppose
that phenomena can be explained and that these explanations can be simulated. The or-
thodox predictive models consist of a three- or four-step process of explanation, abstrac-
tion into mathematics, the application of a numerical method and in silico simulation of
the abstraction. The pioneering categories of orthodox models are stochastic and deter-
ministic.

The deterministic compartment models are DE models. The DEs assume a homoge-
nous population and simulate averaged phenomena. The Ordinary Differential Equation
(ODE) models only simulate the rate of change of the compartment sizes. Historically, the
Delay Differential Equation (DDE) compartment models [67, 68] are an alternative to the
Exposed (E) compartment of the Susceptible-Exposed-Infectious-Removed (SEIR) ODE
model [69–71]. Both the traditional delay term and the E compartment incorporate an in-
cubation period into the SIR prototype. The HI-STR is a DDE model that reduces to an
ODE for periodic phenomena [52]. The HI-STR’s delay is not due to incubation; it is in-
tended to simulate a constant transmissible period. The transmissible period is another
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subtle difference from traditional ODE models. Similar to the infectious period, it is the
period of time that a host can transmit the disease but can be limited biologically (e.g.
the incubation period), behaviourally (e.g. isolation, quarantine [72] or hospitalisation)
or technologically (e.g. face mask or pharmacy). An example of pharmacological restric-
tion to a transmissible period is Human Immunodeficiency Virus (HIV) control where
anti-retrovirals (ARVs) substantially reduce viral load and therefore transmissibility. Thus
transmissibility may be idealised as a step function under appropriate circumstances [73].
Implicitly, transmissibility is a population characteristic, whereas infectivity is an indi-
vidual characteristic. Partial Differential Equation (PDE) models typically model spatial
spread as diffusion [74–76]. Algebraic formulae for thresholds like R0 and proportion to
vaccinate are a consequence of deterministic models.

Stochastic, orthodox models translate to Binomial Chain Models (BCMs) [77–79] or
Stochastic Differential Equation (SDE) models that superimpose uncertainty on ODE
models [80–82]. They complement deterministic models with their ability to assign prob-
abilities to outlier events [83] like pathogen extinction, provide confidence intervals to
their predictions, incorporate noise and their applicability and utility in small samples.
The distribution of the uncertainty is an assumption [84]. Note that the forecasting models
(to be described) are also statistical. The distinction is that like the deterministic models,
the stochastic models simulate a theory to prophesize the future, whereas the forecasting
models extrapolate the past into the future.

Graph based epidemiological models can be interpreted as an abstraction of an expla-
nation (or a translation) to a branch of mathematics, graph theory [85, 86], before in silico
simulation [87–90]. The latter interpretation provides the flexibility of graph theory or the
heritage of an established application like social network theory [91–94]. Here graph- or
network-based methods are therefore classified as orthodox predictive methods and ODE
alternatives.

The unorthodox predictive methods also presume that phenomena can be explained
but the explanation is not translated into mathematics before simulation. Rather, direct in
silico simulation of the explanation is performed. Thus some graph-based implementa-
tions can be interpreted as unorthodox [18, 95–98]. Graphs consist of vertices and edges,
where (for infectious diseases and social networks) the vertices represent individuals, and
the edges represent relationships or interactions. Traditionally, the vertices have no ge-
ometric interpretation and do not simulate spatial spread [99], but the vertices can be
mapped to location [97].

Agent Based Models (ABMs) [6, 17, 100, 101] and Cellular Automata (CA) [102–104] are
spatial, unorthodox, predictive models and PDE alternatives. CA are constructed on a reg-
ular lattice, and this restriction is removed for ABMs [105]. As examples of Artificial Life
[106], an agent (or node) acts independently subject to simple rules on the local environ-
ment. The collective can prophesize complex phenomena that other predictive methods
cannot [107]. These models simulate heterogeneity and mixing [108], but the PDEs that
they represent are not apparent [52, 109]. CA can reduce to ODEs [110], and for at least
one application (computational fluid dynamics), the PDEs that they represent have been
derived [111]. Lattice Gas Cellular Automata (LGCA) [110] and Probabilistic Cellular Au-
tomata (PCA) or Stochastic Cellular Automata (SCA) [103, 104] are subclassifications of
CA [52, 109].
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The author considers Monte Carlo simulations of COVID-19 to be an unorthodox pre-
dictive method [112–115]. Note that here the BCMs have been classified as stochastic
orthodox predictive. One may require reclassification [116]. Other less traditional, in the
infectious epidemiology context, stochastic models [113] include multivariate stochastic
processes [117] and Brownian motion [118].

Forecasting presumes that phenomena have a recognisable and reproducible pattern.
Forecasting fits a curve to a historical pattern and extrapolates the pattern into the fore-
seeable future [66, 119–124]. The Fourier theorem states that any curve can be reproduced
by an infinite series of superimposed sinusoidal waves [24, 125–129]. Filtering refers to the
attenuation (or omission) of frequencies that do not substantively contribute to the signal
[24, 125, 130], resulting in a finite series. In electrical engineering, signal noise is presumed
to have high frequency. A low-pass filter (allowing low frequencies to pass) attenuates the
noise and smooths the resultant signal [125]. Generally, smoothing is a subset of filtering
[125] that attenuates high-frequency signals.

The Box–Jenkins forecasting models [121, 122, 131–133] also fit curves. The prototype
is the Autoregressive Moving Average (ARMA) model that forecasts weakly stationary
behaviour. The Autoregressive Integrated Moving Average (ARIMA) includes trend by
differencing to transform the ARIMA model into a stationary model [121, 131–136]. Sea-
sonality (periodicity) can be incorporated into these time series models [132, 137]. The
term autoregression refers to historical data points of a curve being used to estimate the
model parameters that predict future values of that same curve [138]. Autocorrelation is
a metric of how well past results may foretell future results.

ARIMA models fit a linear combination of a finite number of earlier observations and
their differences – parsimonious models [131, 133, 137, 139–142]. See Mills [138, Chaps. 6
and 11] for an introduction to nonlinear functions. The curve fitting distinguishes the tra-
ditional time-series models [19, 122, 133, 135, 137, 140–145] from the Artificial Intelli-
gence (AI) time-series models [143, 146–148]. Traditional, statistical estimation methods
include the maximum likelihood method, the conditional sum of least squares and the or-
dinary sum of least squares [131–133, 135, 145, 149, 150]. AI is an expanding topic with
an evolving definition [151–156]. For the examples in this paper, AI is defined mecha-
nistically as a collection of methods (techniques) that searches a space for an adequate
solution [152, 153, 155]. For COVID-19 forecasting, the AI methods search for a set of
parameters that fits a curve adequately [20, 21, 146, 147, 157]. Although the parameters
are not necessarily optimal, AI excels at nonlinear models with or without a priori knowl-
edge or understanding of the system’s behaviour [158]. The search techniques used in
COVID-19 are biologically inspired, modern AI methods [153, 155, 156]. These include
swarming-inspired Particle Swarm Optimisation (PSO)[159], evolution-inspired Genetic
Algorithms (GA)[160], neurologically inspired Artificial Neural Network (ANN) [161] and
deep learning methods like Long Short-term Memory (LSTM) [161].

