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Abstract
This paper studies a two-age structured SIRS epidemic model with logistic growth of
susceptible population and two-time delays. We simultaneously introduce two-time
delays, i.e., the immunity and incubation periods, into this dynamic system and
investigate their impact on different dynamic behaviors for the model. By means of
the C0-semigroup theory, the model is transformed into a non-densely defined
abstract Cauchy problem, and the condition of the existence and uniqueness of the
endemic equilibrium is obtained. Following the spectral analysis, the characteristic
equation technique, and the Hopf bifurcation theorem, we show that different
combinations of the two delays perform a vital role in the instability/stability as well
as the Hopf bifurcation results of equilibrium solutions. We numerically provide some
graphical representations to check the main theoretical results and show the rich
dynamics by varying the two delay parameters.
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1 Introduction
Mathematical models are fundamental tools for understanding the spread and control of
epidemic diseases. Since the ground-breaking work of Kermack and McKendrick [1], the
susceptible-infected-recovered (SIR) model has served as the foundational mathematical
theory for the spread of infectious diseases in populations and applied to specific dis-
eases, such as measles, malaria, cholera, seasonal flu, COVID-19, and so on [2–7]. The
classical SIR model put forth by Kermack and McKendrick [1] divided the population
into three classes named susceptible population S, infected population I , and recovered
population R. Assume that the immunity acquired following recovery is temporary, and
the SIRS model can be written as below [8]:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = α – dS(t) – kI(t)S(t) + mR(t),

dI(t)
dt = kI(t)S(t) – (d + γ )I(t),

dR(t)
dt = γ I(t) – (d + m)R(t),

(1.1)
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where S(t), I(t), and R(t) are the number of individuals in the corresponding classes at
time t, and the model coefficients are all positive. In this model, α represents the constant
input rate of new susceptible population; d is the common rate at which the individuals die
naturally; γ stands for the recovery rate of infected population; the recovered population
has a rate m of losing immunity and going back to the S class; the bilinear term kIS called
the incidence rate, and the constant k means the transmission rate at which the disease
spreads between the individuals in S and I classes.

However, there are two common features of the epidemic disease that the classical SIRS
model (1.1) does not capture. First, in model (1.1), the input of the susceptible individuals
is typically assumed to be constant. However, for a disease with a high mortality rate or a
relatively long duration, it may be more reasonable to assume the logistic growth input of
the susceptible individuals in some practical circumstances [9–11]. Li et al. [10] considered
the logistic growth rate and saturated treatment, as well as bilinear incidence in an SIR
disease model, and investigated the stability and bifurcation analysis of the model. In [11],
Avila-Vales and Pérez studied an SIR vector-borne disease model with logistic growth,
nonlinear incidence rate, Holling type II saturated treatment, and latency time delay. They
revealed the existence of Bogdanov-Takens bifurcation and backward bifurcation. Indeed,
many SIR/SIRS models and the approximation models have investigate the varying total
population problem with a logistic equation recently, and as an example, we mention the
studies [12–14] and the references therein.

In addition, we note that both the transmission and recovery coefficients in model (1.1)
are constant, which means the infected person’s infectivity is the same during their pe-
riodic infection. Over the last decades, many more advanced population models added
age structure to the approximations of the classic SIR/SIRS model (1.1), and as an exam-
ple, we mention the studies [12, 15–26] and the references therein. Numerous empirical
studies have highlighted the necessity of considering age structure in epidemic prediction
[27, 28]. Indeed, age is one of the essential factors in the spreading, controlling, prevent-
ing, and modeling of epidemic diseases since different age groups may experience different
mortality rates and infection rates for the same disease [29–31]. Considering a noncon-
stant transmission rate where infected individuals transmit disease to susceptible ones
differently depending on infection age (time passed since infection) and a constant input
of susceptible population, Magal et al. [23] investigated the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = α – dS(t) – ηS(t)

∫ +∞
0 β(a)i(t, a) da,

∂i(t,a)
∂t + ∂i(t,a)

∂a = –vI(a)i(t, a),

i(t, 0) = ηS(t)
∫ +∞

0 β(a)i(t, a) da,

S(0) = S0 ≥ 0, i(0, ·) = i0 ∈ L1
+(0, +∞),

where i(t, a) is the density of the infected population at time t with infection age a; the
infection age-dependent functions β(a) and vI(a) are the transmission rate and mortal-
ity rate of the infected population. They pioneered the Lyapunov functional approach to
show that the endemic equilibrium is globally asymptotically stable. Recent works have
generalized this model of infection-age type, and we mention here, for example, [32–36].

In the case of SIRS models, the removed population in the R class can acquire a cer-
tain immunity period before losing the preservation to be susceptible. Regarding age as a
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continuous variable, Duan et al. [37] developed the following SIRS disease system with a
recovery age structure to describe the immune protection process:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = α – dS(t) – kS(t)I(t) +

∫ ∞
0 m(a)r(t, a) da,

dI(t)
dt = kS(t)I(t) – (d + μ + γ )I(t),

∂r(t,a)
∂t + ∂r(t,a)

∂a = –(d + m(a))r(t, a),

r(t, 0) = γ I(t),

S(0) = S0, I(0) = I0, r(0, a) = r0(a) ∈ L1
+(0, +∞),

where r(t, a) stands for the density of recovered population at time t with a recovery age a;
the recovery age-dependent function m(a) represents the progression rate of the removed
population to the susceptible one; μ is the mortality rate caused by the disease. Using the
Hopf bifurcation theorem, they showed that a local Hopf bifurcation exists under certain
conditions. Several recent studies depend on such types of models, see, for example, [30,
38–41].

To extend the above age-structured models with constant input of S class where single
infection age or recovery age is considered, this paper further investigates the dynamics
of an age-structured SIRS model that integrates both two ages of infection and recovery
(describing the latent and immunity periods) and also a logistic growth of susceptible pop-
ulation as below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = bS(t)(1 – S(t)

K ) – S(t)
∫ +∞

0 β(a)i(t, a) da +
∫ +∞

0 m(a)r(t, a) da,
∂i(t,a)

∂t + ∂i(t,a)
∂a = –(d1 + μ + γ (a))i(t, a), t ≥ 0, a ≥ 0,

∂r(t,a)
∂t + ∂r(t,a)

∂a = –(d2 + m(a))r(t, a), t ≥ 0, a ≥ 0,

i(t, 0) = S(t)
∫ +∞

0 β(a)i(t, a) da, t ≥ 0,

r(t, 0) =
∫ +∞

0 γ (a)i(t, a) da, t ≥ 0,

(1.2)

with the initial condition

S(0) = S0 ≥ 0, i(0, a) = i0(a) ∈ L1
+(0, +∞), r(0, a) = r0(a) ∈ L1

+(0, +∞).

In our model (1.2), the term bS(t)(1 – S(t)
K ) is the common logistic growth of susceptible

individuals; b = α – d means the intrinsic growth rate; K means the carrying capacity of
susceptible individuals; d1 and d2 are the natural mortality rates of infected and recovery
individuals, respectively; γ (a) means the recovery rate of the infected population with
age a. We further assume the functions β(a), γ (a), m(a) ∈ L∞

+ (R+), with an essential upper
bound β∗, γ∗, and m∗, respectively.

To the best of our knowledge, there are no prior age-structured SIRS models considering
both infection and recovery age as well as the logistic growth of susceptible population.
In this paper, we concentrate on investigating the impact of both the latent and immunity
periods (described by infection and recovery ages) on the rich dynamics of system (1.2).
We organize the rest as below. Section 2 gives the preliminaries and establishes the well-
posedness result of system (1.2) transformed into a non-densely defined abstract Cauchy
problem. In Sect. 3, the linearized system, the basic reproduction number, and the exis-
tence of the equilibria are obtained. We calculate the characteristic equation and show
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that the disease-free equilibrium is locally/globally asymptotically stable in Sect. 4. Sec-
tion 5 investigates the stability and Hopf bifurcation results for the epidemic equilibrium
under different combinations of latent and immunity periods described by two delays. Sec-
tion 6 provides some graphical representations to check the obtained theoretical results.
We conclude in Sect. 7.

2 Preliminaries and well-posedness
This part deals with rewriting model (1.2) into an abstract Cauchy problem on a suit-
able Banach lattice, and the well-posedness results will be established for (1.2). Before
starting our discussion, we first gather some background information on linear operator,
C0-semigroup theory, and some notations.

Let A : D(A) ⊂ Y → Y be a linear operator on a Banach space Y . The resolvent set,
spectrum, and point spectrum of operator A are denoted by ρ(A), σ (A) = C \ ρ(A), and
σp(A) := {λ ∈C : N(λI – A) �= {0}}, respectively.

Definition 2.1 (see [42]) Assume that A : D(A) ⊆ Y → Y is a linear operator, and there
are real constants H ≥ 1, and ξ ∈R, satisfying (ξ , +∞) ⊆ ρ(A) and

∥
∥(λ – A)–n∥∥ ≤ H

(λ – ξ )n , for n ∈N+,λ > ξ .

