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Abstract
For a class of translation-invariant pair potentials φ in (Rd , zλ) satisfying a stability and
regularity condition, we choose z so small that the associated collection G(φ , zλ) of
Gibbs processes contains at least the stationary process G, which is a Gibbs process in
the sense of DLR and is given by the limiting Gibbs process with empty boundary
conditions. Using an abstract version of the method of cluster expansions and
Dobrushin’s approach to the central limit theorem, we present a central limit theorem
for the particle numbers of G.
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1 Introduction
In 1970 Minlos and Halfina [12] proved for a limiting lattice gas with empty boundary
conditions, i.e., for some phase, that the fluctuations of the particle number have asymp-
totically for large volumes a normal distribution if the activity z is small enough. They
assumed Penrose stability in the sense of [18] and some regularity condition for the un-
derlying pair potential. Martin-Löf [9] obtained in 1973 similar results for the Ising model.
In 1975 Malyshev [7] proved a general result of this type under the assumption of expo-
nential decay of correlations.

To our knowledge, such results have not yet been presented for a classical continuous
gas without recurring to the lattice case. That the latter is possible has been noted already
by Minlos and Halfina [12] and was realized in a number of works (cf. [3–6]).

Our aim is to show a central limit theorem for the particle numbers of a classical gas in
Euclidean space by using point process methods, thereby avoiding the artificial recours to
lattice gas technics. Our assumptions on the potential φ are similar to the one of Minlos
and Halfina; particularly, we consider weakly Penrose stable pair potentials and a regularity
condition, which implies that the activity z is small enough such that the limiting Gibbs
process with empty boundary conditions, denoted by G, exists and is a Gibbs process in
the sense of DLR. For this pure phase of a Gibbs process G, using an equivalent form of
DLR equations given by Nguyen and Zessin [15], we show that the number of particles in
a bounded large region satisfies the central limit theorem.

For a proof we use the method of cluster expansions in an abstract form, developed by
Nehring [13] (see also [17]). Another important ingredient is Dobrushin’s approach to the
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central limit theorem (cf. [1]), which is based on an application of elementary facts of the
theory of analytic functions.

2 Synopsis of notions and methods
Notions not explained here can be found in [18].

2.1 Point processes
The underlying phase space (X,B(X),B0(X)) is an lcscH, i.e., locally compact, second
countable Hausdorff topological space.1 B(X) denotes its Borel sets and B0(X) is bounded,
this means relatively compact, Borel sets. M(X) is the space of Radon measures on X,
which is Polish with respect to vague convergence, and M·(X) is the Borel subspace of
simple point measures, i.e., locally finite subsets of X. X = M·

f (X) denotes the measurable
subset of finite elements ξ in M·(X) and X′ all ξ ∈X with ξ �= o, where o denotes the zero-
measure or vacuum. For notational convenience, we do not indicate always the underlying
space in the sequel. �o is the Dirac measure on M· in o. Dirac measures on X are denoted
by εx.

Laws P on (M·,B(M·)) are called (simple point) processes in X.2 We use different func-
tion spaces: U is the collection of all bounded, nonnegative, and measurable functions f
on X with bounded support. F denotes the set of all nonnegative measurable functions
on the underlying space, which is not indicated. For f ∈ U , the functional ζf : μ �→ μ(f )
is a well-defined measurable function on M·, which is vaguely continuous for continuous
f ∈ U . If B ∈ B0(X), then we write ζB instead of ζ1B . ζB counts the number of particles in
B.

Functionals of point processes LP(f ) = P(e–ζf ), f ∈ U , denotes the Laplace transform of
process P. Another important functional is the Campbell measure of P, defined by

CP(h) =
∫
M·

∫
X

h(x,μ)μ(d x)P(dμ), h ∈ F .

P is uniquely determined by both functionals. The Campbell measure of a process P de-
termines all moment measures of P. Indeed, the kth moment measure is given by

νk
P(f1 ⊗ · · · ⊗ fk) = CP

(
f1 ⊗ (ζf2 · · · ζfk )

)
, f1, . . . , fk ∈ F .

If νk
P is a Radon measure, i.e., νk

P(f ) < ∞ for all f ∈ U , then P is called of order k. If P has
moments of all orders, then P is called of infinite order. The factorial measure of P of order
k is defined as the restriction of νk

P to X̃k = {(x1, . . . , xk) : (i �= j ⇒ xi �= xj)} and is denoted by
ν̃k

P . Thus for f ∈ F(Xk)

ν̃k
P(f ) =

∫
M·

P(dμ)
∫

Xk
μ̃k(d x1 . . . d xk)f (x1, . . . , xk).

