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Abstract
In this paper, we establish some sufficient conditions for the existence of a random
exponential attractor for a random dynamical system in a Banach space. As an
application, we consider a stochastic reaction-diffusion equation with multiplicative
noise. We show that the random dynamical system φ(t,ω) generated by this
stochastic reaction-diffusion equation is uniformly Fréchet differentiable on a
positively invariant random set in L2p(D) and satisfies the conditions of the abstract
result, then we obtain the existence of a random exponential attractor in L2p(D),
where p is the growth of the nonlinearity satisfying 1 < p ≤ 3.
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1 Introduction
As we know, the random attractor plays a key role in the study of asymptotic behavior of a
random dynamical system (RDS). Both the existence and the estimates of Hausdorff and
fractal dimensions of random attractors have been studied intensively since Crauel and
Flandoli 1994 [1], see, e.g., [2–16] and the references therein. However, a random attrac-
tor is possibly infinite dimensional and sometimes attracts orbits at a slow rate, making
it unobservable in practical experiments and numerical simulations. The concept of ran-
dom exponential attractor was introduced by Shrikyan and Zelik in [17]. By definition, a
random exponential attractor is a positively invariant finite dimensional set that contains
the random attractor and possesses the exponential attraction property.

In [17], Shrikyan and Zelik presented some sufficient conditions for the existence and ro-
bustness of random exponential attractors for dissipative RDS. As pointed out there, the
main difficulty in constructing a random exponential attractor, in contrast to the deter-
ministic case, is that a typical trajectory of an RDS is unbounded in time. Therefore, some
restrictive assumptions were imposed on the global Lipschitz continuity of all nonlinear
terms to guarantee the time average of these quantities can be controlled. But the condi-
tions are not easy to verify for some stochastic PDEs. Recently, Zhou [18, 19] established
a new criterion for the existence of a random exponential attractor for non-autonomous

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-023-03795-z
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-023-03795-z&domain=pdf
https://orcid.org/0000-0001-6287-5273
mailto:wgfeiyu@sina.com
http://creativecommons.org/licenses/by/4.0/


Wang and Hu Advances in Continuous and Discrete Models          (2024) 2024:2 Page 2 of 24

RDS. Their conditions are limited to checking the boundedness of some random vari-
ables in the mean. Then they applied the abstract result to a non-autonomous stochastic
reaction-diffusion equation in R

3 and the first-order stochastic lattice system. However, in
concrete applications, the assumptions rely on the orthogonal projections, so they cannot
be directly applied to RDS defined in Banach spaces.

In this article, we mainly consider the existence of a random exponential attractor in
Banach space. Motivated by [18–21], we show that if the cocycle φ(T ,ω) is C1 (in the
topology of a Banach space X) on a positively invariant random set χ (ω) for a.s. ω ∈ �

and some large enough time T (independent of ω), and the Fréchet derivative Dv(φ(T ,ω))
at every point inside χ (ω) can be split into a compact operator and a contraction (in the
mean sense), then we can construct a random exponential attractor for the discrete cocyle
φ(nT , θmTω) in the Banach space X. Following a similar process as presented in [19], we
can get a random exponential attractor for the continuous cocycle φ(t,ω).

As an application of the theory developed in the paper, the following problem in a
bounded domain D ⊂R

3 with smooth boundary ∂D is considered

du –
(
�u – |u|p–1u – f (x, u)

)
dt = g(x) dt + bu ◦ dW (t), x ∈ D, t > 0, (1.1)

with the initial-boundary value conditions

⎧
⎨

⎩
u(x, 0) = u0(x), x ∈ D,

u = 0, on ∂D,
(1.2)

where b is a positive constant, the term u ◦ dW (t) in (1.1) is understood in the sense of
Stratonovich interation and W (t) is a two-sided real-valued Wiener process on a proba-
bility space specified in Sect. 3. The nonlinearity f ∈ C2 satisfies the following conditions:

c1|u|q–2u – c0 ≤ f ′(x, u) ≤ c2|u|q–2u + c0, 1 ≤ q < p; (1.3)

f (x, u)u ≥ ν|u|q+1 – β(x); (1.4)
∣∣f ′′(x, u)

∣∣ ≤ c3
(
1 + |u|q–2), (1.5)

for some 1 < p ≤ 3, ci > 0 (i = 0, 1, 2, 3), ν > 0 and for all u ∈ R. We also assume that β ∈
L3p(D) and g ∈ L6p(D). A typical function in applications is f (x, u) = a|u|q–1u + h(x) with
a > 0 and h(x) ∈ L

3p
2 (D).

The above equation (1.1) is known as a reaction-diffusion equation [22] perturbed by
a white noise g(x) dt + bu ◦ dW (t). In biology and physics, stochastic equations like (1.1)
have been used as models to study the phenomena of stochastic resonance [23–28], where
g is an input signal and W (t) is a Wiener process used to test the impact of stochastic fluc-
tuations on g . We choose the equation (1.1) since the long-term behavior of solutions for
equations like (1.1) has been studied widely for both deterministic and stochastic cases.
They are canonical examples to study the existence of global attractors and random attrac-
tors. In this respect, we refer the readers to [1, 4, 8–11, 17, 20, 22, 29–32], among others.
Until now, as we know, there is no result concerning the existence of random exponen-
tial attractors in Banach space for (1.1). We extend the technique presented in [20, 21] to
stochastic case to get the Fréchet differentiability in the Banach space L2p(D), and this is
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nontrival, since the trajectory of an RDS is unbounded in time. Fortunately, some random
variables can be controlled in the mean for a large time T in a certain absorbing set and
this is sufficient to construct a random exponential attractor in L2p(D).