The operator (A, D(A)) is then known as a Hille-Yosida operator.

The perturbation result for a Hille-Yosida operator is as follows.

Lemma 2.1 (see [42, 43]) If (A, D(A)) is a Hille-Yosida operator on Y , and B is a bounded
linear operator on Y , then the sum C = A + B is also a Hille-Yosida operator.

Let

Y0 :=
(
D(A),‖ · ‖),

D(A0) :=
{

x ∈ D(A) : Ax ∈ Y0
}

,

A0x := Ax, for x ∈ D(A0).

Then, (A0, D(A0)) is known as the part of A in Y0, and the lemma follows.

Lemma 2.2 (see [42, 43]) If (A, D(A)) is a Hille-Yosida operator, then its part (A0, D(A0))
generates a C0-semigroup (S0(t))t≥0 on Y0.

Denote

Y = R× L1((0, +∞),R
) × L1((0, +∞),R

) ×R×R.
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The linear operator F : D(F ) ⊆ Y −→ Y is defined as below:

F

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x
y1

y2

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–dx
–y′

1(a) – (d1 + μ + γ (a))y1

–y′
2(a) – (d2 + m(a))y2

–y1(0)
–y2(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where D(F ) = R × W 1,1((0, +∞),R) × W 1,1((0, +∞),R) × {0} × {0}. So D(F ) = R ×
L1((0, +∞),R)×L1((0, +∞),R)×{0}×{0} is not dense on Y . Further, a nonlinear operator
L : D(F ) → Y is introduced as follows:

L

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x
y1

y2

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

αx(1 – x
K ) + d

K x2 – x
∫ +∞

0 β(a)y1(a) da +
∫ +∞

0 m(a)y2(a) da
0
0

x
∫ +∞

0 β(a)y1(a) da
∫ +∞

0 γ (a)y1(a) da

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

here b = α – d, recall that α and d represent the recruitment rate and natural mortality
rate of the suspectable populations, respectively. Put v(t) = (S(t), i(t, ·), r(t, ·), 0, 0) so that
model (1.2) can be reformulated as an abstract Cauchy problem (ACP):

⎧
⎨

⎩

d
dt (v(t)) = Fv(t) + Lv(t), t ≥ 0,

v(0) = v0,
(2.1)

where v0 = (S0, i0(a), r0(a), 0, 0).
Generally speaking, finding a strong solution to equation (2.1) is challenging. Therefore,

we find a weak solution of (2.1) as integrated form

v(t) = v0 + F
∫ t

0
v(s) ds +

∫ t

0
L

(
v(s)

)
ds. (2.2)

Let

Y0 = D(F ) = R× L1((0, +∞),R
) × L1((0, +∞),R

) × {0} × {0},
Y0+ = R+ × L1

+
(
(0, +∞),R

) × L1
+
(
(0, +∞),R

) × {0} × {0},

and indicate that ξ := min{d, d1, d2} > 0, ϒ := {λ ∈ C : Re(λ) > –ξ}. Then the following re-
sult can be obtained.

Theorem 2.1 The linear operator (F , D(F )) is a Hille-Yosida operator.
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Proof Suppose that (δ,ϕ1,ϕ2,φ1,φ2) ∈ Y , (δ̃, ϕ̃1, ϕ̃2, 0, 0) ∈ D(F ), λ ∈ ϒ , then it implies

(λ – F )–1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ

ϕ1

ϕ2

φ1

φ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ̃

ϕ̃1

ϕ̃2

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ + d)δ̃ = δ,

ϕ̃′
1 = –(λ + d1 + μ + γ (a))ϕ̃1 + ϕ1,

ϕ̃′
2 = –(λ + d2 + m(a))ϕ̃2 + ϕ2,

ϕ̃1(0) = φ1,

ϕ̃2(0) = φ2.

Hence, we have

⎧
⎪⎪⎨

⎪⎪⎩

δ̃ = 1
(λ+d)δ,

ϕ̃1 = e–
∫ a

0 (λ+d1+μ+γ (θ ) dθφ1 +
∫ a

0 e–
∫ a

s (λ+d1+μ+γ (θ ) dθϕ1(s) ds,

ϕ̃2 = e–
∫ a

0 (λ+d2+m(θ ) dθφ2 +
∫ a

0 e–
∫ a

s (λ+d2+m(θ ) dθϕ2(s) ds.

(2.3)

Integrating ϕ̃1 and ϕ̃2 about the variable a and adding all equations of (2.3) yields

|δ̃| + ‖ϕ̃1‖L1 + ‖ϕ̃2‖L1 ≤ 1
λ + ξ

(|δ| + ‖ϕ1‖L1 + ‖ϕ2‖L1 + |φ1| + |φ2|
)
.

Thus,

∥
∥(λ – F )–1∥∥ ≤ 1

λ + ξ
, for any λ ∈ ϒ .

As a result, (F , D(F )) is a Hille-Yosida operator. �

In terms of Lemma 2.2, (F , D(F )) generates a C0-semigroup on Y0. Therefore, system
(2.1) is well-posed according to the theorem below.

Theorem 2.2 For any v0 ∈ Y0+, model (1.2) has a unique continuous solution denoted by
the integrated form (2.2) with values in Y0+. Furthermore, the map T : [0, +∞)×Y0+ �→ Y0+

defined by T(t, v0) = v(t, v0) is a continuous semi-flow, i.e. the map T is continuous and
satisfies the condition that T(0, ·) is the identity map and T(t, T(s, ·)) = T(t + s, ·) on Y0+.

It is worthwhile to only consider nonnegative solutions due to the biological meaning
of system (1.2). So, we turn to discuss the positivity and boundedness of the solutions for
system (1.2).

Theorem 2.3 Under nonnegative initial condition, all solutions of system (1.2) are non-
negative for all t ≥ 0 and are ultimately bounded.

Proof First, the positivity of i(t, a) and r(t, a) are proved. Solving i(t, a) and r(t, a) through
integrating the second and third equations of system (1.2) along the characteristic lines
respectively, we get

i(t, a) =

⎧
⎨

⎩

i(t – a, 0)e–
∫ a

0 (d1+μ+γ (θ )) dθ , a ≤ t,

i0(a – t)e–
∫ a

a–t (d1+μ+γ (θ )) dθ , a > t,
(2.4)
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and

r(t, a) =

⎧
⎨

⎩

r(t – a, 0)e–
∫ a

0 (d2+m(θ )) dθ , a ≤ t,

r0(a – t)e–
∫ a

a–t (d2+m(θ )) dθ , a > t.

Obviously, i(t, a) and r(t, a) remain nonnegative with nonnegative initial values. Now, we
show the positivity of S(t). Actually, if there is to, s.t. S(to) = 0, and S(t) > 0 for any t ∈ (0, to),
from the first equation of model (1.2), we get S′(to) =

∫ +∞
0 m(a)i(to, a) da ≥ 0, which is

contradictory. Consequently, S(t) ≥ 0, for any t ≥ 0.
Next, we explore the ultimate boundness of the solutions for model (1.2). To this end, set

I(t) =
∫ +∞

0 i(t, a) da and R(t) =
∫ +∞

0 r(t, a) da, which represent the total number of infected
and recovery individuals, respectively, at time t. Biologically, the maximum age should be
finite, and it is rational to make the assumption lima→+∞ i(t, a) = 0 and lima→+∞ r(t, a) = 0.
Further, denote N(t) =: S(t) + I(t) + R(t), then based on model (1.2), we get

N ′(t) = bS(t)
(

1 –
S(t)
K

)

– i(t, 0) +
∫ +∞

0
m(a)r(t, a) da

+
∫ +∞

0

(

–
∂i(t, a)

∂a
–

(
d1 + μ + γ (a)

)
i(t, a)

)

da

+
∫ +∞

0

(

–
∂r(t, a)

∂a
–

(
d2 + m(a)

)
r(t, a)

)

da

= bS(t)
(

1 –
S(t)
K

)

– (d1 + μ)
∫ +∞

0
i(t, a) da – d2

∫ +∞

0
r(t, a) da

≤ (α – d)S(t) – d1I(t) – d2R(t)

≤ αK – min{d, d1, d2}N(t).