Orthodox, predictive models also generate time-series that can be compared to field
epidemiology time-series [162, 163]. Machine Learning (ML) [143, 164–166], ANN [167–
169] and GA [168, 169] have found orthodox, predictive model parameters that ade-
quately replicate COVID-19 field time-series. Deep learning is a neurologically inspired
ML technique [146, 154, 156, 164] that has also been used in orthodox, predictive model
parameter estimation [170, 171]. Forecasting provides a framework (e.g. ARIMA) and
the orthodox, predictive models provide context (e.g. SIR) that constrain the AI search.
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Figure 2 Artificial intelligence methods used in COVID-19 as cited in this paper

AI also finds “black-box” associations [147, 161, 172] – associations found without a
priori knowledge of mechanism (transmission dynamics in the infectious epidemiol-
ogy context) and not providing a posteriori understanding of causation (pathophysi-
ology here). ANN [173–175] and ML techniques like Random-Forest [176–179], deci-
sion tree [178, 180, 181], support vector machine [136, 178, 179, 182–184] and LSTM
[136, 185, 186] have found such unbiased COVID-19 associations [147, 156]. A time se-
ries can also be an association [136, 186–189]. Unorthodox, predictive models like CA
and ABMs are swarming-inspired AI [153, 155], which are not search methods. Figure 2
classifies the AI methods discussed in citations of this paper.

State-space models are a subset of signal-plus-noise problems [130] and are introduced
as a form of forecasting [132, 138]. Briefly, an observation (space) equation and a state
equation are coupled. Each of these equations has a superimposed uncertainty that is as-
sumed Gaussian [190]. The observation (measurement) equation’s independent variable is
the signal. In infectious epidemiology, reported new cases, disease mortality [191], waste
water serology [192] and combinations thereof are examples of signals. The signal can
be a proxy [193, 194] that can be affected by both testing strategy and implementation
[36, 47, 191]. For example, South Korea’s strategy of significantly increasing access to test-
ing [195] in COVID-19 may have affected the signal quality. Conceivably, universal testing
is more effective [196, 197] but less efficient [198] than opportunistic, symptomatic test-
ing [199–202]. Nevertheless, the effectiveness of these strategies should converge when
asymptomatic infection is rare. Conceivably, a well-implemented track-and-trace policy
can outperform a poorly promoted/implemented universal testing policy [198, 203, 204].

The unobserved state function is based on a priori knowledge of a system’s behaviour
and can be deterministic [205, 206] or empiric [207, 208]. The measured observation/sig-
nal is coupled to an unknown state. Backward and forward recursion approximates a state
that corresponds to the signal [130]. The Kalman filter is a popular recursion method for
implementing state-space models [192, 205–210].

The above models require local, disease-specific data for prophesy. The local estimate
requirement causes delay. Cardoso and Gonçalves [22] propose a form for a universal
population size- or density-dependent scaling law and use regression [119] to determine
the parameters for COVID-19. Their approach potentially circumvents the need to es-
timate local modelling parameters locally. Rather, parameters from other centres can be
projected – adjusted for local conditions. Figure 3 illustrates the one week delay [211] in
the stage of spread of the ancestral SARS-CoV2 between the UK and the USA [212, 213].
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Figure 3 Delay in confirmed cases per million population by country [212, 213]

Given the time dependence of intervention, the universal scaling law may prove more ben-
eficial to regions less connected to the epicentre like India in Fig. 3’s COVID-19 example.

Hu et al. [214] potentially circumvent Cardoso and Gonçalves’ [22] regression’s require-
ment for multiple pre-existing disease centres by repurposing formulae from the kinetic
theory of ideal gases to derive population density-dependent contact rates. Hu et al.’s con-
tact rates are an alternative to the HI-STR model’s law of mass action. The HI-STR proto-
types’s contact rate is population-size and density dependent [52].

The orthodox, predictive models generally assume that the rate of change of the infec-
tious compartment is directly proportional to the size of the infectious and susceptible
compartments:

∂t(S ∗ I) = İ ∝ S × I,

where S ∗ I is a state where members of the two compartments are sufficiently close to
transmit the pathogen (or react in the chemistry analogue to follow). This assumption is
Hamer’s mass action law. As its name suggests, it is modified from chemistry’s (empiric)
law of mass action, which states that the reaction rate is proportional to the concentration
of the reagents:

∂t(s ∗ i) ∝ s × i,

where s and i are the concentration in the chemistry analogue and the density (per unit
surface area) in the epidemiology analogue. Superficially, if the volumes (or surfaces) re-
main constant, then these equations are the same. Intuitively, S and I molecules occupying
1 m3 are more likely to interact than the same number of molecules occupying 1000 m3

because of their proximity to each other.
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The HI-STR [52] proposes that a probability density function exists for the likelihood
that an infected (or transmission-cable) individual in compartment I can be sufficiently
physically close to an individual in compartment S to transmit enough pathogen for the
individual in S to become infected and a member of I – transmission. It further proposes
that this probability density function is proportional to the population densities in the two
compartments:

P(t) ∝ s × i.

For population N � 1, the possible interactions are �
N2

2 [52], and the transmission rate
Ṫ is

Ṫ ∝ N2 × s × i,

which resembles the law of mass action – the rate of the reaction is proportional to the
concentration of the reactants.

The HI-STR further proposes that there are location-specific behavioural differences
that either retard or promote the transmission of the pathogen [59] such that the rate at
which individuals enter the transmissible compartment is

Ṫin ∝ κ(x)N2s × i,

where κ(x) is a metric reflecting behavioural difference with respect to the transmission
of disease.

Given that experimentally determined κ(x) are unavailable, HI-STR projection can only
be applied across populations with the same behaviour. This paper creates the intuitive
concept of Sufficiently Similar Social Bahaviour (SSSB) with respect to pathogen trans-
mission. Two populations have SSSB with respect to a disease’s transmission if transpos-
ing the behaviour of group A to group B does not result in an appreciable change in the
transmission dynamics for that disease in group B. A possible formalism could be let ε(x)
represent uncertainty in x. Then the uncertainty in the measurement of disease transmis-
sion metric ζ for behaviour A is ε(̂ζ (A)). After fitting a prediction curve, let the predicted
ζ (A) be ζ̆ (A). The prediction uncertainty is

ε
(

ζ̆ (A)
)

=
√

ε
(

ζ̆ (A) –̂ζ (A)
)2 + ε

(

̂ζ (A)
)2.

Let SSSB exist if

∣

∣ζ̆ (A) –̂ζ (B)
∣

∣ ≤ ε(ζ̆ (A))
2

,

ε
(

ζ̆ (A) –̂ζ (B)
) ≤ ε(ζ̆ (A))

2
.

The rate at which individuals leave the transmissible compartment is not proportional
to the size of the compartment but to the rate at which they leave the susceptible com-
partment one transmissible period (�τ ) ago. Thus

Ṫout(t) = Ṡ(t – �τ ) ≈ –Ṫ(t – �τ ).
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The resultant rate of change in the T compartment (Ṫin + Ṫout) is a DDE,

Ṫ(t) ∝ κ(x)N2s(t) × i(t) – Ṫ(t – �τ ). (2)

The population densities s(t) and i(t) emphasize that (2) has been constructed for an ho-
mogenous population on a surface. However, (2) is not a PDE and can predict neither
spatial spread nor a spatial gradient.

The HI-STR creates another intuitive concept – the Sufficiently Isolated Population
(SIP) – to circumvent the problem that (2) is not a PDE. The SIP is related to the flow
of information – in this instance, SARS-CoV2 Ribonucleic Acid (RNA) – onto and over
a surface [215]. There are two requirements for a SIP to exist. For a completely isolated
population, information never flows across the boundary of the SIP’s surface. For a com-
pletely connected region, information flows instantaneously across the boundary between
regions A and B as soon as it appears in one. Clearly, each of these extremes is an ideal-
isation. Incompletely isolated (or connected) regions are characterised by a delay in the
transmission of information. This first SIP criterion can be identified retrospectively and
phenomenologically as illustrated in Fig. 3, where the daily per capita cases for six coun-
tries follow the same trajectory, but there is s delay. In Fig. 3 the UK is well connected to
Germany, and the USA is well connected to Canada. In Fig. 3, it is also evident that India
is more isolated from Italy than the UK is isolated from Italy. In the opposite direction,
it is not obvious that the UK is more isolated from India than the USA is isolated from
India. Restated, isolation may be directional. The sufficiency in SIP depends on objective.
For example, India may take longer to convert 10% of ward beds to intensive care unit
(ICU) beds than Germany. In this context the time to readiness may define the delay that
equates to sufficient isolation. The second SIP criterion avoids a spatial gradient on the
surface on which a SIP exists by requiring information to flow instantly over the surface.
Effectively, this criterion is recursive – SIPs cannot exist within a SIP – and the probability
of transmission is the same for all points on the surface. For HI-STR projection, the de-
lay is of less significance. Potential SIPs are recognised by demonstrable distinct regional
pandemic characteristics [23, 216–219] instead.