Our main tasks in this paper include: (1) Give an abstract result for the existence of a
random exponential attractor in general Banach space. (2) Establish the RDS φ(t,ω) gen-
erated by equation (1.1)–(1.2) and construct the absorbing set χ (ω). (3) Prove that the
RDS generated by (1.1)–(1.5) is uniformly Fréchet differentiable in the topology of L2p(D).
(4) Check the assumptions in the abstract result presented in Sect. 2 for φ(t,ω) and prove
that φ(t,ω) possesses a random exponential attractor in L2p(D). Our main result in this
paper is as follows:

Theorem 1.1 Suppose (1.3)∼(1.5) hold. Then the RDS generated by (1.1)∼(1.2) possesses
a random exponential attractor {E(ω)}ω∈� in L2p(D).

This paper is organized as follows. In Sect. 2, we recall some basic concepts and present
our main result for the existence of a random exponential attractor in a Banach space.
In Sect. 3, we first prove that the RDS is C1 on a positively invariant absorbing set in
L2p(D), then apply the abstract result in Sect. 2 to show that the RDS possesses a random
exponential attractor in L2p(D).

Throughout this paper, we denote by ‖ · ‖X the norm of Banach space X. The inner
product and norm of L2(D) are written as (·, ·) and ‖ · ‖ respectively. We also use ‖u‖r to
denote the norm of u ∈ Lr(D) (r ≥ 1, r 
= 2) and |u| to denote the modular of u. The letters
c and ci(i = 1, 2, . . .) are generic positive constants and the constant c may change their
values from line to line even in the same line.

2 Preliminaries and abstract results
We first recall some basic concepts and results related to random exponential attractors
and then establish a result for the existence of a random exponential attractor in Banach
space.

Definition 2.1 Let (�,F ,P) be a probability space, (�,F ,P, (θt)t∈R) is called a metric dy-
namical system (MDS) if θt : R × � → � is (B(R) × F ,F )-measurable, θ0 is the identity
on �, θs+t = θs ◦ θt for all s, t ∈R and θtP = P for all t ∈R.

Definition 2.2 The RDS on X over an MDS (�,F ,P, (θt)t∈R) is a mapping φ : R+ × � ×
X → X, (t,ω, x) �→ φ(t,ω, x), which is (B(R+) ×F × B(X),B(X))-measurable and satisfies
for P-a.s. ω ∈ �,

(i) φ(0,ω, ·) is the identity on X;
(ii) φ(t + s,ω, ·) = φ(t, θsω, ·) ◦ φ(s,ω, ·) (cocycle property) on X for all s, t ∈R

+.
An RDS is said to be continuous on X if φ(t,ω) : X → X is continuous for all t ∈R

+ and
P-a.s. ω ∈ �.

Definition 2.3 (1) A random bounded set {B(ω)}ω∈� of X is called tempered with respect
to (θt)t∈R if for P-a.s. ω ∈ �,

lim
t→∞ e–βt d

(
B(θ–tω)

)
= 0 for all β > 0,

where d(B) = supx∈B ‖x‖X .
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(2) A random variable r(ω) ≥ 0 is called tempered with respect to (θt)t∈R if for P-a.s.
ω ∈ �,

lim
t→∞ e–βtr(θ–tω) = 0 for all β > 0.

In the following, we denote DX and Dr the collections of all tempered family of
nonempty subsets of X and Lr(D) respectively with respect to (θt)t∈R.

Definition 2.4 A family E(ω) of subsets of X is called a random exponential attractor in
DX for a continuous RDS φ(t,ω) over an MDS (�,F ,P, (θt)t∈R) if E(ω) is measurable in ω

and there is a set of full measure �̃ ∈F such that for any ω ∈ �̃, it holds that
(i) Compactness: E(ω) is compact in X;
(ii) Positive invariance: φ(t, θ–tω)E(θ–tω) ⊂ E(ω) for all t ≥ 0;
(iii) Finite-dimensionality: There exists a random variable ζω (< +∞) such that

dimf E(ω) ≤ ζω , where dimf E(ω) is the fractal dimension of E(ω), defined by dimf E(ω) =
lim supε→0+

ln Nε(E(ω))
ln 1

ε

and Nε(A) denotes the minimal numbers of balls with radius ε cov-
ering A in X;

(iv) Exponential attraction: There exist a > 0 (independent of ω), tω,B ≥ 0 and bω,B > 0
such that, for any B ∈DX ,

dh
(
φ(t, θ–tω)B(θ–tω),E(ω)

) ≤ bω,Be–at , t ≥ tω,B,

where dh(F1, F2) denotes the Hausdorff semidistance between F1 and F2.

Remark Here we have borrowed the definition of a random exponential attractor from
[18, 19]. Note that we do not mention the Hölder continuity condition in [17], since the
compactness, positive invariance, finite-dimensionality and exponential attraction are in-
trinsic qualities for the concept of a random exponential attractor.