1For a classical gas, X will be the Euclidean space E =R
d .

2In the sequel we call them processes.
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Here

μ̃k(d x1 . . . d xk) = μ(d x1)(μ – εx1 )(d x2) . . .

(
μ –

k–1∑
	=1

εx	

)
(d xk).

If P is of order k, then obviously also ν̃k
P .

2.2 The method of cluster expansions
We use the abstract form of this method as developed in [13, 14, 17] and explain it shortly
in the special case of a classical gas in Euclidean space. Let E denote the space R

d with
Lebesgue measure λ(d x) = d x. For a given activity z > 0, we set 
 = zλ. Let � be a pair
potential on E, i.e., a measurable function � : E × E → (–∞, +∞]. We assume stability
and some regularity condition, which we will make explicit in what follows.

Consider next the associated Ursell function, defined by κ(o) = 0,κ(x) ≡ 1, and

κ(εx1 + · · · + εxn ) =
∑
γ∈Cn

∏
{x,y}∈γ

(
e–�(x,y) –1

)
, n ≥ 2.

This is a sum over all unoriented graphs γ with n vertices, and the product is taken over
all edges of γ .

The method of cluster expansions enables the construction of the limiting Gibbs process
with empty boundary conditions. And strengthening the assumptions on � allows to show
that the limiting process is even a Gibbs process.

Consider the cluster functional

L = κ.

,

i.e., the measure 

 with density κ. Here 

 is the measure 
 lifted to the collection of
finite configurations X, i.e.,



(ϕ) =
∞∑

n=0

1
n!

∫
En

ϕ(εx1 + · · · + εxn )
(d x1) . . .
(d xn), ϕ ∈ F .

In general, L is not a well-defined mathematical object. To give to it a precise meaning, we
shall make assumptions ensuring that L is a signed Radon measure. This means that L is
locally a finite signed measure.

To be more precise, we consider the so-called variation of L

|L | = |κ|.

.

This is a positive measure on X′ := X \ {o}, but may be infinite. Our assumptions below on
the potential � will assure that |L | is of first order. This means

ν1
|L |f :=

∫
X′

ξ (f )|κ|(ξ )

(d ξ ) < ∞, f ∈ U . (P)

By partial integration this is equivalent to saying that
∫

E
f (x)

∫
X′

|κ|(ξ + εx)

(d ξ )
(d x) < ∞, f ∈ U . (P ′)
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Indeed, by Mecke’s formula [10],

∫
X′

∫
E

f (x)|κ|(ξ )ξ (d x)

(d ξ ) =
∫
X′

∫
E

f (x)|κ|(ξ + εx)
(d x)

(d ξ ).

We now localize L in the following way: Let B ∈ B0(E) and consider

LB := 1{ζBc =0}. L,

i.e., we restrict L to the collection X′(B) of configurations in B. This is a finite signed mea-
sure on X′. Indeed, assumption (P) implies

|LB |(X′) ≤ ν1
|L |(B) < ∞.

Moreover, condition (P) implies that the so-called modified Laplace transform of |L |,
defined by

K|L |f := |L |(1 – e–ζf
)
, f ∈ U ,

is finite-valued, and thereby also KL(f ). Note here that 1 – e–ζf ≤ ζf , f ∈ U .

The local construction Let Efs denote the space of all finite signed measures on X: It is
well known that the space Efs is a real Banach algebra with respect to convolution ∗ and
the total variation norm. Its unit is 1 := �o, the Dirac measure in the vacuum o.

Thus the finite signed measure LB generates within Efs the signed measure

�LB =
1

�B
· exp LB, (1)

where

exp LB =
∞∑

n=0

1
n!

(LB)∗n,

�B = exp LB
(
X

′) = exp

(∫
X′(B)

κ(ξ )

(d ξ )
)

= exp

(∫
X′
κ(ξ )

B (d ξ )

)
,


B = 1B.
.

Note that the integral
∫
X′ κ(ξ )

B (d ξ ) is absolutely convergent because of condition (P).

The Laplace transform of LB is

LLB = exp(–KLB ), (2)

where

KLB f = LB
(
1 – e–ζf

)
, f ∈ U .
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It is now decisive that �LB can be represented in the following form:

�LB =
1

�B
· �(κ).