Therefore,

lim sup
t→+∞

N(t) ≤ αK
min{d, d1, d2} ,

which implies that S(t), i(t, a), and r(t, a) are ultimately bounded. Furthermore, we obtain
the bounded feasible region of model (1.2):

� =
{

(S, i, r) : S ≥ 0, i, r ∈ L1
+(0, +∞),

S +
∫ +∞

0
i(t, a) da +

∫ +∞

0
r(t, a) da ≤ αK

min{d, d1, d2}
}

,

which contains the omega limit set of (1.2) and is obviously positively invariant according
to model (1.2). �

3 Equilibriums and linearized system
This part first investigates the existence of steady states for system (1.2) to obtain the lin-
earized system of (1.2) around these steady states.
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Obviously, the trivial steady state (disease-free equilibrium) E0 = (S0, 0, 0) = (K , 0, 0) of
the system (1.2) is always existed. Now, we turn to explore the positive steady state E∗ =
(S∗, i∗(a), r∗(a)) of (1.2). Set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bS∗(1 – S∗
K ) – S∗

∫ +∞
0 β(a)i∗(a) da +

∫ +∞
0 m(a)r∗(a) da = 0,

di∗(a)
da = –(d1 + μ + γ (a))i∗(a),

dr∗(a)
da = –(d2 + m(a))r∗(a),

i∗(0) = S∗
∫ +∞

0 β(a)i∗(a) da,

r∗(0) =
∫ +∞

0 γ (a)i∗(a) da.

(3.1)

We solve the equations about i∗(a) and r∗(a) in (3.1), which implies that

i∗(a) = i∗(0)e–
∫ a

0 (d1+μ+γ (θ )) dθ , r∗(a) = r∗(0)e–
∫ a

0 (d2+m(θ )) dθ .

Substituting i∗(a) into the fourth equation of the system (3.1), we obtain

S∗ =
1

∫ +∞
0 β(a)e–

∫ a
0 (d1+μ+γ (θ )) dθ da

. (3.2)

Combining the above three formulations about i∗(a), r∗(a), S∗ and the first equation in
(3.1), we get

i∗(0) =
bS∗(1 – S∗

K )
P

,

where

P = 1 –
∫ +∞

0
m(a)e–

∫ a
0 (d2+m(θ )) dθ da ·

∫ +∞

0
γ (a)e–

∫ a
0 (d1+μ+γ (θ )) dθ da.

With the assumptions about m(a) and γ (a) in the Introduction section, we can see that 0 ≤
∫ +∞

0 m(a)e–
∫ a

0 (d2+m(θ )) dθ da <
∫ +∞

0 m(a)e–
∫ a

0 m(θ ) dθ da = 1 – e–
∫ +∞

0 m(θ ) dθ < 1, and similarly,
0 ≤ ∫ +∞

0 γ (a)e–
∫ a

0 (d1+μ+γ (θ )) dθ da < 1. Therefore, we have P > 0.
Consequently, we define the basic reproduction number R0 as

R0 :=
K
S∗

= K
∫ +∞

0
β(a)e–

∫ a
0 (d1+μ+γ (θ )) dθ da.

Thus,

i∗(0) =
bS∗(1 – 1

R0
)

P
.

Hence, when R0 > 1, we have i∗(0) > 0, which leads to

r∗(0) = i∗(0)
∫ +∞

0
γ (a)e–

∫ a
0 (d1+μ+γ (θ )) dθ da > 0.

Therefore, there is only one positive equilibrium for system (1.2). In particular, we arrive at
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Theorem 3.1 The disease-free equilibrium E0 = (S0, 0, 0) always exists for system (1.2).
When R0 > 1, system (1.2) has a unique positive equilibrium E∗ = (S∗, i∗(a), r∗(a)).

Then, set S(t) = x(t) + S, i(t, a) = y1(t, a) + i(a), r(t, a) = y2(t, a) + r(a), where E =
(S, i(a), r(a)) is any equilibrium of model (1.2), and let ũ(t) = (x(t), y1(t, a), y2(t, a), 0, 0),
ū = (S, i(a), r(a), 0, 0). Consequently, system (2.1) corresponds to the below system

⎧
⎨

⎩

d
dt ũ(t) = F ũ(t) + L(ũ(t) + ū) – L(ū(t)), t ≥ 0,

ũ(0) = u(0) – ū,

Direct calculations yield the following linearized system of (2.1) around the equilibrium ū

⎧
⎨

⎩

d
dt ũ(t) = F ũ(t) + DL(ū)(ũ(t)), t ≥ 0,

ũ(0) = u(0) – ū,
(3.3)

with

DL(ū)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(t)
y1(t, a)
y2(t, a)

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

[b(1 – 2S
K ) –

∫ +∞
0 β(a)i(a) da]x(t) – S

∫ +∞
0 β(a)y1(t, a) da +

∫ +∞
0 m(a)y2(t, a) da

0
0

x(t)
∫ +∞

0 β(a)i(a) da + S
∫ +∞

0 β(a)y1(t, a) da∫ +∞
0 γ (a)y1(t, a) da

⎞

⎟
⎟
⎟
⎟
⎠

.

As the range of DL(ū) is finite dimension, DL(ū) is compact on Y .
Then Lemma 2.1 and Theorem 2.1 imply that

Lemma 3.1 The operator F + DL(ū) is a Hille-Yosida operator.

Combing Lemma 2.2 yields the following theorem.

Theorem 3.2 The part of (F , D(F )) and (F + DL(ū), D(F + DL(ū))) generates C0-
semigroups (T (t))t≥0 and (C (t))t≥0, respectively, on space Y0.

To discuss the stability/instability of steady states and whether or not the Hopf bi-
furcation exists for model (1.2), it is necessary to first examine the compactness of the
C0-semigroup related to above system (3.3). Exactly, we have to demonstrate the quasi-
compactness of the associated C0-semigroup so that the spectrum of the generators just
contains spectrum points. We start by defining quasi-compactness for a C0-semigroup in
the following.

Definition 3.1 (see [44]) Call a C0-semigroup (S(t))t≥0 quasi-compact if S(t) = S1(t) +
S2(t) with the operator families S1(t) and S2(t) satisfying
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(i) S1(t) → 0, as t → +∞,
(ii) S2(t) is eventually compact, i.e. there exists t0 > 0, s.t. S2(t) is compact for any t ≥ t0.

The quasi-compact C0-semigroup has the following property.

Lemma 3.2 (see [44]) Let (S(t))t≥0 be a quasi-compact C0-semigroup and (A, D(A)) its in-
finitesimal generator. Then, for δ > 0, eδt‖S(t)‖ → 0 as t → +∞ if and only if all eigenvalues
of A have strictly negative real part.

From the proof of Theorem 2.1 about the Hille-Yosida estimate, we obtain that ‖T (t)‖ ≤
e–ξ t . Moreover, DL(ū)T (t) : Y0 → Y is compact, for any t ≥ 0. As

C (t) = eDL(ū)tT (t) = T (t) +
+∞∑

k=1

(DL(ū)t)k

k!
T (t),

which yields that (C (t))t≥0 is quasi-compact. Thus, based on Lemma 3.2, there exits δ > 0,
s.t. eδt‖C (t)‖ → 0 as t → +∞ if and only if all the eigenvalues of the operator (F + DL(ū))
have negative real parts.

We can derive the following conclusions from the discussion above.

Theorem 3.3 The solution of model (1.2), semi-flow T(t, v0), defined as in Theorem 2.2,
has the following properties.

(i) If all the eigenvalues of (F + DL(ū)) have strictly negative real part, then the steady
state ū is locally asymptotically stable.

(ii) If, however, at least one eigenvalue of (F + DL(ū)) has strictly positive part, then the
steady state ū is unstable.

4 Global stability of disease-free equilibrium
By the above results, now we can analyze the dynamical behaviors of the equilibria for sys-
tem (1.2). For this part, we focus on the locally and globally asymptotic stability results of
the disease-free equilibrium E0. The local stability of E0 = (S0, 0, 0) will be first investigated.

Theorem 4.1 When R0 < 1, the disease-free equilibrium E0 = (S0, 0, 0) of system (1.2) is
locally asymptotically stable. While R0 > 1, E0 is not stable.

Proof To linearize system (3.3) at E0, we assume x(t) = S(t) – S0, y1(t, a) = i(t, a), y2(t, a) =
r(t, a), then the linearized system of (3.3) is derived

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = –bx(t) – K
∫ +∞

0 β(a)y1(t, a) da +
∫ +∞

0 m(a)y2(t, a) da,
∂y1(t,a)

∂t + ∂y1(t,a)
∂a = –(d1 + μ + γ (a))y1(t, a),

∂y2(t,a)
∂t + ∂y2(t,a)

∂a = –(d2 + m(a))y2(t, a),

y1(t, 0) = K
∫ +∞

0 β(a)y1(t, a) da,

y2(t, 0) =
∫ +∞

0 γ (a)y1(t, a) da.

(4.1)
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Substituting x(t) = x0eλt , y1(t, a) = y10(a)eλt , y2(t, a) = y20(a)eλt into equations (4.1), we ob-
tain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λx0 =
∫ +∞

0 m(a)y20(a) da – K
∫ +∞

0 β(a)y10(a) da – bx0,
dy10(a)

da = –(λ + d1 + μ + γ (a))y10(a),
dy20(a)

da = –(λ + d2 + m(a))y20(a),

y10(0) = K
∫ +∞

0 β(a)y10(a) da,

y20(0) =
∫ +∞

0 γ (a)y10(a) da.