The much broader topic of R0 estimation is beyond the scope of this paper [7, 59, 220].
Let it suffice that Böckh’s original concept of R0 – the average number of girls produced
by a female during her reproductive years – was calculated by counting births in the public
record [8, 12, 220, 221]. This statistical approach to the estimation of R0 is distinct from
the stochastic models presented above, in part, because they make no a priori assump-
tions about the mechanism by which pathogens propagate and spread – in the epidemiol-
ogy analogue. Here the (noun) estimate of a parameter refers to the metrics that quantify
that parameter (e.g. R0) and the uncertainty in the quantification of that parameter. The
verb estimate refers to the experimental or field epidemiology techniques used to gener-
ate an estimate. Implicitly, estimating does not prophesize. The latter also distinguishes
estimating from stochastic modelling and forecasting. This paper reviews models that
prophesize the proliferation of diseased individuals, contextualises the recently derived
HI-STR model within a classification of these models, uses R0 estimates ̂R0 to validate
the HI-STR’s prediction of population size- and density-dependent R0 and demonstrates
the HI-STR’s ability to project R0 ( ˜R0).

Restated, a spectrum of methods exist for estimating R0. Direct counting makes no a
priori assumptions about the mechanism of disease propagation nor does it prophesize
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disease proliferation [222]. The most obvious and direct counting method would involve
frequently, regularly, efficiently and effectively recording the state of every individual in
a population with a perfect test of state (infection) [223]. At the other extreme, R0 esti-
mation assumes a model of disease proliferation and then uses curve-fitting to estimate
parameters [215, 224–227]. In principle, the predictive models reviewed in this paper (and
summarised in Fig. 1) constitute the a priori assumptions of the curve-fitting extreme. The
forecasting models described above can appear as methods at either extreme depending
upon whether they make a priori assumptions about the mechanism of propagation. The
method of curve-fitting can either be traditional (a collection of statistical methods) or AI
as described above.

Between the above estimation extremes are at least two types of indirect counting meth-
ods. The first counts the relevant parameter (e.g. R0) more efficiently than direct count-
ing by assuming a recognised statistical distribution for a sample of that parameter (R0)
[223, 228]. It assumes neither a mechanism of propagation nor a form of proliferation. The
second indirect method assumes a model of propagation to relate the parameter being es-
timated to a proxy and then indirectly counts the proxy [211, 216, 219, 223, 226, 228–231].
For example, R(t), the number of secondary cases directly generated by a primary case, is
mathematically related to the generation interval Tc by assuming a form to the prolifera-
tion. Tc is counted indirectly and efficiently by assuming a statistical distribution for the
Tc sample [229, 232]. Finally, R is inferred from the mathematical relationship between
Tc and R. Several relationships Tc ∼R exist [9, 225, 233, 234]. Two such relationships are
[229]

R0 ≥R = 1 + rTc and R0 ≥R = erTc ,

where r is the rate of exponential growth, a consequence of the Lotka–Euler equation
[9, 229]). Other proxies include final epidemic size, equilibrium conditions like age-
independent prevalence data and age-specific prevalence data [8].

Superimposed on biases introduced by different estimation methods, differences in the
definition of R0 and their formalisation can exist. The Sharpe and Lotka [235] formalisa-
tion of Böckh’s demographic calculation [8, 12, 229] is

R0 =
∫ ∞

0
p(a)β(a) da. (3)

In the demographic analogy, p(a) is the probability of a woman surviving to age a, and
β(a) is the rate at a which women of age a give birth to girls. In the epidemic analogue,
a is the time from becoming infected and is designated the age of infection [222], p(a)
is the probability that a host remains a host at time a, and β(a) is the rate at which new
hosts are generated at time a. The formalism can, in principle, be applied directly early
in the epidemic when contact tracing is practical. In this context, (3) is the average num-
ber of secondary cases that a host would infect in a completely susceptible population –
MacDonald’s epidemiological definition of R0 [8, 12, 236]. The author has not seen Mc-
Donald’s original paper [236], only quotations [8, 12].
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For ODE compartment models, several formalisations of R0 exist. For the SIR model
[13, 237],

R0 =
ξ (t0)
α

,

where ξ (t) is the contact rate [13] (the average number of adequate contacts that an in-
fective makes per day [237]) or the horizontal transmission incidence [238] (infection rate
of susceptible individuals through their contacts with infectives), α is the removal rate
[13, 237], and 1/α is the duration of infection. This formalism and similar (e.g. the equiv-
alent for the SEIR model) are sufficiently intuitive that the parameters can be estimated
and, in turn, be used to calculate ̂R0 [8, 230, 237, 238].

In an homogenous population, one may anticipate a unimodal (and possibly symmetric)
distribution of secondary infections from a sample of hosts. In such a population, a direct
application of formalism (3) may calculate ̂R0. In a heterogenous population, host samples
with such unimodal distributions may be anticipated in carefully selected subpopulations,
but this assumption may be implausible for the whole population [239]. To apply (3) di-
rectly would require both appropriately defined subpopulations and the appropriate for-
mula for averaging over the subpopulations [7, 59]. Diekmann et al. [240] define R0 as the
average number of new cases of an infection caused by one typical infected individual in a
population consisting of susceptibles only [241]. A typical host is a distributed individual
– a composite of the homogenous subpopulations that form the heterogenous popula-
tion [240]. This R0 is formalised as the spectral radius (dominant eigenvalue) of the Next
Generation Matrix (NGM) [240]. Neither the definition nor the formalism is intuitive and
does not necessarily produce the same value as MacDonald’s definition and correspond-
ing formalisms [8, 240]. However, it identifies the average R0 as the geometric mean of the
subpopulations’ R0s [8, 239, 240]; it provides the formula for relating the fitted parameters
to ̂R0 in curve-fitting estimates [163, 227, 241] and retains the threshold (R0 = 1) between
self-limitation and endemicity. Although Diekmann et al.’s definition is interpreted as ap-
plying to heterogenous populations occupying the same geographic space [242] (like the
8 population gonorrhea model [239]), it can also be interpreted as applying to composite
generations – super-generations consisting of sub-generations containing unique hosts
in the same spatial region. Examples include the two-gender gonorrhea model [239] and
host-vector models [240].

For the HI-STR[52], two timescales are constructed. The transmissible timescale is con-
structed to reduce the DDE model to a more familiar ODE model. A rhythmic timescale
is constructed to obviate the periodicity of the contact rate (e.g. diurnal variation). R0 is
defined as the average number of secondary cases that a host produces in a completely
susceptible population while that primary host is in a transmissible state. It differs from
MacDonald’s definition because the primary host does not necessarily directly infect sec-
ondary hosts. Restated, Benjamin [52]’s definition of R0 allows (incomplete) tertiary and
quarternary generations of hosts to be included in the sum, provided that the infections
occur whilst the primary host is still in the transmissible state. This definition was selected
to be consistent with the R0 formalism derived from the HI-STR’s system of ODEs in the
transmissible timescale. Like MacDonald’s definition, it is for a homogenous population.
Nevertheless, given that the spectral radius of the NGM reduces to ODE compartment
models’ formulae for R0 in homogenous populations, the NGM represents an alternative
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formalism for the HI-STR’s R0 in the transmissible times scale. A generation in the trans-
missible timescale is a compound generation consisting of B generations in the rhythmic
timescale. A compound generation is a super-generation consisting of sub-generations
having the same characteristics. The R0 in the rhythmic time scale is the geometric mean
of the R0 in the transmissible timescale [52] – similar to the NGM’s R0 for composite
generations.