B , (3)

where �(κ) is the algebraic exponential of the Ursell function, explicitly written as

�(κ)(εx1 + · · · + εxk ) =
∑

J ∈℘[k]

∏
J∈J

κ
(
(xj)j∈J

)
.

Here ℘[k] denotes the collection of partitions of the set [k]. On the other hand (cf. Ruelle
[19]), this coincides with the Boltzmann factor, i.e.,

�(κ) = exp(–E�),

where E� denotes the energy based on �, i.e.,

E�(εx1 + · · · + εxk ) =
∑

1≤i<j≤k

φ(xj – xi), x1, . . . , xk ∈ E.

We thus see that the above method of abstract cluster expansions leads for finite signed L

to the local Gibbs process for (
,�) with empty boundary conditions.

The infinitely extended construction (For the details, we refer to [17].)
To construct the limiting process �L, we localize L as above and then go to the limit. To

be more precise: Let (Bn)n be an increasing sequence of bounded Borel sets in E exhausting
E, i.e., Bn ↑ E if n ↑ ∞. We assume that (Bn)n is regular in the following sense:

lim
n→∞

λ(Bn ∩ (Bn – y))
λ(Bn)

= 1, y ∈ E.

Consider the sequence of finite signed measures

Ln = 1X′(Bn). L

and the associated sequence �Ln of local Gibbs processes. By means of Mecke’s continuity
theorem (cf. [11]), one then obtains the following.

Lemma 1 Under assumption (P) or (P ′) there exists a limiting process �L in E such that
�Ln converges weakly to �L if n → ∞. The Laplace transform of �L is given by exp(–KL).

�L is the limiting Gibbs process with empty boundary conditions. In the sequel we write
G for �L.

2.3 The cluster equation (cf. Mecke [11] and Nehring [13])
If L is of first order, then �L is of first order and a solution P of the cluster equation

CP = CL � P. (C 	)
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Here the operation � is defined by3

CL � P(h) =
∫
M·

∫
E

∫
X

h(x, ξ + μ)CL(d x d ξ )P(dμ), h ∈ F .

Conversely, if L is of first order and P is a process that solves (C 	), then P = �L.
We will see below that the cluster equation is very useful to calculate moment measures

of G as well as other properties.

2.4 Stationary processes
The group operation in E is written additively: Txz = z – x. It induces on M·(E) = M· the
transformation

(Txμ)(B) = μ(B + x), B ∈ B.

Write also Txμ = μ– x. This in turn induces on the level of processes P the transformation
TxP, i.e., the image of P under Tx. P is called stationary if

TxP = P, x ∈ E.

More generally, we shall consider also the stationarity property for L.
For stationary P of first order, the first moment measure ν1

P of P is stationary and thereby
of the form ıP · λ for some ıP > 0. ıP thus is the expected number of particles in a region B
with λ(B) = 1. 4

3 Classical continuous systems
We consider from now on a classical gas in the Euclidean space E = R

d of the following type.

Conditions on the potential We consider pair potentials � in E of the form

�(x, y) = φ(x – y), x, y ∈ E,

where φ is an even, measurable function on E, and assume stability and regularity in the
following sense:

(A1) (weak or w℘-stability) There exists a constant c ≥ 0 such that for every ξ ∈ X′

there exists x ∈ ξ with

Wφ(x, ξx) ≥ – c ·|ξ |, ξ ∈X.

Here |ξ | = ξ (E) denotes the number of particles in ξ ; ξx = ξ – εx is the
configuration without particle x and

Wφ(x, ξx) =
∑
y∈ξx

φ(y – x)

is the conditional energy of x given ξ . If c is given, the regularity condition is

3Note that the Campbell measure, which was defined above for processes only, makes also sense for L.
4Throughout processes are assumed to be of first order without further mentioning.



Zessin and Poghosyan Advances in Continuous and Discrete Models         (2023) 2023:47 Page 7 of 13

(A2) (modified c-regularity)

z ec +1 C′′
φ ≤ 1.

Here C′′
φ =

∫
E |φ|(y) eφ–(y) d y, where φ ≡ 1 if φ ≡ +∞ and otherwise coincides with φ.