We denote L(X, Y ) and L(X) the bounded linear maps from X to Y and from X into
itself, respectively. For a given λ > 0, we define

Lλ(X) =
{

L ∈L(X)|L = K + C, K is compact and ‖C‖ < λ
}

.

Let F be a finite dimensional subspace of X. The quotient map LF induced by L is defined
by: LF : X → X/F , x �→ Lx + F and ‖x‖X/F = inf{‖x – f ‖X : ∀f ∈ F}. For the quotient map
LF , we have the following lemma (see Lemma 2.1 in [21]).

Lemma 2.1 For every L ∈Lλ(X) there exist a finite dimensional subspace F ⊂ X such that
if LF is the linear map induced by L, then ‖LF‖ < 2λ.

If L ∈Lλ(X), we define νλ(L) as the minimum integer n such that there exists a subspace
F ⊂ X satisfying dimF = n and ‖LF‖ < 2λ. By Lemma 2.1 we see that νλ(L) is well-defined
and finite. We also need a covering result for a linear bounded mapping acts on the balls
in X. We give this result in the following lemma, for more details we refer the readers to
[21].
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Lemma 2.2 If L ∈L(X) and F ⊂ X is a subspace with dimF = n and ‖LF‖ < ∞, then

N(1+ε)λr
(
L
(
B(0; r)

)) ≤ n2n
(

1 +
‖L‖ + λ

λε

)n

,

for all ε, r > 0, λ > ‖LF‖. Moreover, the centers of the balls in the covering can be chosen in F .

For an RDS φ(t,ω) and T > 0, we denote Dvφ(T ,ω) the Fréchet derivative of φ(T ,ω)
at the point v. Assume that there exists a random variable λω > 0 such that Dvφ(T ,ω) ∈
Lλω (X) for all v ∈ χ (ω) and a.s. ω ∈ �, where χ (ω) is a positively invariant random set for
φ(t,ω). Then for any given ε0 > 0 we can find r0,ω = r0,ω(ε0) > 0 such that for all v ∈ χ (ω)
and 0 < r ≤ r0,ω ,

φ(T ,ω)B(v; r) ⊂ φ(T ,ω)v + Dvφ(T ,ω)B(0; r) + B(0; ε0r). (2.1)

By Lemma 2.1 and Lemma 2.2 we have the following estimate

N2(1+ε1)λωr
(
Dvφ(T ,ω)B(0; r)

) ≤ Kω, ∀ε1 > 0, r > 0, (2.2)

where

Kω = ν(ω)2ν(ω)
(

1 +
supv∈χ (ω) ‖Dvφ(T ,ω)‖X + 2λω

2λωε1

)ν(ω)

, (2.3)

and

ν(ω) = sup
v∈χ (ω)

νλω

(
Dvφ(T ,ω)

)
. (2.4)

Setting βω = 2(2(1 + ε1)λω + ε0), then we have, for a.s. ω ∈ �,

Nβωr
(
φ(T ,ω)

[
B(v; r) ∩ χ (ω)

]) ≤ Kω, 0 < r ≤ r0,ω. (2.5)

Moreover, the covering balls are centered in φ(T ,ω)χ (ω).
Let φ(t,ω) be a continuous RDS on a Banach space X over (�,F ,P, (θt)t∈R), and
(H0) φ(t,ω) possesses a random attractor A(ω) in X.
Moreover, we make the following assumptions for a.s. ω ∈ �,
(H1) χ (ω) is tempered, closed, positively invariant and absorbing;
(H2) χ (ω) has a finite covering with radius r0,ω , that is, Nr0,ω (χ (ω)) = Nω < ∞, where r0,ω

is tempered and satisfies (2.1);
(H3) There is a positive constant T (independent of ω), and a random variable Lω =

Lω(T) > 0 such that

∥∥φ(t,ω, v1) – φ(t,ω, v2)
∥∥

X ≤ Lω‖v1 – v2‖X , ∀v1, v2 ∈ χ (ω),∀t ≤ T ;

(H4) φ(T ,ω) is C1 on χ (ω) and Dvφ(T ,ω) ∈ Lλω (X) for some positive random variable
λω ;

(H5) (2.5) are satisfied with 0 ≤ E[ln Kω] < ∞, 0 ≤ E[ln Nω] < ∞, and there exists ε0 ∈
(0, 1

2 ), ε1 > 0 such that –∞ < E[lnβω] < 0, where βω = 2(2(1 + ε1)λω + ε0).
Our main result in this section read as:
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Theorem 2.1 Assume that conditions (H0) ∼ (H5) are satisfied. Then there exists a ran-
dom exponential attractor {E(ω)}ω∈� for the continuous cocycle φ(t,ω) with the following
properties: for a.s. ω ∈ �,

(i) E(ω) ⊂ χ (ω) is a compact set of X;
(ii) φ(t, θ–tω)E(θ–tω) ⊂ E(ω) for all t ≥ 0;
(iii) dimf E(ω) ≤ – 24E[ln(KωNω)]

E[lnβω] < ∞;
(iv) for any B ∈DX , there exist Tω,B ≥ 0, bω > 0 such that

dh
(
φ(t, θ–tω)B(θ–tω),E(ω)

) ≤ bωe
E[lnβω ]

8T t , t ≥ Tω,B.