This paper neither endeavours to compare R0 definitions and formalisms nor the most
efficient and effective R0 estimation methods. It accepts that every combination of defini-
tion, formalism and method is biased. Of relevance is that the same definition-formalism-
method combination is used across regions to validate HI-STR projection for COVID-19.

2 Methods
The HI-STR prototype is based on the SIR model but replaces two assumptions and is
formulated for an isolated population on a surface [52]. Thus

1. it is explicit that the model only applies to SIPs,
2. results in a population-density-dependent contact rate, and
3. the PDE problem is replaced by SIPs and SSSB recognition problems.

Hamer’s mass action law [243] assumption is replaced with the law of mass action [52],
its chemistry precursor [244, 245]. A probability density function for a single successful
transmission is constructed, which reflects the proximity of transmission capable and sus-
ceptible:

P(t) = ημκ(x)s(t)τ (t), (4)

where η is an infectious disease-specific variable that reflects avidity, μ is a function of
mode of transmission, κ(x) is a function of social behaviour, s(t) is the density of suscepti-
ble individuals, and τ (t) is the density of hosts capable of transmitting the pathogen [52].
The total transmission (including those of secondary hosts) in a population of size N � 1
and population density ρn over the period that the primary host is transmission capable
(�τ ) is shown to be

∫

�τ

Ṫ(t) dt ≈
∫

�τ

ημκ
N2

2
s(t)τ (t) dt =

∫

�τ

βAρ2
nS(t)T(t) dt,

where S(t) is the size of the susceptible population, T(t) is the size of the transmission-
capable population, and βA = ημκ

2 [52].
The SIR model’s exponential infectious period assumption is replaced with the HI-STR

prototype’s more biologically appropriate constant transmission period. This results in the
SIR-like DDE system of equations [52]

Ṡ(t) = –βAρ2
n(x)S(t)T(t),

Ṫ(t) = βAρ2
n(x)S(t)T(t) – Ṫ(t – �τ ),

Ṙ(t) = Ṫ(t – �τ ).

The delay term reflects that the rate at which individuals leave a compartment is the same
as that at which they entered one transmissible period (�τ ) ago.
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Selecting a timescale (the transmissible timescale) in which a unit of time �t equates
to �τ (1 : �t = 1 : �τ ) renders the delay negligible, reducing the above DDE model to an
ODE model [52]:

τ Ṡ(t) = –βAρ2
n(x)S(t)T(t),

τ Ṫ(t) = βAρ2
n(x)S(t)T(t) – Ṫ(t), (5)

τ Ṙ(t) = Ṫ(t),

where the τ identifies the timescale being used. The transmissible timescale is a short
timescale with less temporal detail – remaining consistent with the spatial scaling anal-
ogy’s terminology.

The short-term periodicity of infection opportunity in (4) – e.g. diurnal variation in con-
tact rate in (5) – is obviated by constructing a second timescale (the rhythmic timescale)
in which the infection opportunity can be treated as constant. The rhythmic timescale is
1 : �t = 1 : δt, where δt is the period of the infection opportunity cycle for Equation (4). For
respiratory infectious diseases, δt is the host’s sleep-wake cycle (i.e. 1 day). A unit of time
in the rhythmic timescale is necessarily shorter than the equivalent in the transmissible
timescale because at least one cycle of infection opportunity must exist within the period
that the host is infectious for an infectious disease to spread. The rhythmic timescale is a
long timescale with greater temporal detail to remain consistent with the spatial scaling
analogy’s terminology.

Let there be B ∈ N units of δt in �τ . For temporal continuity between the timescales,
the number of new transmission after one compound generation in the transmissible
timescale must equal the new transmissions afterB generations in the rhythmic timescale.
Alternatively, the new infections after Bδt in the rhythmic timescale are the same as after
�τ in the transmissible timescale [52]. The temporal continuity condition can be for-
malised as

τ T(t + �τ ) – τ T(t) = ρT(t + Bδt) – ρT(t) ∀t,

where ρ identifies the rhythmic timescale. Using a binomial expansion to enforce conti-
nuity, the transmissible timescale ODE system (5) reduces to

ρ Ṡ(t) = – B

√

βAρ2
nN

S(t)T(t)
N(x)

,

ρṪ(t) = B

√

βAρ2
nN

S(t)T(t)
N(x)

– B
√

τ αT(t),

ρ Ṙ(t) = B
√

τ αT(t)

in the rhythmic timescale [52], where τ α is the infection frequency in the transmissible
timescale. The HI-STR model’s rhythmic timescale basic reproduction number for SIP z
is then [52, 246]

z
ρR0 = B

√

βA × zρ2
n × zN

τ α
. (6)
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Both βA and τ α are dependent on social behaviour, which may be cultural [47, 57, 247].
These are assumed constant for populations with SSSB. There is a subtle difference be-
tween Böckh’s R0 and its rhythmic timescale equivalent ρR0. The former only counts new
infections in the second generation, whereas the latter also counts new infections in sub-
sequent generations, provided that they are infected in the primary host’s transmissible
period. Nevertheless, these are used interchangeably here [52]. Equation (6) is recognised
as the geometric mean of the R0s for the B generations in the rhythmic timescale that
constitute a compound generation in the transmissible timescale.

Dividing Equation (6) for SIP z by the same for SIP y with SSSB derives

zR0
yR0

= B

√

zρ2
n × zN

yρ2
n × yN

– the origin of Equation (1). It is assumed that the anglophone UK and USA have sim-
ilar concepts of personal space and familiarity with an associated hierarchy of physical
interaction rituals [248] such that Equation (1) applies. A metric for SSSB was not identi-
fied. Conceivably, host social behaviour could be sufficiently similar across all SIPs. In this
case, Equation (1) is a universal scaling law (independent of social behaviour) and should
be compared with Cardoso and Gonçalves’ universal scaling law [22] obtained by regres-
sion. The UK and USA were selected to increase the likelihood of a successful validation.
From Fig. 3, projection should provide the states most connected to the UK an additional
week to prepare based on ˜R0. The ancestral SARS-CoV2 pathogen was selected because
transmission dynamics data were available; there was no interference from VOCs, and the
ICL group used the same R0 estimation method for the ancestral SARS-CoV2 in both the
USA and the UK.

The ICL group’s statistical estimates of R0 for the wild-type SARS-CoV2 in the UK and
the states of the USA are used to validate the HI-STR’s projection from the UK to these
USA states. The ICL group estimated the ancestral SARS-CoV2’s ̂R0 for the UK [211] and
the individual states of the USA [219] by counting a proxy – reported mortality. For the
UK, estimates counted reported COVID-19 deaths from February 2020 to 4 May 2020
[211]. The USA estimates extend the UK method by counting 100,506 deaths and 479,422
cases due to COVID-19 from 11 May 2020 to 1 June 2020 for each state [219]. Their semi-
mechanistic Bayesian hierarchical model is sensitive to the generation interval [211], but
a gamma distribution with mode 6.5 days was used in their ̂R0 for both the UK and the
USA’s states. Consequently, biases introduced by different field and estimation methods
are avoided.