A remark is in order here: Ruelle [19] uses the constant Cφ =
∫

E |1 – e–φ(y) |d y; whereas
in [18] we used C′

φ =
∫

E(1 – e–|φ|(y)) d y. It is obvious that

C′
φ ≤ Cφ ≤ C′′

φ . (4)

Furthermore, w℘-stability of φ implies the usual stability for the same constant, i.e.,

E�(ξ ) ≥ – c ·|ξ |, ξ ∈X.

Under conditions (A1) and (A2), the measure |L | is of first order by Theorem 2.1 from
[16]. Lemma 1 therefore implies the existence of the limiting Gibbs process G = �L with
empty boundary conditions. Moreover, G is a Gibbs process for (φ,
) of infinite order by
Theorem 3 in [18]. This means that G satisfies the DLR-equations in the following equiv-
alent form (cf. Nguyen X.X. and Zessin [15]): G is a solution P of the following equation:

CP(h) =
∫

E

∫
M·

h(x,μ + εx) e–Wφ (x,μ) P(dμ)
(d x), h ∈ F . (�
)

Its correlation functions, i.e., the densities rn
G of the factorial moment measures ν̃n

G with
respect to the product measures 
n, have the representation

rn
G(x1, . . . , xn) =

∫
M·

e–Wφ (εx1 +···εxn ,μ) G(dμ), x1, . . . , xn ∈ E, (5)

and satisfy the Ruelle estimate

rn
G(x1, . . . , xn) ≤ ec n . (6)

(For details, we refer to [18].) Here

Wφ(εx1 + · · · εxn ,μ) = Wφ(x1,μ) + Wφ(x2,μ + εx1 ) + · · · + W�(xn,μ + εx1 + · · · + εxn–1 ).

We remark also that L is stationary since � has this property. This implies that the lim-
iting Gibbs process G is stationary too. Indeed, since G is the unique solution of the clus-
ter equation for L, it follows that its translation Tx G equals �Tx L, which coincides with
�L = G.

Another implication of the cluster equation is

ν1
G = ν1

L = z
∫
X

κ(ξ + ε0)

(d ξ ) · λ.

Thus the intensity of G is given by

ıG = z
∫
X

κ(ξ + ε0)

(d ξ ).
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Finally, we evaluate for later use the variance VG(ζK ): Set

r1
L(0) =

∫
X

κ(ξ + ε0)

(d ξ ), (7)

r2
L(x, y) =

∫
X

κ(ξ + εx + εy)

(d ξ ). (8)

The variance VG(ζK ) = ν2
G(K × K) – ν1

G(K)2 of the particle number ζK in the region K ∈
B0(E) with respect to the limiting Gibbs process G is given by Lemma 2.

Lemma 2

VG(ζK ) =
∫

K2
r2

L(x, y)
(d x)
(d y) + r1
L(0) · 
(K). (9)

Proof Again using the cluster equation for L, we obtain

ν2
G(K × K) = CG(1K ⊗ ζK )

= CL � G(1K ⊗ ζK )

=
∫

1K (x)(μ + ξ )(K)κ(ξ )ξ (d x)

(d ξ ) G(dμ).

The right-hand side is a sum of two terms. The first is given by ν1
G(K)ν1

L(K) = ν1
G(K)2,

whereas the second, which will give the right-hand side of (8), equals

∫
X

∫
K

ξ (K)κ(ξ )ξ (d x)

(d ξ ) =
∫

K

∫
X

κ(ξ + εx)
(
ξ (K) + 1

)


(d ξ )
(d x).

Partial integration then yields the assertion. �

4 A lemma of Dobrushin
Let (Bn)n be some regular sequence of bounded Borel sets in E; take for example an in-
creasing sequence of balls of radius N centered in 0 where N ↑ ∞. Consider the sequence
Sn = ζBn of counting variables defined on the probability space given by some simple point
process P in E of order two. Thus expectations and variances of the variables, i.e.,

P(ζBn ) = ν1
P(Bn), VP(ζBn ) = P

(
ζ 2

Bn

)
– ν1

P(Bn)2,

are well defined and finite. Assume that all limiting variances are strictly positive. The
central limit theorem is valid for the sequence (ζBn )n if for any real λ,

lim
n→∞ P

{
ζBn – ν1

P(Bn)√
VP(ζBn )

< λ

}
=

1√
2π

·
∫ λ

–∞
e– t2

2 d t.