(4.2)

Solving (4.2) yields

y10(a) = y10(0)e–
∫ a

0 (λ+d1+μ+γ (θ )) dθ , y20(a) = y20(0)e–
∫ a

0 (λ+d2+m(θ )) dθ .

By substituting y10(0), y20(0) into the above two equations and some computations, we
then obtain the characteristic equation of (4.1)

�0(λ) := (λ + b)f (λ) = 0, (4.3)

where f (λ) := 1 – K
∫ +∞

0 β(a)e–
∫ a

0 (λ+d1+μ+γ (θ )) dθ da. Obviously, �0(λ) = 0 has a negative so-
lution: λ = –b. So, the distribution of the solutions for f (λ) = 0 just needs to be discussed.
We notice that when λ ∈R, f (λ) is strictly increasing, continuous, real and has the follow-
ing property

lim
λ→+∞ f (λ) = 1, f (0) = 1 – R0.

Thus, when R0 > 1, there exists at least one positive real solution for f (λ) = 0, as well as
the characteristic equation �0(λ) = 0; therefore, E0 is not stable. While R0 < 1, there are
no complex roots with nonnegative real parts for f (λ) = 0. Actually, let λ = σ + � i be any
complex solution with σ ≥ 0, then

1 =
∣
∣1 – f (λ)

∣
∣ =

∣
∣
∣
∣K

∫ +∞

0
β(a)e–

∫ a
0 (σ+� i+d1+μ+γ (θ )) dθ da

∣
∣
∣
∣

≤ K
∫ +∞

0
β(a)e–

∫ a
0 (σ+d1+μ+γ (θ )) dθ da

= 1 – f (σ ) ≤ 1 – f (0) = R0,

which contradicts R0 < 1. Thus, f (λ) = 0 does not have roots with nonnegative real parts,
as well as the characteristic equation �0(λ) = 0. Therefore, the steady state E0 is locally
stable when R0 < 1. �

Moreover, when R0 < 1, the globally asymptotic stability of E0 can be proved as follows.

Theorem 4.2 When R0 < 1, the disease-free steady state E0 of system (1.2) is globally
asymptotically stable.
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Proof Based on Theorem 4.1, we just need to show that E0 has the property of global
attractivity, when R0 < 1, that is to say, it merely remains to prove limt→+∞(S(t), i(t, a),
r(t, a)) = (S0, 0, 0), where (T(t), i(t, a), r(t, a)) is any nonnegative solutions of model (1.2).

We assume that lim supt→+∞(S(t), i(t, 0)) = (S0, i0), thus there exists a sequence {tn}n∈N
with the feature

lim
n→∞ tn = +∞, lim

n→∞ i(tn, 0) = i0.

Substituting t = tn into i(t, 0) in the system (1.2) and combing the expression about i(t, a)
given by (2.4), we have

i(tn, 0) = S(tn)
(∫ tn

0
β(a)i(tn – a, 0)e–

∫ a
0 (d1+μ+γ (θ )) dθ da

+
∫ ∞

tn

β(a)i0(a – tn)e–
∫ a

a–t (d1+μ+γ (θ )) dθ da
)

,

then, when n goes to infinity, we obtain

i0 ≤ i0S0
∫ ∞

0
β(a)e–

∫ a
0 (d1+μ+γ (θ )) dθ da.

By the fact that K is the carrying capacity of susceptible individuals, so S(t) ≤ K for any t.
Hence, S0 ≤ K . We then derive

i0 ≤ i0K
∫ ∞

0
β(a)e–

∫ a
0 (d1+μ+γ (θ )) dθ da = i0R0.

Therefore, the case R0 < 1 implies i0 = 0, and hence limt→+∞ i(t, 0) = 0. Furthermore, by
formulation (2.4) i(t, a) = i(t – a, 0)e–

∫ a
0 (d1+μ+γ (θ )) dθ , for t > a, and limt→+∞ i(t, 0) = 0, we

obtain limt→+∞ i(t, a) = 0. Similarly, limt→+∞ r(t, a) = 0 can also be proved.
Due to the above discussion, the first equation of (1.2) is asymptotic to the equation

below

dS̆(t)
dt

= bS̆(t)
(

1 –
S̆(t)
K

)

from which we see

lim
t→+∞ S̆(t) = K = S0.

Finally, in terms of Corollary 4.3 in [45], the asymptotic autonomous semi-flow theory
deduces that

lim
t→+∞ S(t) = S0.

Consequently, when R0 < 1, limt→+∞(S(t), i(t, a), r(t, a)) = (S0, 0, 0). Thus, E0 is globally sta-
ble. �
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Remark 1 It appears to be challenging to construct Liapunov functions as in Refs. [46–49]
to get the global attractivity. Therefore, here, to explore this property, we use asymptotic
methods, which are very different from those in [46–49].

5 Hopf bifurcation analysis around the epidemic equilibrium E∗
For this part, the stability and the existence of Hopf bifurcations around the epidemic equi-
librium E∗ will be explored. Note that due to the quasi-compactness of the C0-semigroup
(C (t))t≥0, as demonstrated in Sect. 3, the linearized system will be reduced to an ODE
system in finite dimension by applying the center manifold Theorem 4.21 and Proposi-
tion 4.22 in [50]. Hence, based on Hassard Hopf ’s bifurcation theorem proven in [51], we
can establish the Hopf bifurcation results for system (1.2) as described in this section (see
Theorems 5.4, 5.5, and 5.6 in the following).

The linearized system of (1.2) around the positive steady state E∗ will be first discussed
to investigate its local stability. Specifically, introducing the perturbation variables x̃(t) =
S(t) – S∗, ỹ1(t, a) = i(t, a) – i∗(a), ỹ2(t, a) = r(t, a) – r∗(a) leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃′(t) = b(1 – 2S∗
K )̃x(t) – x̃(t)

∫ +∞
0 β(a)i∗(a) da – S∗

∫ +∞
0 β(a)̃y1(t, a) da

+
∫ +∞

0 m(a)̃y2(t, a) da,
∂ ỹ1(t,a)

∂t + ∂ ỹ1(t,a)
∂a = –(d1 + μ + γ (a))̃y1(t, a),

∂ ỹ2(t,a)
∂t + ∂ ỹ2(t,a)

∂a = –(d2 + m(a))̃y2(t, a),

ỹ1(t, 0) = x̃(t)
∫ +∞

0 β(a)i∗(a) da + S∗
∫ +∞

0 β(a)̃y1(t, a) da,

ỹ2(t, 0) =
∫ +∞

0 γ (a)̃y1(t, a) da.

As in Sect. 4, we search for the following solutions in form of x̃(t) = x̃0eλt , ỹ1(t, a) =
ỹ10(a)eλt , ỹ2(t, a) = ỹ20(a)eλt . Then, we can get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[λ – b(1 – 2S∗
K )]̃x0 = –̃x0

∫ +∞
0 β(a)i∗(a) da – S∗

∫ +∞
0 β(a)̃y10(a) da

+
∫ +∞

0 m(a)̃y20(a) da,
d̃y10(a)

da = –(λ + d1 + μ + γ (a))̃y10(a),
d̃y20(a)

da = –(λ + d2 + m(a))̃y20(a),

ỹ10(0) = x̃0
∫ +∞

0 β(a)i∗(a) da + S∗
∫ +∞

0 β(a)̃y10(a) da,

ỹ20(0) =
∫ +∞

0 γ (a)̃y10(a) da.

(5.1)

We solve the equations about ỹ10(a) and ỹ20(a), then we obtain

ỹ10(a) = ỹ10(0)e–
∫ a

0 (λ+d1+μ+γ (θ )) dθ , ỹ20(a) = ỹ20(0)e–
∫ a

0 (λ+d2+m(θ )) dθ . (5.2)

Substituting ỹ10(a), ỹ20(0) and ỹ20(a) into the first equation of (5.1) implies that

(

λ – b
(

1 –
2S∗
K

))

x̃0 = –̃y10(0)
(

1 –
∫ +∞

0
m(a)e–

∫ a
0 (λ+d2+m(θ )) dθ da

·
∫ +∞

0
γ (a)e–

∫ a
0 (λ+d1+μ+γ (θ )) dθ da

)

.
(5.3)
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Multiplying (λ – b(1 – 2S∗
K )) at the both sides of the fourth equation about ỹ10(0) in the

above system (5.1), further (5.2) and (5.3) leads to

(

λ – b
(

1 –
2S∗
K

))

= –
∫ +∞

0
β(a)i∗(a) da

(

1 –
∫ +∞

0
m(a)e–

∫ a
0 (λ+d2+m(θ )) dθ da

·
∫ +∞

0
γ (a)e–

∫ a
0 (λ+d1+μ+γ (θ )) dθ da

)

+
(

λ – b
(

1 –
2S∗
K

))

S∗
∫ +∞

0
β(a)e–

∫ a
0 (λ+d1+μ+γ (θ )) dθ da.