From Equation (1),

z
˜R0 = B

√

zρ̂2
n × ẑN

UK ρ̂2
n × UK ̂N

× UK
̂R0. (7)

The paired Student t-test is used to compare the USA basic reproduction number estimate
for state z (z

̂R0) [219] to the UK’s projection on z (z
˜R0).

Fortuitously, the UK and USA subsequently embarked on similar COVID-19 interven-
tions [247]. Thus, having demonstrated that projection can be performed between the UK
and the USA’s states, a contender VOC – common to the UK and USA – that rapidly re-
placed an incumbent was selected to demonstrate that projection could be applied to a
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VOC. For this implementation of projection, rapid replacement (minimal mixing) is re-
quired to ensure that the SARS-CoV2 family’s reproduction number ̂R(t) estimated when
the VOC contender emerges at t = t0 represents that VOC’s ̂R0. The Delta (B.1.617.2)
variant was selected because it replaced the incumbent Alpha (B.1.1.7) variant in both the
UK [32, 249] and the USA [35, 47, 250] within a month as described in Appendix D.

Vaccination protects against symptomatic SARS-CoV2 Delta infection [251] but is not
as effective against Delta infection [252–255] depending on the time from vaccination
[256, 257]. This finding supports the argument thatR(t0) is equivalent toR0 for the SARS-
CoV2 Delta variant when it emerged.

A private organisation’s variant sequencing data [250] was used to establish t0 – the date
of the transition to Delta – for each state of the USA. They were selected because they
provided state level variant sequencing data for the USA. Variant prevalence data can be
found at https://public.tableau.com/ [258]. The threshold prevalence for t0 was arbitrarily
set as the Delta variant representing 20% of the sequenced SARS-CoV2 genomes. 20%
was considered small enough to satisfy the condition that the population is completely
susceptible to the Delta variant. Conversely, given that most time series treat COVID-19
as one disease with one time series for all SARS-CoV2 variants, 20% was considered large
enough for a substantial portion of a combined ̂R(t) to be due to the Delta variant. It is
recognised that these criteria introduce bias.

Counting a proxy estimates R0 for the Delta variant. These estimates validated the HI-
STR’s VOC ̂R0 projection from the UK to the USA. Yap and Yong [216] smooth reported
case time series with a moving average. A Poisson distribution then constructs a symptom
onset time series based on the reported case time series. A second Poisson distribution
constructs a date infected time series (kt). A third Poisson distribution is fitted to the date
infected time series to estimate λt – the expected infections for the day. For the previous
day’s estimated new infections (kt–1), the formula relating R∼ λt , kt–1 is

λt = kt–1eα(R–1),

where α–1 is the infectious period. The https://cv19.one [216, 259] data repository was
selected to provide ̂R0(�) – the Delta variant’s ̂R0. This selection ensures that the same
method can be used to estimate the UK’s ̂R(t,�) and state level USA ̂R(t,�) [216, 259];
̂R(t0,�) ≈ ̂R0(�).

Independent UK
̂R0(�) = 1.44 – 1.5 [249, 260] with 95% CI [1.2-1.75] [260] is provided

for comparison. The statistical analysis was conducted in the open-source R Project for
statistical computing (https://www.r-project.org).

TheB for the ancestral SARS-CoV2 and the Delta variant are estimated in Appendices A
and D, respectively. The transmissible periods are estimated as the median of other esti-
mates with neither weighting nor confidence intervals.

3 Results
This parameter estimations performed for both the wild-type SARS-CoV2 and for the
SARS-CoV2 Delta variant assume no inherent immunity to COVID-19. In immunology,
innate immunity refers to a static, generic immune system that non-specifically targets
any pathogen invasion. The adaptive immune system generates variations that specifically
target a particular invasive pathogen. Natural immunity to a pathogen is due to either pre-
vious exposure to that pathogen or cross-reactivity from exposure to another pathogen –

https://public.tableau.com/
https://cv19.one
https://www.r-project.org


Benjamin Advances in Continuous and Discrete Models         (2023) 2023:46 Page 16 of 42

heterologous immunity [261]. To avoid confusion with these terms, inherent immunity
refers to a genetic (inborn) resistance to or attenuation of certain diseases. Examples of
inherent immunity are mutations to the CCR5 receptor on cells that renders some indi-
viduals immune to infection by HIV [262], the haemoglobinopathy-malaria hypothesis
that proposes that the high haemoglobinopathy carrier prevalence in some population
may exist because this carrier state protects against malaria [263] and cystic fibrosis that
may offer carriers protection against cholera [264]. Immunity can be natural, inherent or
due to vaccination. Vaccination can be heterologous immunity.

3.1 The ancestral SARS-CoV2
The transmission dynamics, distribution of pathology, case fatality rate and other clini-
cal, pathological and epidemiological characteristics associated with the ancestral (wild-
type) SARS-CoV2 variant are collectively designated COVID-19(wt). Appendix A demon-
strates that the transmissible timescale for COVID-19(wt) is 1 : 9 days, and the rhythmic
timescale is 1 : 1 day. The scaling factor between these timescales (B(wt)) is 9.

The UK
̂R0(wt) = 3.8 [3.0–4.5] [211], the UK

̂N = 67,886,011 and the UK ρ̂n = 280.6 km–2

in 2020 [265]. Equation (7) projects this UK
̂R0(wt) onto the states of the USA. Appendix B

removes any outliers among these projections – reducing the sample size to 40 states.
Figure 4 compares the estimated basic reproduction number ̂R0(wt) density distribution

[219] of the remaining 40 states to those projected from the UK’s wild type SARS-CoV2 es-
timate UK

̂R0(wt) [211]. Figure 4(a) projects the median UK estimate (UK
̂R0(wt) = 3.8) for

the wild-type SARS-CoV2, whereas Fig. 4(b) projects UK
̂R0(wt) = 4.2. The latter remains

within the uncertainty of the UK’s ̂R0(wt) estimate [211].

Figure 4 (a) Density distribution comparison between estimated wild-type SARS-CoV2R0 and the median
estimated wild-type SARS-CoV2R0 for the UK projected on to the USA’s states. (b) Box-and-whisker plot
comparison between estimated wild-type SARS-CoV2R0 and a wild-type SARS-CoV2 ̂R0 = 4.2 for the UK
projected on to the USA’s states
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Table 1 Comparison of paired Student t-test results between estimated and projected wild-type
SARS-CoV2 basic reproduction numbers in the USA for various UK basic reproduction number
estimates for the wild-type SARS-CoV2. μd is the mean of differences. CId is the 95% confidence
interval of the differences. N = 40

Estimated UK basic reproduction number (UK ̂R0(wt))
UK

̂R0 3.0 3.4 3.8 4.1 4.2 4.5

p 7× 10–15 5× 10–11 4× 10–6 0.02 0.13 0.24
μd 0.7 0.5 0.3 0.1 0.1 –0.1
CId [0.6, 0.8] [0.4, 0.6] [0.2, 0.4] [0.0, 0.25] [0.0, 0.2] [–0.2, 0]

Figure 5 Sensitivity analysis for COVID-19(wt): (a) Symptomatic fraction; (b) Inherently immune fraction; (c)
Infectious period; (d) Transmissible period

Table 1 summarises the results of the paired Student t-test comparing the ̂R0(wt)s [219]
of the 40 USA states (z

̂R0(wt) : 1 ≤ z ≤ 40, z ∈ N) to the UK’s projections ( ˜R0(wt)) for
3.0 ≤ UK

̂R0(wt) ≤ 4.5 [211] onto those 40 states. For 4.2 ≤ UK
̂R0(wt) ≤ 4.5, a statistically

significant difference between the z
̂R0(wt) and z

˜R0(wt) samples does not exist for those
40 states. For 3.0 ≤ UK

̂R0(wt) ≤ 4.1, although there is a statistically significant difference
between the ̂R0(wt) and ˜R0(wt) samples, this difference is not epidemiologically signifi-
cant when compared to the uncertainty in z

̂R0(wt) [219]. An epidemiologically significant
change is one greater than the uncertainty in the estimate.