Proof For any n ∈N, m ∈ Z, we define the discrete cocycle:

φ(n, m,ω) = φ(nT , θmTω), χ (m,ω) = χ (θmTω). (2.6)

It is easy to check by cocycle property in definition 2.2 that for any n, n1, n2 ∈N, m ∈ Z

φ(n1, m + n2,ω)φ(n2, m,ω)

= φ(n1 + n2, m,ω),φ(n, m – n,ω)χ (m – n,ω) ⊂ χ (m,ω). (2.7)

Firstly, from (2.5), we can get the covering of φ(n, m – n,ω)χ (m – n,ω) by induction on
n. If n = 0, then by (H2) and the identity of φ(0,ω), we have

φ(0, m,ω)χ (m,ω) = χ (m,ω) ⊂
Nm,ω⋃

i=1

B(u0,m,ω,i; r0,m,ω) ∩ χ (m,ω), (2.8)

where r0,m,ω = r0,θmT ω , Nm,ω = NθmT ω and u0,m,ω,i ∈ χ (m,ω), ∀i ≤ Nm,ω . The first generation
of points consists of these centers, defined as

B0,m,ω = {u0,m,ω,1,, u0,m,ω,2, . . . , u0,m,ω,Nm,ω} ⊂ χ (m,ω).

For n = 1, we get from (2.5) and (2.8) that

φ(1, m – 1,ω)χ (m – 1,ω) =
Nm–1,ω⋃

i=1

φ(1, m – 1,ω)
[
B(u0,m–1,ω,i; r0,m–1,ω) ∩ χ (m – 1,ω)

]

⊂
Km–1,ωNm–1,ω⋃

i=1

B(u1,m–1,ω,i;βm–1,ωr0,m–1,ω), (2.9)

where Km–1,ω = Kθ(m–1)T ω and u1,m–1,ω,i ∈ φ(1, m – 1,ω)χ (m – 1,ω) ⊂ χ (m,ω),
∀i ≤ Km–1,ωNm–1,ω . The second generation of points consists of these centers

B1,m–1,ω = {u1,m–1,ω,1, . . . , u1,m–1,ω,Km–1,ωNm–1,ω } ⊂ χ (m,ω).

When n = 2, we get from (2.5), (2.7), and (2.9)

φ(2, m – 2,ω)χ (m – 2,ω)
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= φ(1, m – 1,ω)φ(1, m – 2,ω)χ (m – 2,ω)

⊂ Km–2,ωNm–2,ω∪
i=1

φ(1, m – 1,ω)
[
B(u1,m–2,ω,i;βm–2,ωr0,m–2,ω) ∩ χ (m – 1,ω)

]

⊂ Km–1,ωKm–2,ωNm–2,ω∪
i=1

B(u2,m–2,ω,i;βm–1,ωβm–2,ωr0,m–2,ω),

where u2,m–2,ω,i ∈ φ(2, m – 2,ω)χ (m – 2,ω) ⊂ χ (m,ω), i ≤ Km–1,ωKm–2,ωNm–2,ω . The third
generation of points consists of these centers

B2,m–2,ω = {u2,m–2,ω,1, . . . , u2,m–2,ω,Km–1,ωKm–2,ωNm–2,ω } ⊂ χ (m,ω).

For general n, we can induce that

φ(n, m – n,ω)χ (m – n,ω) =
K1∼n,m,ωNm–n,ω⋃

i=1

B(un,m–n,ω,i;β1∼n,m,ωr0,m–n,ω),

where K1∼n,m,ω = Km–1,ω · Km–2,ω · · ·Km–n,ω , β1∼n,m,ω = βm–1,ω · βm–2,ω · · ·βm–n,ω and
un,m–n,ω,i ∈ φ(n, m – n,ω)χ (m – n,ω) ⊂ χ (m,ω), i ≤ K1∼n,m,ωNm–n,ω . The (n + 1)th gen-
eration of points is

Bn,m–n,ω = {un,m–n,ω,1, . . . , un,m–n,ω,K1∼n,m,ωNm–n,ω } ⊂ χ (m,ω).

Secondly, we construct a random exponential attractor by adding the points chosen in
step 1 to the random attractor A(ω) ⊂ χ (ω) in X. We define

B(m,ω) =
∞⋃

n=0

Bn,m–n,ω

X
(⊂ χ (m,ω)

)
,

C(m,ω) =
∞⋃

j=0

φ(j, m – j,ω)B(m – j,ω),

and

E(m,ω) = C(m,ω) ∪A(m,ω),

where A(m,ω) = A(θmTω) and A(ω) is the random attractor for φ(t,ω) (see assumption
(H0)).

Finally, by using a similar process presented in [19], we can show that {E(ω)}ω∈� is a
random exponential attractor for {φ(t,ω)}t≥0,ω∈� in X, here we omit it. The proof is com-
pleted. �

3 Application
3.1 The RDS generated by (1.1)∼(1.2) and some useful results
We consider the probability space (�,F ,P) where � = {ω ∈ C(R,R) : ω(0) = 0}, F is the
Borel σ -algebra induced by the compact-open topology of �, and P the correspond-
ing Wiener measure on (�,F ). The Brownian motion W (t,ω) is identified as ω(t), i.e.,
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W (t,ω) = ω(t), t ∈ R. Define the time shift by θtω(·) = ω(· + t) – ω(t),ω ∈ �, t ∈ R, then
(�,F ,P, (θt)t∈R) is an ergodic MDS.