(5.4)

Note that the complexity of the characteristic equation is a major problem for the bifur-
cation analysis. Hence, to simplify our reasoning, we make the following assumptions.

Assumption 5.1
(i) The function γ (a) is constant, i.e. γ (a) ≡ γ .

(ii) The age-dependent functions β(a) and m(a) take the following forms:

β(a) =

⎧
⎨

⎩

β0, a ≥ τ1,

0, otherwise,
(5.5)

and

m(a) =

⎧
⎨

⎩

m0, a ≥ τ2,

0, otherwise,
(5.6)

where β0, m0 > 0 and τ1, τ2 ≥ 0 are all constants.

Assumption 5.1(ii) indicates that the latent and immunity periods of the infectious
disease are described by the infection and recovery ages, which is in line with the age-
structured models [12, 15, 17, 19, 20, 22–25, 29–41]. Concretely, we introduce two con-
stant delays τ1 > 0 and τ2 > 0 to represent the average latent period (the average time
passed since infection) and immune period (the average time passed for recovered in-
dividuals to become susceptible again). τ1 = 0 or τ2 = 0 means that there is no latent or
immune period. In addition, the latent and immune periods increase as τ1 and τ2 increase.
As mentioned in the Introduction section, the change in the latent and immune periods
plays a vital role in the spread and control of infectious diseases. Thus, we next concen-
trate on discussing the rich dynamics of the endemic equilibrium E∗ by varying the two
delay parameters.

If we take new forms (5.5) and (5.6) in (5.4) and carry out complex calculation, the char-
acteristic equation will be obtained as follows

�(λ, τ1, τ2) :=
λ3 + a2λ

2 + a1λ + a0 + (b2λ
2 + b1λ + b0)e–λτ1 + c0e–λτ2

(λ + d1 + μ + γ )(λ + d2 + m0)

=:
g(λ, τ1, τ2)

s(λ)
= 0,
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where λ ∈ ϒ (and thus s(λ) �= 0),

a2 = d1 + μ + γ + d2 + m0 – b
(

1 –
2S∗
K

)

+
∫ +∞

0
β(a)i∗(a) da,

a1 = (d1 + μ + γ )(d2 + m0)

+
(∫ +∞

0
β(a)i∗(a) da – b

(

1 –
2S∗
K

))

(d1 + μ + γ + d2 + m0),

a0 = (d1 + μ + γ )(d2 + m0)
(∫ +∞

0
β(a)i∗(a) da – b

(

1 –
2S∗
K

))

,

b2 = –β0S∗e–(d1+μ+γ )τ1 ,

b1 = –β0S∗
(

d2 + m0 – b
(

1 –
2S∗
K

))

e–(d1+μ+γ )τ1 ,

b0 = β0S∗(d2 + m0)b
(

1 –
2S∗
K

)

e–(d1+μ+γ )τ1 ,

c0 = –γ m0

∫ +∞

0
β(a)i∗(a) dae–d2τ2 .

Note that (3.2) implies

β0S∗e–(d1+μ+γ )τ1 = d1 + μ + γ ,

and,

Q :=
∫ +∞

0
β(a)i∗(a) da = b

(

1 –
1

R0

)
(d1 + μ + γ )(d2 + m0)

(d1 + μ + γ )(d2 + m0) – m0γ e–d2τ2
> 0,

hence,

Q – b
(

1 –
2S∗
K

)

= b
(

1 –
1

R0

)(
(d1 + μ + γ )(d2 + m0)

(d1 + μ + γ )(d2 + m0) – m0γ e–d2τ2
– 1

)

+
bS∗
K

>
bS∗
K

> 0.

Therefore,

a2 = d1 + μ + γ + d2 + m0 + Q – b
(

1 –
2S∗
K

)

> 0,

a1 = (d1 + μ + γ )(d2 + m0) +
(

Q – b
(

1 –
2S∗
K

))

(d1 + μ + γ + d2 + m0) > 0,

a0 = (d1 + μ + γ )(d2 + m0)
(

Q – b
(

1 –
2S∗
K

))

> 0,

b2 = –(d1 + μ + γ ) < 0,

b1 = –(d1 + μ + γ )
(

d2 + m0 – b
(

1 –
2S∗
K

))

,

b0 = (d1 + μ + γ )(d2 + m0)b
(

1 –
2S∗
K

)

,
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c0 = –γ m0Qe–d2τ2 < 0.

It is easy to notice that

{
λ ∈ ϒ : �(λ, τ1, τ2) = 0

}
=

{
λ ∈ ϒ : g(λ, τ1, τ2) = 0

}
.

Next, we analyze the asymptotic stability and the existence of the Hopf bifurcations
about E∗ under different combinations of two delays and R0 > 1, aiming to show the com-
plex dynamic behaviors of E∗.

Case (I): τ1 = τ2 = 0.
In this case, we can get

g(λ, 0, 0) = λ3 + (a2 + b2)λ2 + (a1 + b1)λ + a0 + b0 + c0 = 0,

then with some algebra computations, it is easy to get

a2 + b2 = d2 + m0 + Q – b
(

1 –
2S∗
K

)

> 0,

a1 + b1 =
(

Q – b
(

1 –
2S∗
K

))

(d2 + m0) + Q(d1 + μ + γ ) > 0,

a0 + b0 + c0 = Q
[
d2(d1 + μ + γ ) + m0(d1 + μ)

]
> 0,

then, we derive that

(a2 + b2)(a1 + b1) – (a0 + b0 + c0)

= (d2 + m0)
(

Q – b
(

1 –
2S∗
K

))(

Q – b
(

1 –
2S∗
K

)

+ d2 + m0

)

+
[(

Q – b
(

1 –
2S∗
K

))

(d1 + μ + γ ) + m0γ

]

Q > 0.

Therefore, (a2 +b2)(a1 +b1) > (a0 +b0 +c0), then according to the Routh-Hurwitz criterion,
we obtain that all the real parts of the solutions for g(λ, 0, 0) = 0 are negative. Thus, when
τ1 = τ2 = 0, we deduce that E∗ is locally asymptotically stable, i.e.

Theorem 5.1 If R0 > 1 and τi = 0 (i = 1, 2), the endemic equilibrium E∗ of (1.2) is locally
asymptotically stable.

Case (II): τ1 > 0, τ2 = 0.
In this situation, the characteristic equation will be written

g(λ, τ1, 0) = λ3 + a2λ
2 + a1λ + a0 + c0 +

(
b2λ

2 + b1λ + b0
)
e–λτ1 = 0.

Suppose λ = iω1 with ω1 > 0 is a pure imaginary solution of g(λ, τ1, 0) = 0 if and only if λ

satisfies

–iω3
1 – a2ω

2
1 + ia1ω1 + a0 + c0 +

(
–b2ω

2
1 + ib1ω1 + b0

)
(cosω1τ1 – i sinω1τ1) = 0,
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which leads to
⎧
⎨

⎩

a2ω
2
1 – (a0 + c0) = (b0 – b2ω

2
1) cosω1τ1 + b1ω1 sinω1τ1,

ω3
1 – a1ω1 = b1ω1 cosω1τ1 – (b0 – b2ω

2
1) sinω1τ1.

Using above equations, we have

⎧
⎨

⎩

cosω1τ1 = (b1–a2b2)ω4
1+(a2b0+a0b2+c0b2–a1b1)ω2

1–(a0+c0)b0
b2

1ω2
1+(b0–b2ω2

1)2 ,

sinω1τ1 = b2ω5
1+(a2b1–b0–a1b2)ω3

1+(a1b0–a0b1–c0b1)ω1
b2

1ω2
1+(b0–b2ω2

1)2 .
(5.7)

and

ω6
1 +

(
a2

2 – 2a1 – b2
2
)
ω4

1 +
(
a2

1 – 2a2(a0 + c0) + 2b0b2 – b2
1
)
ω2

1 + (a0 + c0)2 – b2
0 = 0. (5.8)

Let z1 = ω2
1, and

p2 = a2
2 – 2a1 – b2

2, p1 = a2
1 – 2a2(a0 + c0) + 2b0b2 – b2

1, p0 = (a0 + c0)2 – b2
0,

then (5.8) becomes

z3
1 + p2z2

1 + p1z1 + p0 = 0. (5.9)

Put

h1(z1) = z3
1 + p2z2

1 + p1z1 + p0.

From the formulations of a0, b0, and c0, it is easy to verify p0 > 0. Further, combining
limz1→+∞ h1(z1) = +∞, we conclude that equation (5.9) may have no positive roots or have
at least one positive root. Differentiating h1(z1) leads to

h1(z1)
dz1

= 3z2
1 + 2p2z1 + p1.

Let � = p2
2 – 3p1, if � ≤ 0, then h1(z1) (z1 ≥ 0) is increasing, and (5.9) has no positive

roots. When � > 0, there exist two real roots for the equation h1(z1)
dz1

= 3z2
1 + 2p2z1 + p1 = 0,

denoted by

z∗
11 =

–p2 +
√

�

3
, z∗

12 =
–p2 –

√
�

3
.