The parameter estimates for B(wt) have considerable variation (Tables 2 and 3). Ap-
pendix C is a sensitivity analysis demonstrating that, up to an inherently immune frac-
tion of 50%, the change in the zR0(wt) projections are not epidemiologically significant
– Fig. 5(b). Similarly, changing the symptomatic fraction causes no significant change in
R0(wt) relative to the uncertainty in the estimate – Fig. 5(a). The infectious and transmis-
sible periods are varied in Figs. 5(c) and (d), respectively.
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Despite symptomatic fraction and inherent immune fraction not having significant ef-
fects on ˜R0(wt) relative to the uncertainty in the ICL’s ̂R0(wt) for the UK and the states of
the USA, the HI-STR predicts that increasing the symptomatic fraction decreases B(wt)
and, consequently, R0(wt) by increasing the contribution of those with a shorter transmis-
sible period (Fig. 5(a)). It confirms that increasing the inherently immune fraction reduces
R0(wt) (Fig. 5(b)). As expected, increasing the infectious or transmissible periods increase
B(wt) and therefore R0(wt) (Figs. 5(c) and (d)).

3.2 The SARS-CoV2 Delta variant
Appendix D calculates that B(�) = 6 when 40% of the UK and USA populations were fully
vaccinated against COVID-19.

The ‘COVID-19 HeatMap’ dashboard [216, 259] was used to lookup ̂R0(�). This
database relates reported cases to infection dates via Poisson distributions. The infection
date time series is related to R(t,�). This database was selected because it provides both
state and country level ̂R(t,�) using the same method – avoiding method biases inR(t,�)
estimation.

The Delta variant transition date for a SIP was arbitrarily set as the date when the Delta
variant represents 20% of the SARS-CoV2 Reverse Transcriptase Polymerase Chain Re-
action (RT-PCR) sequences for that SIP on that date. From Fig. 10(a) in Sect. D, the UK’s
transition date (t0) is May 15, 2021 [249, 260]. On May 15, 2021, the ‘COVID-19 HeatMap’
dashboard [216, 259] finds that UK’s ̂R(t0) = 1.5 ≈ UK

̂R0(�). The ‘our world in data’ dash-
board [212] and the ‘COVID-19 HeatMap’ dashboard [216, 259] estimates in May 2021 are
within the UK

̂R0(�)’s 95% confidence interval [249, 260]. The population size and density
estimates for the UK and the USA states used for the ancestral SARS-CoV2 were reused
for the SARS-CoV2 Delta variant’s projection.

The date of the transition to the Delta variant could be established for 11 states of the
USA. This small sample is because the private organisation’s [250] variant sequencing is
opportunistic (not from a screening program) and several states had no data for periods
that included the transition prevalence of 20%. UK

̂R0(�) was projected onto these states
using (7) with UK

̂R0(�) as the independent variable. These projections are compared to
the ‘COVID-19 HeatMap’ estimates [216, 259] in Fig. 6.

4 Discussion
COVID-19 is the collective pathological manifestation of the ancestral SARS-CoV2 and
its variants. New variants have the potential to supplant pre-existing variants. Projec-
tion provides an efficient method to prophesize location- and variant-specific resource
requirements. The HI-STR has demonstrated that projection can foretell the impact of
a pathogen variant (the ancestral SARS-CoV2) on the individual states of the USA, pro-
vided that an estimate exists for the UK. This was possible because the HI-STR accounts
for the effect of population characteristics on the basic reproduction number R0. These
regions were selected because it is assumed that the individual states of the USA can be
approximated as SIPs and because it is assumed that these anglophone regions possess
SSSB.

It is noted that the HI-STR prototype does not include the effect of demography [266]
on R0 estimation and projection but age-stratified SIR models can be adapted for the HI-
STR. Genetically or behaviourally predisposed individuals also represent subpopulations
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Figure 6 Comparison of the the UK’s effective reproduction number projection, at the start of the Delta
wave, on to 11 states of the USA with Delta wave estimates for those states

that affect the average transmission period. For COVID-19, diabetics are a subpopulation
that are at increased risk of severe disease and death [267, 268]. The opportunity exists to
extend the HI-STR to heterogenous populations. Clearly, neither the UK nor the individual
states of the USA are homogenous, but an accepted collection of public social behaviourial
norms must exist in each instance.

Hawaii, Montana, Alaska and Wyoming are among the outliers. The HI-STR model’s ˜R0

is an overestimate for these states. For Hawaii, the sea acts as a natural barrier between
SIPs. Because the HI-STR is nonlinear, these regions cannot be combined. Combining
SIPs results in ˜R0 overestimates. Communities within Alaska, Montana and Wyoming
may be sufficiently isolated for them to be treated as SIPs. Conversely, states like New York
and Washington, DC, may be insufficiently isolated. Neither the method for averaging ̂R0

across SIPs nor the determination of ̂R0 across SIPs is obvious.
The transition to the SARS-CoV2 Delta variant could only be identified for 11 States of

the USA. The significance of the comparison between the estimated and projected basic
reproduction numbers for the 11 states of the USA could not be determined. Nevertheless,
it has been demonstrated that for the minimal-mixing VOC projection, the SARS-CoV2
Delta variant’s ̂R0 for the UK could have been projected onto at least 11 states in the USA.

This paper’s motivation is the anticipation and preparation for the local impact of novel
pathogen or new VOC. Implicitly, each variant is being treated as a new pathogen to which
the local population is completely susceptible. The SARS-CoV2 variants are sufficiently
closely related that both vaccination and previous infection by the incumbent may confer
immunity to the new variant in some individuals. Thus the projection represents an up-
perbound in which the challenger VOC replaces the incumbent [51]. This model does not
address equilibrium states where VOCs form a mixture [39]. Intuitively and theoretically,
the inherently and naturally immune individuals should affect the transmission dynamics
of the variant and the transmissible period. Given the uncertainty in the wild-type SARS-
CoV2 ̂R0, an epidemiologically significant impact could not be demonstrated here.
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Intuitively, asymptomatic carriers increase the reproduction number [269]. Uniquely,
the HI-STR predicts this phenomenon (see Appendix C and Fig. 5(a)) but, given the un-
certainty in the ancestral SARS-CoV2’s R0 estimates, epidemiological significance could
not be demonstrated. For diseases where a correlation exists between symptoms and mor-
tality, an intervention that only converts symptomatic individuals into asymptomatic indi-
viduals may reduce mortality. Ironically, the theory predicts that such an intervention will
increase R0 [270]. Conversely, the HI-STR model explains why the SARS-CoV2 Delta’s
higher symptomatic ratio [270] is associated with lower reproductive numbers.

5 Conclusion
When confronting a novel pathogen, the impact of the disease has to be foretold to prepare
accordingly. Some of these impacts are the basic reproduction numbers (a proxy for how
fast the disease will spread), mortality and morbidity. Some of the impacts that are beyond
the scope of this document are the economic and socio-political instabilities caused by the
disease and interventions, as well as pathogen evolution.

The HI-STR prototype is a deterministic alternative to the SIR prototype. In principle, it
has two advantages over the more mature deterministic compartment models – it incor-
porates the population size and density in the model, and it acknowledges and includes
the impact of social behaviour. The latter is controversial, but it should be noted that the
HI-STR has the flexibility to include social behaviour. It may be that physical interaction
across regions and cultures is sufficiently similar (from an infectious disease perspective),
so that this variable can be treated as a constant. In the latter case, the HI-STR derives a
population size- and density-dependent universal scaling law for R0.