For our purpose, we need to convert the stochastic equation (1.1)∼(1.2) into a deter-
ministic equation with a random parameter. We introduce an one-dimensional Ornstein–
Uhlenbeck process, which is given by z(θtω) := –

∫ 0
–∞ eτ (θtω)(τ ) dτ , t ∈R, and it solves the

Itô equation

dz + z dt = dW (t). (3.1)

It is known from [33] that the random variable z(ω) is tempered, and there is a θt-invariant
set �̃ ⊂ � of full P measure such that for every ω ∈ �̃, t → z(θtω) is continuous in t and

lim
t→±∞

|z(θtω)|
|t| = 0, lim

t→±∞
1
t

∫ t

0
z(θsω) ds = 0. (3.2)

We set α(ω) = e–bz(ω). From (3.2) we can easily show that α(ω) and α–1(ω) are tempered.
Let v(t) = α(θtω)u(t), and we can consider the following evolution equation with random

coefficients but without white noise:

dv
dt

– �v + α1–p(θtω)|v|p–1v + α(θtω)f
(
x,α–1(θtω)v

)
= g(x) + bz(θtω)v, (3.3)

with Dirichlet boundary condition

v|∂D = 0, (3.4)

and initial condition

v(0) = v0(ω) = α(ω)u0. (3.5)

By the normal Faedo–Galerkin methods (see [22]) or a similar result for the determinis-
tic case in [32], one can show that v(t,ω, v0) ∈ C([0,∞); L2(D))

⋂
L2(0, T ; H1

0 (D)),∀T > 0
and ∀v0 ∈ L2(D). By the embeddings H1

0 (D) ⊂ L6(D) ⊂ L2p(D) (1 < p ≤ 3), we see that
v(t,ω, v0) ∈ L2p(D) for ∀t ≥ 0 and ∀v0 ∈ L2p(D). Let u(t,ω, u0) = α–1(θtω)v(t,ω,α(ω)u0),
then u(t,ω, u0) is a solution of (1.1)∼(1.2) with u0 = α–1(ω)v0. We now define a mapping
� : R+ ×�×L2p(D) → L2p(D) by �(t,ω, u0) = u(t,ω, u0) = α–1(θtω)v(t,ω,α(ω)u0). Then �

is an RDS generated by (1.1)∼(1.2) and continuous in L2p(D). To simplify the calculations,
we only consider the continuous RDS generated by (3.3)∼(3.5), i.e.,

φ(t,ω, v0) = v(t,ω, v0), (3.6)

and check the conditions presented in Theorem 2.1 for φ(t,ω).
With a standard procedure (see [32] for deterministic case and [13, 30]) for stochastic

case), one can get the existence of a random attractor in L2p(D) for φ(t,ω). In order to
avoid the paper being tediously long, we just give the result below.

Theorem 3.1 Assume that (1.3)∼(1.5) hold. Then the RDS φ(t,ω) defined in (3.6) has a
unique random attractor Â2p = {A2p(ω)}ω∈� ∈D2p in L2p(D).
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The above theorem implies that φ(t,ω), defined in (3.6), satisfies the assumption (H0).
To prove the Fréchet differentiability and to construct the absorbing subset described in
assumptions (H1)∼(H5), we need the following regularity:

Lemma 3.1 Assume that (1.3)–(1.5) hold. Let D̂ = {D(ω)}ω∈� ∈ D2p and v0 ∈ D(ω). Then
for P-a.s. ω ∈ �, there exists TD̂(ω) > 0 and a tempered random variable M0(ω), such that
the solution v(t,ω, v0(ω)) of (3.3)–(3.5) satisfies, for all t ≥ TD̂(ω) + 1,

∥∥v
(
t, θ–tω, v0(θ–tω)

)∥∥
6p ≤ M0(ω).

Proof Multiplying (3.3) with |v|2p–2v to get

1
2p

d
dt

∥
∥v(t)

∥
∥2p

2p +
(
–�v, |v|2p–2v

)
+ α1–p(θtω)

(|v|p–1v, |v|2p–2v
)

+ α(θtω)
(
f
(
x,α–1(θtω)v

)
, |v|2p–2v

)
=

(
g, |v|2p–2v

)
+ bz(θtω)

∥∥v(t)
∥∥2p

2p. (3.7)

For the second term on the left-hand side of (3.7), using (3.10) and (3.13) in [20] and the
imbedding theorem, we have

(
–�v, |v|2p–2v

)
=

2p – 1
p2

(∇vp,∇vp), (3.8)

and

c‖v‖2p
2p + c′‖v‖2p

6p ≤ ∥∥∇vp∥∥2. (3.9)

So we obtain

d
dt

∥
∥v(t)

∥
∥2p

2p + c4‖v‖2p
2p + c5‖v‖2p

6p + 2pα(θtω)
(
f
(
x,α–1(θtω)v

)
, |v|2p–2v

)

≤ 2p
(
g, |v|2p–2v

)
+ c6z(θtω)‖v‖2p

2p ≤ c‖g‖2p‖v‖2p–1
2p + c6z(θtω)‖v‖2p

2p

≤ c +
c4

4
‖v‖2p

2p + c6z(θtω)‖v‖2p
2p. (3.10)