It is obvious that h′′
1(z∗

11) = 2
√

� > 0 and h′′
1(z∗

12) = –2
√

� < 0, which implies that z∗
11 and z∗

12

are the minimum and maximum points of h1(z1), respectively. Based on the discussions
above, we have

Lemma 5.1
(i) When � = p2

2 – 3p1 ≤ 0, there is no positive root for equation (5.9);
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(ii) When � = p2
2 – 3p1 > 0, there are positive roots for equation (5.9) if and only if

z∗
11 = –p2+

√
�

3 > 0 and h1(z∗
11) ≤ 0.

Assume that there exist positive roots for (5.9), without loss of generality, we suppose
that there exist three positive roots for (5.9), defined by z1k , k = 1, 2, 3. Hence, equation
(5.8) has three positive solutions ω1k = √z1k , k = 1, 2, 3, g(λ, 0, τ2) = 0 has three pairs of
purely imaginary roots ±iω1k , k = 1, 2, 3. Moreover, from (5.7), we find

τ
j
1,k =

⎧
⎪⎨

⎪⎩

1
ω1k

(arccos
(b1–a2b2)ω4

1k +(a2b0+a0b2+c0b2–a1b1)ω2
1k –(a0+c0)b0

b2
1ω2

1k +(b0–b2ω2
1k )2 + 2π j), η ≥ 0,

1
ω1k

(– arccos
(b1–a2b2)ω4

1k +(a2b0+a0b2+c0b2–a1b1)ω2
1k –(a0+c0)b0

b2
1ω2

1k +(b0–b2ω2
1k )2 + (2π + 1)j), η < 0,

with k = 1, 2, 3, j = 0, 1, 2, . . . , and

η =
b2ω

5
1k + (a2b1 – b0 – a1b2)ω3

1k + (a1b0 – a0b1 – c0b1)ω1k

b2
1ω

2
1k + (b0 – b2ω

2
1k)2 .

Now, we define

τ10 := τ 0
1,k0 = min

{
τ 0

1,1, τ 0
1,2, τ 0

1,3
}

, ω1∗ = ω1k0 , z1∗ = z1k0 .

To explore the transversality condition, we first establish the necessary theorem as below.

Theorem 5.2 If conditions (ii) in Lemma 5.1 hold and R0 > 1, τ1 > 0, τ2 = 0, then

∂g(λ, τ1, 0)
∂λ

∣
∣
∣
∣
λ=iω1∗

�= 0.

Proof Calculating the derivative of the equation g(λ, τ1, 0) = 0 about λ, we obtain

∂g(λ, τ1, 0)
∂λ

= 3λ2 + 2a2λ + a1 + (2b2λ + b1)e–λτ1 – τ1
(
b2λ

2 + b1λ + b0
)
e–λτ1 .

Then, differentiating λ according to τ1 in the equation g(λ, τ1, 0) = 0 yields that

(
3λ2 + 2a2λ + a1 + (2b2λ + b1)e–λτ1 – τ1

(
b2λ

2 + b1λ + b0
)
e–λτ1

)dλ(τ1)
dτ1

= λ
(
b2λ

2 + b1λ + b0
)
e–λτ1 .

(5.10)

Thus, if ∂g(λ,τ1,0)
∂λ

|λ=iω1∗ = 0, then

iω∗
(
–b2ω

2
1∗ + ib1ω1∗ + b0

)
e–iω1∗τ1 = 0,

which implies

b2ω
2
1∗ – ib1ω1∗ – b0 = 0,
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hence b1 = 0 and b0 = b2ω
2
1∗. However, from b1 = 0, we can get b0 > 0, which contradicts

b0 = b2ω
2
1∗ < 0. Therefore,

∂g(λ, τ1, 0)
∂λ

∣
∣
∣
∣
λ=iω1∗

�= 0. �

Based on the above theorem, we can show that the transversality condition is well sat-
isfied under R0 > 1, τ1 > 0, τ2 = 0.

Theorem 5.3 Suppose that conditions (ii) in Lemma 5.1 are fulfilled and h′
1(z1∗) �= 0, set

λ(τ1) = ϑ(τ1) + iζ (τ1) to be the solution of g(λ, τ1, 0) = 0, satisfying ϑ(τ j
1,k0

) = 0, ζ (τ j
1,k0

) = ω1∗,
then

Re

[(
dλ

dτ1

)∣
∣
∣
∣
τ1=τ

j
1,k0

]

�= 0.

Proof From (5.10), we obtain

(
dλ(τ1)

dτ1

)–1

= –
3λ2 + 2a2λ + a1

λ(λ3 + a2λ2 + a1λ + a0 + c0)
+

2b2λ + b1

λ(b2λ2 + b1λ + b0)
–

τ1

λ
. (5.11)

Substituting λ = iω1∗ into (5.11), we get

Re

{[(
dλ(τ1)

dτ1

)∣
∣
∣
∣
τ1=τ

j
1,k0

]–1}

=
3ω4

1∗ + 2(a2
2 – 2a1 – b2

2)ω2
1∗ + a2

1 – 2a2(a0 + c0) + 2b0b2 – b2
1

b2
1ω

2
1∗ + (b0 – b2ω

2
1∗)2

=
3z2

1∗ + 2p2z1∗ + p1

b2
1ω

2
1∗ + (b0 – b2ω

2
1∗)2 =

h′
1(z1∗)

b2
1ω

2
1∗ + (b0 – b2ω

2
1∗)2 �= 0.

It is well known that

sign

{

Re

[(
dλ(τ1)

dτ1

)∣
∣
∣
∣
τ1=τ

j
1,k0

]}

= sign

{

Re

{[(
dλ(τ1)

dτ1

)∣
∣
∣
∣
τ1=τ

j
1,k0

]–1}}

,

hence

Re

[(
dλ(τ1)

dτ1

)∣
∣
∣
∣
τ1=τ

j
1,k0

]

�= 0.
�

Finally, according to Theorem 5.2 and Theorem 5.3, the Hopf bifurcation results are
derived.

Theorem 5.4 Suppose that R0 > 1, τ1 > 0 and τ2 = 0,
(i) if condition (i) in Lemma 5.1 holds, the positive steady state E∗ of system (1.2) is

locally asymptotically stable;
(ii) if conditions (ii) in Lemma 5.1 hold, E∗ is locally asymptotically stable for

τ1 ∈ [0, τ10). Moreover, if h1(z1∗) �= 0, system (1.2) occurs as a Hopf bifurcation around
E∗ when τ1 crosses through τ10.
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Remark 2 Using the similar method in Case (II), when R0 > 1 and τ1 = 0, τ2 > 0, the parallel
Hopf bifurcation theorem for E∗ can also be established. That is, we can find τ20, s.t., E∗
is locally asymptotically stable, when τ2 ∈ [0, τ20); however, system (1.2) undergoes a Hopf
bifurcation at τ20.

In light of Theorem 5.4, we notice that when τ2 = 0 and τ1 ∈ [0, τ10), E∗ has the prop-
erty of locally asymptotic stability under certain conditions. Actually, the stability of E∗
may switch or preserve as τ2 increases. Now, we fix τ1 ∈ [0, τ10) and increase the bifurca-
tion parameter τ2 from zero to find a potential Hopf bifurcation. To make sure of this, we
discuss the following case.

Case (III): τ 1 ∈ [0, τ10), τ2 > 0.
Then equation g(λ, τ 1, τ2) = 0 becomes

(
b2λ

2 + b1λ + b0
)
e–λτ1 + c0e–λτ2 + λ3 + a2λ

2 + a1λ + a0 = 0.

Let λ = iω2, ω2 > 0, be a pure imaginary root of g(λ, τ 1, τ2) = 0, thus one has

–iω3
2 – a2ω

2
2 + ia1ω2 + a0 +

(
–b2ω

2
2 + ib1ω2 + b0

)
e–ω2τ1i

+ c0(cosω2τ2 – i sinω2τ2) = 0.
(5.12)

By the real and imaginary parts of (5.12), it is easy to see that

⎧
⎨

⎩

P1(ω2, τ 1) = c0 cosω2τ2,

P2(ω2, τ 1) = c0 sinω2τ2,
(5.13)

with

P1(ω2, τ 1) = a2ω
2
2 – a0 +

(
b2ω

2
2 – b0

)
cosω2τ 1 – b1ω2 sinω2τ 1,

P2(ω2, τ 1) = a1ω2 – ω3
2 + b1ω2 cosω2τ 1 +

(
b2ω

2
2 – b0

)
sinω2τ 1.