Projection allows region-specific planning and pre-emptive resource allocation. This
region-specific R0 provides a baseline to compare interventions. This paper demonstrates
that the HI-STR model can project the UK’s ancestral SARS-CoV2’s ̂R0 and the SARS-
CoV2 Delta variant’s ̂R0 onto the states of the USA. Applicability in other anglophone
and non-anglophone regions remains to be demonstrated.

The long-term success of an intervention depends both on the policy [271, 272] and
implementation [273, 274]. Policies and strategies can only be evaluated retrospectively
[275–278] because of unforeseen long-term risks [279–283], low-probability high-impact
events [284–287] and unintended consequences [288–294]. Nevertheless, projection pro-
vides timeous local baselines for the comparison of the implementation of similar policies
across SIPs with SSSB.

The HI-STR model, like other ODE compartment models, does not predict COVID-19’s
waves. COVID-19 has demonstrated that some of these waves may be due to new vari-
ants outcompeting incumbents [30]. Although the HI-STR model does not incorporate
pathogen evolution and random events like VOCs, here (for the SARS-CoV2 Delta vari-
ant) it has been demonstrated that an impact of such a random event can still be projected
timeously.

Appendix A: The HI-STR parameters for the ancestral SARS-CoV2
COVID-19 is a collection of clinical symptoms and pathologies [295, 296] assigned to sev-
eral variants of SARS-CoV2[297–299]. The heterogeneity of pathology [300, 301] is due to
variable host responses to both a variant [302–305] and multiple viral lineages [306, 307],
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Table 2 Asymptomatic prevalence for COVID-19(wt)

n Infected if tested Asymptomatic Population

36 53% 11% Human challenge trial [322]
3711 17.9% Diamond Princess Cruise Ship [201]
565 2.3% 30.8% Japanese evacuees fromWuhan [316]

10,090 31% Seven whole population meta-analyses including Vo’, Italy [321]
5155 2.0% 42.2% Vo’, Italy [323]
3711 19.2% 46.5% Diamond Princess Cruise Ship [201]
1766 59.4% 47.8% Charles de Gaulle Aircraft Carrier [318]
4954 17.3% 58.4% USS Theodore Roosevelt [318]
217 59% 81.3% Cruise Ship Ernest Shackleton [202]

their variants [308, 309] and their mutations [310, 311]. Here COVID-19(wt) will refer
to the distribution of pathology, case fatality rate, severity and transmission dynamics of
the subset of COVID-19 due to L lineage of the ancestral (wild-type) SARS-CoV2 [304] to
distinguish it from the corresponding findings of the Alpha (B.1.1.7) [312], Beta (B.1.351),
Delta (B.1.617.2) [43, 306] and Omicron (B.1.1.529) [309] variants.

Benjamin [52] defines a time unit in the transmissible timescale as the weighted average
of the time a host can transmit a pathogen. The transmission period is limited by viral load
in a latent period, recovery, death, pharmacological intervention and behavioural adap-
tation like quarantine. The weighting is based on the relative proportions of inherently
immune (1 – σ ), symptomatic (ψ ), asymptomatic (1 – ψ ) and other subpopulations with
distinct transmission periods.

The assumption is that for a novel pathogen, when sufficient contact is made between a
host and a potential host (in a completely susceptible population), there are three possible
outcomes. There are inherently immune/resistant individuals (not previously exposed)
that will not become infected and therefore have a transmission period of zero [313–315],
asymptomatic individuals [200, 316] that may have the transmission period shortened by
clearing the virus [312, 317] or prolonged by not isolating [64, 318] and the symptomat-
ically infected who will have the transmission shortened by either self-isolation, hospi-
talisation or death. Each group’s transmission periods and transmissibility [317, 319] are
dependent on the demography [266, 318], co-morbidities [267, 268] and genetic predis-
positions [320] within that group.

The prevalence of asymptomatic infection has been reviewed [318, 321]. Whole popu-
lation survey’s from 2020 of presumed COVID-19(wt) and a young adult challenge trial
[322] are presented in Table 2. The prevalences may reflect demography. The median
asymptomatic prevalence is 42.2%.

The infectious period and infectiousness of these groups have been reviewed [72, 319,
324, 325]. Each study uses viral load as an imperfect proxy for infectiousness [199, 325–
327]. Lavezzo et al. [323] determine the infectious period by shortening the viral particle
shedding period by 4 days [199, 327] because of the later shedding of detectable, inactive
viral RNA fragments. Table 3 presents the latent, incubation, transmission and infectious
periods for the symptomatic and asymptomatic.

The latent period is from infection to sufficient viral shedding for successful transmis-
sion. Incubation is from infection to symptom onset. The period of time that a virus is de-
tectable has been shortened by 4 days to obtain the infectious period [323]. It is assumed
that (for COVID-19) symptomatic patients self-isolate and are hospitalised or ostracised
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Table 3 Median latent, incubation, infectious and transmission periods for symptomatic and
asymptomatic COVID-19(wt) patients from early 2020. A = asymptomatic, d = days

Location (A/n) Symptomatic Asymptomatic

Infectious Latent Incubation Transmission (�τ ) Infectious (�I) [Source]

UK Challenge (2/18) 8 d 2 d 4 d 2 d 8 d [322]
S. Korea (89/303) 13 d 15 d 15.5 d [328]
S. Korea (68/396) 14 d 10.5 d [329]
Gangzhou (0/77) 14 d 5.8 d 6 d [330]
Wuhan (37/178) 10 d 8 d 15 d [331]
Washington (3/48) 14 d 4 d 18 d [199]

at symptom onset or within a day thereof. Therefore the transmission period is the differ-
ence between the incubation and latent periods.

In each of these studies, there is no demonstrable difference in infectivity between these
groups [324, 325, 327, 329]. Table 3 mitigates the bias of retrospective studies [317] by
only including whole population studies. Nevertheless, each population is unique and
not necessarily representative. Of note: there may be small differences in the definition
of symptomatic and asymptomatic individuals and different real-time RT-PCR platforms
with different cycle count thresholds used. RT-PCR does not distinguish active virions
from inactive nucleic acid [332].

The proportion of inherently immune or resistant (1 – σ ) is unknown. Although the
UK challenge trial [322] is prospective, neither the sample nor the inoculum is necessar-
ily representative. It is assumed that the inherently immune and resistant are negligible
(σ = 1). In summary, 42.2% are asymptomatic carriers with a 15-day transmission period
�τ , and the symptomatic 57.8% have �τ = 5 days. Consequently, the weighted average
transmission period is �τ = 9 days, and the transmissible times scale is 1 : 9 days.

Periodic human behaviour is the result of superimposed daily, weekly, monthly and an-
nual cycles. For infectious diseases, the rhythmic timescale is determined by the periodic-
ity of transmission opportunity. For airborne diseases, like COVID-19, the relevant cycle
is diurnal with maximum transmission opportunity during day time social interactions
and a trough while sleeping. The rhythmic timescale (1 : δt) for COVID-19 is thus 1 : 1
day.

The wild-type SARS-CoV2 temporal scaling factor (B(wt)) in Equations (1) and (6) is
the ratio of a unit of time in transmissible times scale (�τ ) to that in the rhythmic timescale
(δt). For COVID-19(wt), B(wt) = 9.

Appendix B: USA states’ basic reproduction number outliers
Re-arranging Equation (6), substituting the median reproduction numbers estimates
(z

̂R0) for the 1 ≤ z ≤ 51 states of the USA [219] and the population sizes (z
̂N ) and densities

(zρ̂n) for these states [265] allows us to determine the proportionality constant (M = βA
τ α

)
in

zRB
0 (wt) = M × zN × zρ2

n ⇐⇒ ̂M =
z
ρ
̂RB

0 (wt)
ẑN × zρ̂2

n
.