Applying (1.4), we can estimate the fourth term on the left-hand side of (3.10) as

–2pα2(θtω)
(
f
(
x,α–1(θtω)v

)
α–1(θtω)v, |v|2p–2)

≤ 2pα2(θtω)
(
–να–q–1(θtω)|v|q+1 + β , |v|2p–2)

≤ 2pα2(θtω)
(
β , |v|2p–2) ≤ cα2p(θtω) +

c4

4
‖v‖2p

2p. (3.11)

Combining (3.10) and (3.11) yields

d
dt

∥
∥v(t)

∥
∥2p

2p +
(

c4

2
– c6z(θtω)

)
‖v‖2p

2p + c5‖v‖2p
6p ≤ c

(
1 + α2p(θtω)

)
. (3.12)

Therefore, applying the Gronwall’s inequality, we have

∥
∥v(t)

∥
∥2p

2p ≤ e–
∫ t

0 ( c4
2 –c6z(θsω)) ds∥∥v(0)

∥
∥2p

2p + c7

∫ t

0
e
∫ s

t ( c4
2 –c6z(θlω)) dl(1 + α2p(θsω)

)
ds, (3.13)
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and
∫ t+1

t
e
∫ s

0 ( c4
2 –c6z(θlω)) dl∥∥v(s)

∥∥2p
6p ds ≤ ce

∫ t
0 ( c4

2 –c6z(θsω)) ds∥∥v(t)
∥∥2p

2p

+ c
∫ t+1

t
e
∫ s

0 ( c4
2 –c6z(θlω)) dl(1 + α2p(θsω)

)
ds. (3.14)

We define

M1(ω) = c7

∫ 0

–∞
e
∫ s

0 ( c4
2 –c6z(θlω)) dl(1 + α2p(θsω)

)
ds, (3.15)

and M1(ω) is a tempered random variable by definition. Thus

∥∥v(t)
∥∥2p

2p ≤ e–
∫ t

0 ( c4
2 –c6z(θsω)) ds∥∥v(0)

∥∥2p
2p + M1(θtω). (3.16)

(3.14) implies that there exists t1 = t1(ω) ∈ (t, t + 1) such that

e
∫ t1

0 ( c4
2 –c6z(θsω)) ds∥∥v(t1)

∥
∥2p

6p ≤ ce
∫ t

0 ( c4
2 –c6z(θsω)) ds∥∥v(t)

∥
∥2p

2p

+ c
∫ t+1

t
e
∫ s

0 ( c4
2 –c6z(θlω)) dl(1 + α2p(θsω)

)
ds.

Putting (3.16) into the above inequality we get

∥
∥v(t1)

∥
∥2p

6p ≤ ce–
∫ t1

0 ( c4
2 –c6z(θsω)) ds∥∥v(0)

∥
∥2p

2p

+ ce
∫ t

t1
( c4

2 –c6z(θsω)) dsM1(θtω) + c
∫ t+1

t
e
∫ s

t1
( c4

2 –c6z(θlω)) dl(1 + α2p(θsω)
)

ds.

Therefore

∥∥v(t1)
∥∥6p

6p ≤ ce–
∫ t1

0 (c8–c9z(θsω)) ds∥∥v(0)
∥∥6p

2p + ce
∫ t

t1
(c8–c9z(θsω)) dsM3

1(θtω)

+ c
∫ t+1

t
e
∫ s

t1
(c8–c9z(θlω)) dl ds

∫ t+1

t

(
1 + α6p(θsω)

)
ds

≤ ce–
∫ t1

0 (c8–c9z(θsω)) ds∥∥v(0)
∥
∥6p

2p + cec9
∫ t+1

t |z(θsω)|dsM3
1(θtω)

+ cec9
∫ t+1

t |z(θsω)|ds
∫ t+1

t

(
1 + α6p(θsω)

)
ds. (3.17)

Next, we take the inner product of (3.3) with |v|6p–2v in L2(D),

1
6p

d
dt

∥
∥v(t)

∥
∥6p

6p +
(
–�v, |v|6p–2v

)
+ α1–p(θtω)

(|v|p–1v, |v|6p–2v
)

+ α(θtω)
(
f
(
x,α–1(θtω)v

)
, |v|6p–2v

)
=

(
g, |v|6p–2v

)
+ bz(θtω)

∥
∥v(t)

∥
∥6p

6p.

Using (–�v, |v|6p–2v) = 6p–1
9p2 (∇|v|3p,∇|v|3p) ≥ c‖v‖6p

6p and a similar procedure of (3.12), we
obtain

d
dt

∥
∥v(t)

∥
∥6p

6p +
(
c10 – c11z(θtω)

)∥∥v(t)
∥
∥6p

6p ≤ c
(
1 + α6p(θtω)

)
. (3.18)
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We integrate the above inequality on [t1, t + 1] (t1 ∈ (t, t + 1)) to get

∥
∥v(t + 1)

∥
∥6p

6p ≤ e
∫ t1

t+1(c10–c11z(θlω)) dl∥∥v(t1)
∥
∥6p

6p + c
∫ t+1

t
e
∫ s

t+1(c10–c11z(θlω)) dl(1 + α6p(θsω)
)

ds

≤ cec11
∫ t+1

t |z(θsω)|ds∥∥v(t1)
∥
∥6p

6p

+ cec11
∫ t+1

t |z(θsω)|ds
∫ t+1

t

(
1 + α6p(θsω)