Clearly, (5.13) yields

P2
1(ω2, τ 1) + P2

2(ω2, τ 1) = c2
0,

i.e.,

h2(ω2) := ω6
2 +

(
a2

2 – 2a1 + b2
2
)
ω4

2 +
(
a2

1 – 2a0a2 – 2b0b2 + b2
1
)
ω2

2 + a2
0 + b2

0 – c2
0

+ 2
[
(a2b2 – b1)ω4

2 + (a1b1 – a0b2 – a2b0)ω2
2 + a0b0

]
cosω2τ 1

+ 2
[
–b2ω

5
2 + (b0 + a1b2 – a2b1)ω3

2 + (a0b1 – a1b0)ω2
]

sinω2τ 1 = 0.

(5.14)

As we know, there typically do not exist exact solutions for transcendental equations, and
usually, it is impossible to determine the equations’ solutions straightforwardly. Here, we
suppose that there exists a positive real root ω2∗ for Eq. (5.14), from (5.13), then there



Yan and Cao Advances in Continuous and Discrete Models         (2023) 2023:48 Page 21 of 33

exists a sequence of τ
j
2 (j = 0, 1, 2, 3, . . .) such that ω2∗ is a pair of purely imaginary roots of

g(λ, τ 1, τ2) = 0 when τ2 = τ
j
2. Here

τ
j
2 =

⎧
⎨

⎩

1
ω2∗ (arccos –P1(ω2∗ ,τ1)

c0
+ 2π j), P2(ω2∗ ,τ1)

c0
≥ 0,

1
ω2∗ (– arccos –P1(ω2∗ ,τ1)

c0
+ (2π + 1)j), P2(ω2∗ ,τ1)

c0
< 0,

(5.15)

with j = 0, 1, 2, . . . .
Next, we check the transversality conditions. In fact, let λ(τ2) = ϑ̃(τ2) + ζ̃ (τ2)i be the root

of g(λ, τ 1, τ2) = 0 with ϑ̃(τ j
2) = 0, ζ̃ (τ j

2) = ω2∗. Differentiating the equation g(λ, τ 1, τ2) = 0
about τ2 implies

(
dλ(τ2)

dτ2

)–1

=
3λ2 + 2a2λ + a1 + [2b2λ + b1 – τ 1(b2λ

2 + b1λ + b0)]e–λτ1

c0λe–λτ2
–

τ2

λ

= –
3λ2 + 2a2λ + a1 + [2b2λ + b1 – τ 1(b2λ

2 + b1λ + b0)]e–λτ1

λ[λ3 + a2λ2 + a1λ + a0 + (b2λ2 + b1λ + b0)e–λτ1 ]
–

τ2

λ

(5.16)

Substituting λ = iω2∗ into (5.16) and carrying out some direct and tedious calculations, we
get

Re

{[(
dλ(τ2)

dτ2

)∣
∣
∣
∣
τ2=τ

j
2

]–1}

= Re

(

–
M1 + N1i
M2 + N2i

)

= –
M1M2 + N1N2

M2
2 + N2

2
,

where

M1 = –3ω2
2∗ + a1 +

(
τ 1b2ω

2
2∗ + b1 – τ 1b0

)
cosω2∗τ 1 + (2b2ω2∗ – τ 1b1ω2∗) sinω2∗τ 1,

M2 = ω4
2∗ – a1ω

2
2∗ – b1ω

2
2∗ cosω2∗τ 1 +

(
b0ω2∗ – b2ω

3
2∗

)
sinω2∗τ 1,

N1 = 2a2ω2∗ –
(
τ 1b2ω

2
2∗ + b1 – τ 1b0

)
sinω2∗τ 1 + (2b2ω2∗ – τ 1b1ω2∗) cosω2∗τ 1,

N2 = –a2ω
3
2∗ + a0ω2∗ + b1ω

2
2∗ sinω2∗τ 1 +

(
b0ω2∗ – b2ω

3
2∗

)
cosω2∗τ 1.

Thus, we further introduce the assumption

M1M2 + N1N2 �= 0. (5.17)

It is well known that

sign

{

Re

[(
dλ(τ2)

dτ2

)∣
∣
∣
∣
τ2=τ

j
2

]}

= sign

{

Re

{[(
dλ(τ2)

dτ2

)∣
∣
∣
∣
τ2=τ

j
2

]–1}}

,

hence, if (5.17) holds, it follows that

Re

[(
dλ(τ2)

dτ2

)∣
∣
∣
∣
τ2=τ

j
2

]

�= 0.

In light of the above discussions, we deduce the Hopf bifurcation results.

Theorem 5.5 Suppose that R0 > 1, τ 1 ∈ [0, τ10), then
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(i) If there are no positive real roots for Eq. (5.14), the positive steady state E∗ of the
system (1.2) is locally asymptotically stable, when τ2 ≥ 0.

(ii) If there is a positive real root ω2∗ for Eq. (5.14), and (5.17) holds, system (1.2)
undergoes a Hopf bifurcation at E∗ when τ2 = τ

j
2 and here τ

j
2 is given by (5.15).

Remark 3 When R0 > 1 with fixed τ2 = τ 2 < τ 0
2 and as τ = τ1 increases from zero, similar

bifurcation result for E∗ can be investigated by the same discussions as above.

Case (IV): τ1 = τ2 > 0.
Finally, we consider the special case τ1 = τ2 = τ , and the corresponding characteristic

equation can be written

g(λ, τ ) = λ3 + a2λ
2 + a1λ + a0 +

(
b2λ

2 + b1λ + b0 + c0
)
e–λτ = 0.

Here, we omit the detailed discussion on the distribution of roots for g(λ, τ ) = 0 since it is
very similar to that of Case (II), we just present the conditions and the conclusions below.
Set

h(z) = z3 + q2z2 + q1z + q0, (5.18)

with q2 = a2
2 – 2a1 – b2

2, q1 = a2
1 – 2a2a0 + 2(b0 + c0)b2 – b2

1, q0 = a2
0 – (b0 + c0)2, and then

define �̃ = q2
2 – 3q1, z∗

1 = –q2+
√

�̃

3 , z∗
2 = –q2–

√
�̃

3 .

Lemma 5.2 For equation (5.18),
(i) If �̃ = q2

2 – 3q1 ≤ 0, for Eq. (5.18), positive roots do not exist;
(ii) If �̃ = q2

2 – 3q1 > 0, for Eq. (5.18), positive roots exist if and only if z∗
1 = –q2+

√
�̃

3 > 0
and h(z∗

1) ≤ 0.

If conditions (ii) in Lemma 5.2 are satisfied, Eq. (5.18) has at most three positive roots
written as zk∗, k = 1, 2, 3. Hence, g(λ, τ ) = 0 has three pairs of purely imaginary roots ±iωk∗
(ωk∗ = √zk∗), k = 1, 2, 3, when τ = τ

j
k . Here

τ
j
k =

⎧
⎪⎨

⎪⎩

1
ωk∗ (arccos

(b1–a2b2)ω4
k∗+[a2(b0+c0)+a0b2–a1b1]ω2

k∗–a0(b0+c0)
b2

1ω2
k∗+(b0+c0–b2ω2

k∗)2 + 2π j), η̃ ≥ 0,
1

ωk∗ (– arccos
(b1–a2b2)ω4

k∗+[a2(b0+c0)+a0b2–a1b1]ω2
k∗–a0(b0+c0)

b2
1ω2

k∗+(b0+c0–b2ω2
k∗)2 + (2π + 1)j), η̃ < 0,

with k = 1, 2, 3, j = 0, 1, 2, . . . , and

η̃ =
b2ω

5
k∗ + (a2b1 – b0 – c0 – a1b2)ω3

k∗ + (a1b0 + a1c0 – a0b1)ωk∗
b2

1ω
2
k∗ + (b0 + c0 – b2ω

2
k∗)2 .

Now, we define

τ0 := τ 0
k0 = min

{
τ 0

1 , τ 0
2 , τ 0

3
}

, ω∗ = ωk0∗, z∗ = zk0∗.

Theorem 5.6 Assume that R0 > 1, τ1 = τ2 = τ ,



Yan and Cao Advances in Continuous and Discrete Models         (2023) 2023:48 Page 23 of 33

(i) if condition (i) in Lemma 5.2 holds, the positive equilibrium E∗ of system (1.2) is
locally asymptotically stable for all τ ≥ 0;

(ii) if conditions (ii) in Lemma 5.2 are satisfied, E∗ is locally asymptotically stable for
τ ∈ [0, τ0). Moreover, if h(z∗

1) �= 0, system (1.2) undergoes a Hopf bifurcation around
E∗ when τ crosses through τ0.

6 Numerical simulation
This section aims to conduct some numerical results with graphs to demonstrate the ob-
tained theoretical results for system (1.2), such as stability/instability and Hopf bifurca-
tions of the equilibria in different cases.

Example 1 Consider the parameters as follows

b = 0.8, K = 20, d1 = 0.5, d2 = 0.3, μ = 0.5,

γ = 0.5, τ1 = 10, τ2 = 5, β0 = 0.5, m0 = 0.02.

In this case, R0 = 2.039 ∗ 10–6 < 1 and according to Theorem 4.2, E0 = (20, 0, 0) is globally
asymptotically stable, as shown in Fig. 1.