The main lemma for a proof will be the following. Denote for R > 0 the centered closed
ball in the complex plane C

OR =
{

a ∈C : |a| ≤ R
}

.
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Lemma 3 (Dobrushin [1]) Assume that for some R > 0 the Laplace transform of P, defined
by

�n(a) = P
(
eaζBn

)
, a ∈OR, (℘1)

is finite-valued and does not vanish for all a ∈ OR. Assume also that �n is continuous in
OR and analytic in its interior, and furthermore that there exists some constant K > 0 such
that

| ln‖�n‖|(a) ≤ K · |Bn|, a ∈OR. (℘2)

Here ‖�n‖(a) = G(| eaζBn |). Assume finally that there exists a constant d > 0 such that the
variances satisfy the condition

VP(ζBn ) ≥ d ·|Bn|. (℘3)

Both (℘2) and (℘3) are valid for sufficiently large n. Then the central limit theorem is valid
for the random variables ζBn .

A proof can be found in [1] and is not repeated here.

5 Proof of the central limit theorem
We verify the assumptions of Dobrushin’s lemma for the counting variables of the limiting
Gibbs process G.

ad (℘1)

Lemma 4 For every μ ∈M· and B ∈ B0(E),

ea·μ(B) = 1 +
∞∑

n=1

μ̃n(Bn)
n!

(
ea –1

)n, a ∈C. (10)

(Note that the series on the right-hand side is a finite sum because μ(B) is finite.)

Proof Indeed, given μ ∈M· with μ =
∑

j εxj and B ∈ B0(E) with 	 = μ(B),

ea·μ(B) =
	∑

n=0

∑
I⊆[	],|I|=n

∏
j∈I

(
ea·1B(xj) –1

)

=
	∑

n=0

(
ea –1

)n ∑
I⊆[	],|I|=n

∏
j∈I

1B(xj)

=
∞∑

n=0

(ea –1)n

n!
μ̃n(Bn). �

The next result uses the Gibbsian character of G for (φ,
).
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Proposition 1 Under assumptions (A1) and (A2),

�B(a) = G
(
eaζB

)
= 1 +

∞∑
n=1

ν̃n
G(Bn)

n!
(
ea –1

)n, a ∈Oln 2.

Proof We show that the right-hand side of (10) converges absolutely almost surely with
respect to G: Let a ∈Oln 2 and thereby | ea –1| ≤ 1. Iterating equation (�
) implies

∫
M·

∣∣∣∣∣
∞∑

n=1

μ̃n(Bn)
n!

(
ea –1

)n

∣∣∣∣∣G(dμ) ≤
∞∑

n=1

1
n!

∫
M·

μ̃n(Bn)G(dμ)

=
∞∑

n=1

1
n!

∫
Bn

∫
M·

e–Wφ (εx1 +···+εxn ,μ) G(dμ)
n(d x1 . . . d xn)

≤ exp
(
ec 
(B)

)
.

Here we also used Ruelle’s estimate (5). �

This shows that the function �B is finite-valued in Oln 2. Moreover, it does not vanish
for all a ∈Oln 2 since �B(–α) > 0 for all α ≥ 0. Furthermore, �B is continuous in the closed
ball Oln 2 and analytic in its interior. Finally,

‖�B‖(a) ≤ G
(
e|a|ζB

)
, a ∈Oln 2. (11)

ad (℘2) We know from Lemma 1 that

G
(
e–αζB

)
= exp

(
L
(
e–αζB –1

))
, α ≥ 0.

Assume now that

∞∑
	=1

ν̃	
|L |(B	)

	!
< +∞, B ∈ B0(E). (12)

This condition is due to Malyshev and Minlos in an equivalent form (cf. [8], Chap. 3, The-
orem 2).

Lemma 5 Under assumption (12),

L
(
eaζB –1

)
=

∞∑
n=1

ν̃n
L(Bn)
n!

(
ea –1

)n, a ∈Oln 2. (13)

It follows that the left-hand side of (13), considered as a function of a, is continuous in
Oln 2 and analytic in its interior. The proof of the lemma is the same as for Proposition 1 if
G is replaced with L.