)
ds. (3.19)

Putting (3.17) into (3.19) and noting that t1 ∈ (t, t + 1), we have

∥
∥v(t + 1)

∥
∥6p

6p ≤ c12ec11
∫ t+1

t |z(θsω)|dse–
∫ t1

0 (c8–c9z(θsω)) ds∥∥v(0)
∥
∥6p

2p

+ c13ec15
∫ t+1

t |z(θsω)|dsM3
1(θtω) + c14ec16

∫ t+1
t |z(θsω)|ds

∫ t+1

t

(
1 + α6p(θsω)

)
ds

≤ c12ec11
∫ t+1

t |z(θsω)|dse–c8t+c9
∫ t+1

0 |z(θsω)|ds∥∥v(0)
∥
∥6p

2p

+ c13ec15
∫ t+1

t |z(θsω)|dsM3
1(θtω) + c14ec16

∫ t+1
t |z(θsω)|ds

∫ t+1

t

(
1 + α6p(θsω)

)
ds.

Substituting θ–t–1ω for ω in the above inequality, we get

∥
∥v

(
t + 1, θ–t–1ω, v0(θ–t–1ω)

)∥∥6p
6p

≤ c12ec11
∫ t+1

t |z(θs–t–1ω)|dse–c8t+c9
∫ t+1

0 |z(θs–t–1ω)|ds∥∥v(0)
∥
∥6p

2p

+ c13ec15
∫ t+1

t |z(θs–t–1ω)|dsM3
1(θ–1ω)

+ c14ec16
∫ t+1

t |z(θs–t–1ω)|ds
∫ t+1

t

(
1 + α6p(θs–t–1ω)

)
ds

≤ c12ec11
∫ 0

–1 |z(θsω)|dse–c8t+c9
∫ 0

–t–1 |z(θsω)|ds∥∥v(0)
∥
∥6p

2p

+ c13ec15
∫ 0

–1 |z(θsω)|dsM3
1(θ–1ω) + c14ec16

∫ 0
–1 |z(θsω)|ds

∫ 0

–1

(
1 + α6p(θsω)

)
ds. (3.20)

Let

M2(ω) = 1 + c13ec15
∫ 0

–1 |z(θsω)|dsM3
1(θ–1ω)

+ c14ec16
∫ 0

–1 |z(θsω))|ds
∫ 0

–1

(
1 + α6p(θsω)

)
ds. (3.21)

From (3.2), we know that ec
∫ 0

–1 |z(θsω)|ds is tempered, thus M2(ω) is tempered. Since v0 ∈
D(ω), from (3.20) there exists a TD̂(ω) > 0 such that for all t ≥ TD̂(ω) + 1

∥∥v
(
t, θ–tω, v0(θ–tω)

)∥∥6p
6p ≤ M2(ω).

Then the result holds with M0(ω) = M
1

6p
2 (ω). The proof is completed. �

Let B̂0 = {B0(ω)}ω∈� = {u ∈ L2p(D) : ‖u‖6p ≤ M0(ω)}ω∈�. Then, by Lemma 3.1, we see
B̂0 is a random absorbing set over D2p in L2p(D) and there exists TB̂0

(ω) > 0 such that
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φ(t, θ–tω)B0(θ–tω) ⊂ B0(ω). We define

χ1(ω) =
⋃

s>TB̂0
(ω)

φ(s, θ–sω)B0(θ–sω). (3.22)

3.2 The Fréchet derivative of φ(t,ω)
Set F(x, u) = |u|p–1u + f (x, u) and denote Du(F(x, u)) the Fréchet derivative at u. From the
assumption (1.3)–(1.5), we have

F ′(x, u) ≥ –l,
∣∣F ′(x, u)

∣∣ ≤ c
(
1 + |u|p–1),

∣
∣F ′′(x, u)

∣
∣ ≤ c

(
1 + |u|p–2),

∣
∣F(x, u)

∣
∣ ≤ c|u|p + κ(x), (3.23)

where l, c are positive constants and κ(x) ∈ L6p(D).

Lemma 3.2 Assume that (1.3)–(1.5) hold. Then for any x ∈ D, F(x, u) is from L6p(D) into
L2p(D) and Fréchet differentiable, that is, Du(F(x, u)) ∈L(L6p(D), L2p(D)). Moreover, for any
u, u1, u2, h ∈ L6p(D) and any x ∈ D, we have

(1) Du(F(x, u))(h) = F ′(x, u)h;
(2) ‖F ′(x, u)‖L(L6p(D),L2p(D)) ≤ c(1 + ‖u‖p–1

6p );
(3) ‖F ′(x, u1) – F ′(x, u2)‖L(L6p(D),L2p(D)) ≤ c(1 + ‖u1‖p–2

6p + ‖u2‖p–2
6p )‖u1 – u2‖6p.

Proof By (3.23),

∥
∥F(x, u)

∥
∥

2p =
{∫

D

∣
∣F(x, u)

∣
∣2p dx

} 1
2p ≤ c‖u‖p

2p2 + c‖κ‖2p ≤ c‖u‖p
6p + c‖κ‖2p.