Figure 7 (the density distribution for ̂M) identifies six outliers. ̂M’s median [IQR] is 1.1×
10–7[3.4×10–8, 6.2×10–7]. New Mexico, Alaska, Oklahoma, New York, South Dakota and
Louisiana are removed from further analysis.
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Figure 7 Population density distribution of M inRB
0 (wt) =M× ρ2

nN

Figure 8 Population density distribution of E, the relative error between the estimated and regression basic
reproductive numbers

The relative error between the regression basic reproductive (z ¯̄R0(wt)) and z
̂R0(wt):

E :=
z ¯̄R0(wt) – z

̂R0(wt)
z ̂R0(wt)

, where z ¯̄R0(wt) = ̂M × z
̂N × zρ̂n,

is assumed to have a Gaussian distribution with zero mean. The Median [IQR] of E is
–0.02[–0.17, 0.05]. Figure 8 is the density distribution of the relative error between the re-
gressed and estimated R0(wt)s. Hawaii, Montana, Minnesota, Wyoming and Washington
DC are removed as outliers.

Figure 9 compares the density distributions of ̂R0(wt) and ¯̄R0(wt) for the remaining 40
states and demonstrates that the relative error E is normally distributed. The Shapiro–
Wilk test on E does not exclude normality (p = 0.31).

Appendix C: Sensitivity analysis – impact of asymptomatic ratio
The ratio of the time units in the transmissible timescale to the time units in the rhythmic
timescale (B) translates to the average transmissible period (�τ ) for the particular case
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Figure 9 (a) Comparison of the regression and estimatedR0(wt); (b) Demonstration of the normality of the
relative error E

where the time units in the rhythmic timescale (δt) = 1. For this particular case, B is
dependent on four variables:

B = σ (1 – ψ) × �I + σψ × �τ + (1 – σ ) × 0

= σ (1 – ψ) × �I + σψ × �τ = �τ , where δt = 1,

σ is the non-immune or susceptible portion of the population, 1–σ is the immune portion
that cannot be infected, ψ is the portion of σ that will be symptomatic if infected, 1 – ψ is
the proportion that will be asymptomatic if infected, �I is the infectious period, and �τ

is the transmissible period.
For wild-type SARS-CoV2 early in the epidemic, when R0 is relevant, there is no natural

immunity, and 1 – σ represents inherent immunity. Thus far, it has been assumed that
σ = 1, whereas Tables 2 and 3 demonstrate the variance in the estimates of ψ and �I and
�τ , respectively. Figure 5 is a sensitivity analysis depicting the effect of changes in:

1. the symptomatic fraction (ψ ) when the inherently immune fraction (1 – σ ),
infectious period (�I) and transmissible period (�τ ) are held constant at 0; 15 days
and 5 days, respectively;

2. the inherently immune fraction (1 – σ ) is varied from 0 to 0.5 with ψ = 0.6, �I = 15
days and �τ = 5 days. The distribution of the constants M and E deviate from
normality for ψ > 0.5;

3. infectious period (�I) with 1 – σ = 0, ψ = 0.6 and �τ = 5 days and
4. transmissible period (�τ ) with 1 – σ = 0, ψ = 0.6 and �I = 15 days

on the difference between UK’s projection of UK
̂R0(wt) = 4.2 onto the USA states and their

̂R0(wt)s – projection (z
˜R0(wt)) – estimate (z

̂R0(wt)).
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As expected, increasing the symptomatic fraction ψ or the inherently immune fraction
(1 – σ ) reduced R0. Of note: relative to the estimates and the uncertainties in these es-
timates [219], the reduction in R0 is not epidemiologically significant over the domains
investigated. The E distribution deviates from normality on the Shapiro–Wilk test for in-
herently immune ratios greater than 40% and visibly for ratios greater than 50%.

Increasing either the infectious period �I or the transmissible period �τ increased R0.
Again, relative to the estimates and the uncertainties in these estimates [219], the increase
in R0 is not epidemiologically significant.

Appendix D: The UK and USA’s HI-STR model B for SARS-CoV2(�)
Figure 10 [212, 213] demonstrates that the criteria for this implementation of VOC pro-
jection is satisfied by the Delta variant in the USA and UK. In particular, projection has
greatest utility when there is delay in the VOC manifesting in a region. Figure 10(a) demon-
strates that the � variant becomes prominent in the the most connected of the USA states
at least 1 month after the UK. Figure 10(b) shows that the UK’s fully vaccinated proportion
was 25–45% during the transition to � variant, whereas the USA’s was 30–55% during this
transition. The USA is complicated by both state-level vaccination proportion differences
and differences in epidemic development stage. Figure 10(c) demonstrates the rapid and
complete transition to � in the UK – satisfying this projection implementation’s require-
ment for negligible mixing. Figure 10(d) demonstrates the same (negligible mixing) for the
USA. It also contrasts this by displaying co-existent wt, α and γ variants. The co-existent
variants are not necessarily a consequence of mixing – the states of the USA may be at dif-
ferent epidemic stages. Both the resultant staggered transition and mixing will manifest
with co-existent variants.

Figure 10 (a) Delay in appearance of the Delta variant between USA and UK; (b) Similar complete
vaccination proportions during Delta variant; (c) minimal mixing between α and � in the UK; (d) minimal
mixing between α and � SARS-CoV2 variants in the USA
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Table 4 Calculating the transmissible period for the SARS-CoV2 Delta variant

Susceptible = 100%

Vaccination Status Vaccinated = 40% Unvaccinated = 60%

Clinical Status Asymptomatic Symptomatic Asymptomatic Symptomatic
Proportion 10% 90% 20% 80%

Latent Period 4 d 4 d 4 d 4 d
Pre-symptomatic 4 d 4 d 4 d 4 d
and infectious
Symptom onset to 7 d 1 d 7 d 1 d
isolation or recovery

Weighting 4% 36% 12% 48%
Transmission Period 11 d 5 d 11 d 5 d

Transmissible Period 6 d

A cohort (n = 24) of post-vaccination breakthrough infection had a 100% symptomatic
fraction [333]. Retrospective surveys indicate that 85–90% of the vaccinated are symp-
tomatic vs 70–80% of the unvaccinated [252, 253, 270].

The host becomes infectious 4 days after exposure [334] and is symptomatic 4 days after
becoming infectious [335]. The median time from symptom onset to undetectable viral
load was 13.5 days, whereas the median time from symptom onset to negative viral culture
was 7 days [333, 336].

The viral loads (based on RT-PCR Cycle Count Threshold (Ct) values) were higher in the
unvaccinated [249, 257, 337], but a statistically significant difference in Ct was not evident
among the 4 group combinations of vaccination and symptom status [252, 337, 338]. Note
that the Ct scale represents a viral load logarithmic scale.

As for SARS-CoV2(wt), the inherently immune fraction is unknown and assumed neg-
ligible. The naturally immune fraction is not known. The vaccinated portion is approxi-
mately 40% in the UK and USA (Fig. 10(b)) during the period of transition to the Delta
variant (Fig. 10(a)). Vaccination does not prevent SARS-CoV2(�) infection [252–255], but
this depends on time from vaccination [256, 257, 339].

These findings are summarised in Table 4, where the naturally immune fraction is un-
known and treated as negligible. The resultant transmissible period is 6 days, and thus
B(�) = 6 for the SARS-CoV2 Delta variant. For the asymptomatic, there are no symp-
toms, the patient is infectious, and the transmissible period is from detectable virus to
recovery.

Assuming 100% natural immunity, we can assume that the symptomatic and asymp-
tomatic fraction will be similar to the vaccinated [340]. The vaccinated and naturally im-
mune fraction will be 100% with weightings 10% and 90% for asymptomatic and symp-
tomatic, respectively; B(�) = 5.6 ≈ 6.
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