Particularly, formula (13) holds for all a ∈ [– ln 2, ln 2]. Thus, using (11), one obtains for
all a ∈Oln 2

| ln‖�B‖|(a) ≤ |L |(e|a|ζB –1
)
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≤
∞∑

n=1

ν̃n
|L |(Bn)

n!
. (14)

To obtain (℘2), we estimate the right-hand side by means of the following basic result due
to Ruelle (Cf. [19], estimate (4.37) of Theorem 4.4.8). Let rn

|L | denote the Radon–Nikodym
derivative of ν̃n

|L | with respect to 
n, which is given by partial integration by

rn
|L |(x1, . . . , xn) =

∫
X

|κ|(ξ + εx1 + · · · + εxn )

(d ξ ). (15)

It is worth to note that the result of Ruelle was given for the Radon–Nikodym derivative
of ν̃n

|L | with respect to λn and for this reason he had an additional factor zn in the front of
integral (15).

Lemma 6 Under (A1) and (A2) (which imply Ruelle’s assumptions on the underlying po-
tential), the following estimate holds true uniformly in x:

∫
En–1

rn
|L |(x,x2, . . . , xn)
(d x2) . . .
(d xn)

≤ (n – 1)! e– c (z ec +1 Cφ)n–1

(1 – z ec +1 Cφ)n . (16)

The lemma implies

ν̃n
|L |

(
Bn) ≤ 
(B)(n – 1)! e– c χn–1

(1 – χ )n ,

where χ = z ec +1 Cφ . It follows for all z satisfying χ < 1
2 that

∞∑
n=1

ν̃n
|L |(Bn)

n!
≤ 
(B) · e– c

χ
log

1 – χ

1 – 2χ
,

which shows assumption (12) and thereby assertion (℘2).

ad (℘3) Note first that the limiting variance is given by

σ 2 = z ·
∫
X

κ(ξ + ε0)
(|ξ | + 1

)


(d ξ ). (17)

Indeed, we know from Lemma 2 that

VG(ζB) = z · r1
L(0)λ(B) +

∫
B2

r2
L(x, y)
(d x)
(d y).

Translation-invariance of the potential implies for the second term on the right-hand side

∫
B2

r2
L(x, y)
(d x)
(d y) =

∫
E

r2
G(0, y)


(
B ∩ (B – y)

)

(d y).
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And since the Br are chosen in a regular way, we obtain

σ 2 = lim
r→∞

VG(ζBr )
λ(Br)

= z ·
(

r1
L(0) +

∫
E

r2
L(0, y)
(d y)

)
.

This implies assertion (17) in view of definitions (7) and (8).
It remains to show that σ 2 is strictly positive. This follows from representation (17) by

means of Ueltschi’s tree graph bound (cf. [20]), which is valid under c-stability:

∣∣κ(ξ )
∣∣ ≤ ec |ξ | ·

∑
τ∈T (ξ )

∏
{x,y}∈τ

(
1 – e–|φ|(x,y)), ξ ∈X. (18)

Indeed, estimating the second term on the right-hand side of

σ 2 = z
(

1 +
∫
X′
κ(ξ + ε0)

(|ξ | + 1
)


(d ξ )

)
, (19)

we obtain from (18)

∣∣∣∣
∫
X′
κ(ξ + ε0)

(|ξ | + 1
)


(d ξ )

∣∣∣∣ ≤
∞∑
	=1

z	

	!
ec(	+1)(	 + 1)	

(
C′

φ

)	

≤ ec +1
∞∑
	=1

(
z ec +1 C′

φ

)	

=
z e2(c +1) C′

φ

1 – z ec +1 C′
φ

.

In view of equation (19) it follows that the specific variance σ 2 is strictly positive if z sat-
isfies

z <
1

ec +1 C′
φ(1 + ec +1)

. (20)

To summarize, we obtained the following central limit theorem.

Theorem 1 Let � be a pair potential in E, which is weakly ℘-stable for some constant
c ≥ 0 and satisfies the strengthened modified regularity condition

z ec +1 C′′
φ <

1
1 + ec +1 . (21)

Then, along some regular sequence (Br)r in E, the sequence of particle numbers (ζBr )r sat-
isfies the central limit theorem for the underlying Gibbs process given by the limiting Gibbs
process G with empty boundary conditions.

Note that in view of inequalities (4) condition (21) implies condition (20) as well as con-
dition χ < 1

2 , which is needed to obtain (℘2).
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5.1 Historical remark
The method of cluster expansions originated in the 1930s in statistical mechanics with the
aim to study classical gases. It was made rigorous by mathematical physicists in the 1960s,
in particular by Jean Ginibre in his pioneering work [2], where he develops the method for
quantum gases.
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