Now, we examine the asymptotic behavior around the positive equilibrium E∗ in differ-
ent cases as follows.

Example 2 The following parameters are chosen

b = 2, K = 30, d1 = 0.3, d2 = 0.3, μ = 0.5,

γ = 0.6, τ1 = 0, τ2 = 0, β0 = 0.3, m0 = 0.5,

Figure 1 Global asymptotical stability of E0
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(a)

(b)

Figure 2 (a): The stability result for E∗ in Case (I). (b): The distributions of i(t,a) and r(t,a) about time and
infection age at E∗ in Case (I)

then R0 = 6.428 > 1, we find that the endemic steady state E∗ is locally asymptotically sta-
ble, as shown in Fig. 2(a), which verifies the result of Theorem 5.1 in Case (I). Moreover,
we represent the distributions of the infected class (I-class) and recovered class (R-class)
about time t and infection age a in Fig. 2(b).

Example 3 Let the vital parameters in (1.2) be chosen as

b = 2, K = 30, d1 = 0.3, d2 = 0.3, μ = 0.5,

γ = 0.6, τ1 = 1, τ2 = 0, β0 = 0.3, m0 = 0.2.

Then, we have � = –8.4721 < 0 (defined in Lemma 5.1) satisfying the condition (i) in The-
orem 5.4. Therefore, the epidemic steady state E∗ is asymptotically stable, as shown in
Fig. 3(a). Accordingly, the distributions of i(t, a) and r(t, a) with both time and infection
age at E∗ are shown in Fig. 3(b).
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(a)

(b)

(c)

Figure 3 (a): The asymptotical stability of E∗ in (i) of Theorem 5.4 for Case (II). (b): The stable distributions of
i(t,a) and r(t,a) in Case (II). (c): The relationship between R0 and τ1. (d): The asymptotical stability of E∗ in (ii) of
Theorem 5.4 for Case (II). (e): The Hopf bifurcation result in Case (II). (f ): The periodic distributions for i(t,a) and
r(t,a) at E∗ in Case (II)

Afterward, we discuss the changes in dynamics of system (1.2) for various τ1. Set b = 0.2,
K = 50, d1 = 0.6, d2 = 0.5, μ = 0.3, γ = 0.1, τ2 = 0, β0 = 0.8, m0 = 0.2. As shown in Fig. 3(c),
the basic reproduction number R0 decreases monotonically as τ1 increases gradually, and
R0 will be less than 1 when τ1 > 3.678.
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(d)

(e)

(f )

Figure 3 Continued
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Take now τ1 = 0.1; 0.2; 0.5 < τ10, then R0 = 36.193; 32.749; 24.261 > 1; respectively. The
local stability of E∗ with different τ1 is shown in Fig. 3(d), which is consistent with the the-
oretical result (ii) in Theorem 5.4. Comparing the curves with different τ1 in Fig. 3(d), we
find that as the infectiousness delay τ1 ∈ [0, τ10) increases, the number of the susceptible,
infected, and recovered classes increases gradually.

However, if τ1 exceeds the threshold value τ10, E∗ will become unstable and will lead to
the Hopf bifurcation around E∗, which can been seen in Fig. 3(e) and (f ) with τ1 = 1.5.

Example 4 Let

b = 2, K = 50, d1 = 0.2, d2 = 0.3,

μ = 0.1, γ = 0.3, β0 = 0.9, m0 = 0.2.

(a)

(b)

Figure 4 (a): The asymptotical stability of E∗ in Case (III). (b): The stable distributions of i(t,a) and r(t,a) in Case
(III). (c): The case of Hopf bifurcation in Case (III). (d): The periodic distributions of i(t,a) and r(t,a) under Case (III)
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(c)

(d)

Figure 4 Continued

Thus, τ1 = 0.1 < τ10, τ2 = 1, 2, 3, satisfies the condition in Theorem 5.5(i) in Case (III). By
applying Theorem 5.5(i), the locally asymptotic stability of E∗ is verified, when τ2 ≥ 0. In
Fig. 4(a), E∗ indeed remains stable when τ2 takes different values, which agrees well with
the result in Theorem 5.5(i). Besides, Fig. 4(b) describes the changes in the infected and
recovered populations about time and infected age.

Now, we increase τ2, but remain τ1 ∈ [0, τ10) and other parameters the same, as in
Fig. 4(a). At this time, we have verified that the conditions in (ii) of Theorem 5.5 are sat-
isfied. Therefore, the Hopf bifurcation occurs at the equilibrium E∗, which is displayed in
Fig. 4(c) and (d) with τ2 = 3.5 and three different initial conditions.

Example 5 Let τ1 = τ2 = 0.1, and other parameters are the same as in Fig. 4(a). In this situ-
ation, in the light of Theorem 5.6(i), E∗ is asymptotically stable, see, Fig. 5(a). Accordingly,
the distributions of i(t, a) and r(t, a) about time and infection age are shown in Fig. 5(b).

However, if we choose τ1 = τ2 = 1, 2.6, 3, other parameters do not change, the epidemic
equilibrium E∗ loses its stability, and periodic oscillation occurs, see Fig. 5(c) and (d). From
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(a)

(b)

Figure 5 (a): The asymptotical stability of E∗ in Case (IV). (b): The distributions of i(t,a) and r(t,a) about time
and infection age in Case (IV). (c): The case of the Hopf bifurcation in Case (IV). (d): The periodic distributions
of i(t,a) and r(t,a) about time and infection age in Case (IV)

the three different curve lines in Fig. 5(c), we observe that the amplitude of periodic solu-
tion increases as delay τ = τ1 = τ2 increases.

7 Conclusion
The transmission between infected and susceptible persons is influenced by the degree of
the infectivity of the contagion person, measured by the age of infection. Infected indi-
viduals with differentiated infection age may result in different levels of infection among
susceptible individuals. The time spent by a recovered person in the R-class before becom-
ing susceptible is measured by the age of recovery, as it can highlight that immunity in the
R-class is not permanent. In fact, the changes of virus in each year will lead to changes
of individual immunity. Therefore, the impact of recovery age is also crucial to determine
the outbreak of the contagious disease. This paper investigates an age-structured SIRS
epidemic model with both infection age and recovery age, as well as the logistic growth
of susceptible individuals. To better understand the dynamic behaviors of model (1.2),
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(c)

(d)

Figure 5 Continued

we first rewrite the model as a non-densely defined abstract Cauchy problem, and then
establish the existence, positivity and boundedness of equilibria, and calculate the basic
reproduction number R0, linearized system, and characteristic equation at the equilib-
ria. Following the characteristic equation and spectral analysis methods, we show that the
disease-free equilibrium E0 is globally asymptotically stable when R0 < 1 (Theorem 4.2).
Under Assumption 5.1, where the latent and immune periods of infection and recovery
ages are introduced as two delays τ1 ≥ 0 and τ2 ≥ 0, we show the local stability and the
existence of Hopf bifurcation for the endemic equilibrium E∗ when R0 > 1 by applying the
Hopf bifurcation theorem (Theorems 5.1, 5.4, 5.5, and 5.6). It is shown that the stability
and Hopf bifurcation switches will appear as the two delays increase from zero. Finally, we
conducted several numerical results with graphs to demonstrate the theoretical results.

The Hopf bifurcation for age-structured systems with only one delay and one age is very
prevalent. Compared to only one-age system, the Hopf bifurcation analysis in the case of
two ages and two delays is more complicated. The system in this paper with both infection
age and recovery age results in incubation period τ1 and immunity period τ2. Hence, the
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analysis process of the characteristic equation in this paper is more complicated than one-
age system. Moreover, as shown in the Numerical simulation section, the changes in the
latent and immune periods play a vital role in the dynamic behaviors of infectious diseases
and lead to stability and bifurcation switches at the positive equilibrium E∗, which means
that the infection and recovery ages result in more richer dynamic behaviors, compared
to the epidemic model with only one age. In Fig. 3(c), we remark that the delay τ1 has a
negative influence on the reproduction number R0, where we observe the possibility of
reducing the value of R0 from a high value R0 = 40 for τ1 = 0 to less than 1 for values of
delay τ1 larger than 3.687. The vaccines affecting the reproduction of the virus in the host
cell allow the human immune system to react early to the new intruder virus and thus leads
to the increase in the incubation period τ1. Then, it is easier to control R0 to be less than
one. As a result, it is possible to eliminate the infection from the population if vaccines
are adopted to reduce the speed of the reproduction of the virus. Besides, we find that
β(a) has a positive influence on the reproduction number R0. Therefore, adopting some
quarantine measures to reduce the infection rate β(a) is an effective and practical policy
to control disease transmission.

Two interesting questions remain for future research: what would be the results of stabil-
ity and Hopf bifurcation if other function types of the infection age β(a) and the recovery
age m(a) or the spatial diffusions are considered in our epidemic model.
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