This implies that F(x, u) is from L6p(D) into L2p(D). Moreover, from (3.23), we have

∥
∥F(x, u + h) – F(x, u) – F ′(x, u)h

∥
∥

2p

=
{∫

D

[
F ′(x, u + θ1h) – F ′(x, u)

]2p|h|2p dx
} 1

2p

≤
{∫

D

∣∣F ′′(x, u + θ2h)
∣∣2p|h|4p dx

} 1
2p

≤ c
{∫

D

(
1 + |u + θ2h|p–2)2p|h|4p dx

} 1
2p

≤ c
(
1 + ‖u‖p–2

6p(p–2) + ‖h‖p–2
6p(p–2)

)‖h‖2
6p

≤ c17
(
1 + ‖u‖p–2

6p + ‖h‖p–2
6p

)‖h‖2
6p,

where 0 < θ1, θ2 < 1, this suggests that F(x, u) is Fréchet differentiable and (1) holds.
Using (3.23) again, we obtain

∥
∥F ′(x, u)h

∥
∥

2p =
{∫

D

∣
∣F ′(x, u)

∣
∣2ph2p dx

} 1
2p
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≤ c
{∫

D

(
1 + |u|p–1)2ph2p dx

} 1
2p ≤ c

{∫

D

(
1 + |u|2p(p–1))h2p dx

} 1
2p

≤ c
(
1 + ‖u‖p–1

3p(p–1)
)‖h‖6p ≤ c

(
1 + ‖u‖p–1

6p
)‖h‖6p, (3.24)

and

∥
∥F ′(x, u1)h – F ′(x, u2)h

∥
∥

2p =
{∫

D

∣
∣F ′(x, u1) – F ′(x, u2)

∣
∣2ph2p dx

} 1
2p

=
{∫

D

∣∣F ′′(x, u1 + θ3(u2 – u1)
)∣∣2p|u1 – u2|2ph2p dx

} 1
2p

≤ c
{∫

D

(
1 +

∣
∣u1 + θ3(u2 – u1)

∣
∣p–2)2p|u1 – u2|2ph2p dx

} 1
2p

≤ c
(
1 + ‖u1‖p–2

6p + ‖u2‖p–2
6p

)‖u1 – u2‖6p‖h‖6p, (3.25)

where 0 < θ3 < 1. Thus, (3.24) and (3.25) imply (2) and (3), respectively. The proof is com-
pleted. �

Lemma 3.3 Suppose that (1.3)∼(1.5) hold. Then v(t,ω) is Fréchet differentiable in χ1(ω)
for every t ∈ R and a.s. ω ∈ �.

Proof For any v0 and v0 + h ∈ χ1(ω), we assume that v1 = v1(t) = v(t,ω, v0 + h), v2 = v2(t) =
v(t,ω, v0) are two solutions of (3.3) starting from v0 + h and v0, respectively, and set w(t) =
v1(t) – v2(t), then w(t) satisfies

dw
dt

– �w + α(θtω)
[
F
(
x,α–1(θtω)v1

)
– F

(
x,α–1(θtω)v2

)]
= bz(θtω)w, (3.26)

The linearization is

dU
dt

– �U + F ′(x,α–1(θtω)v1
)
U = bz(θtω)U . (3.27)

Setting ϕ = w – U , then from (3.26) and (3.27), we have

dϕ

dt
– �ϕ + F ′(x,α–1(θtω)v1

)
ϕ

+
[
F ′(x,α–1(θtω)

(
v1 + θ4(v2 – v1)

))
– F ′(x,α–1(θtω)v1

)]
w = bz(θt)ϕ, (3.28)

where 0 < θ4 < 1 and

ϕ(0) = 0. (3.29)

Multiplying (3.26) by |w|2p–2w and using (3.8), (3.9), and (3.23), we get

d
dt

∥∥w(t)
∥∥2p

2p –
(
c18 + c19z(θsω)

)∥∥w(t)
∥∥2p

2p + c
∥∥w(t)

∥∥2p
6p ≤ 0. (3.30)
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Therefore, for all t ≥ 0,

∥∥w(t)
∥∥2p

2p ≤ e
∫ t

0 (c18+c19z(θsω)) ds‖h‖2p
2p. (3.31)

Multiplying (3.30) by e–
∫ t

0 (c18+c19z(θlω)) dl then integrating in [0, t] yields

c
∫ t

0
e–

∫ s
0 (c18+c19z(θlω)) dl∥∥w(s)

∥
∥2p

6p ds ≤ ∥
∥w(0)

∥
∥2p

2p = ‖h‖2p
2p.

Thus, there is a t2 = t2(ω) ∈ (0, t) such that

∥∥w(t2)
∥∥2p

6p ≤ ce
∫ t2

0 (c18+c19z(θsω)) ds‖h‖2p
2p. (3.32)

Next, taking the inner product (3.26) with |w|6p–2w, using (3.23) and (–�w, |w|6p–2w) ≥
c‖w‖6p

6p, we obtain

d
dt

∥∥w(t)
∥∥6p

6p –
(
c20 + c21z(θsω)

)∥∥w(t)
∥∥6p

6p ≤ 0.

Thus, by integrating the above inequality over (t2, t) and using (3.32), we have

∥
∥w(t)

∥
∥6p

6p ≤ ce
∫ t

t2
(c20+c21z(θsω)) dse

∫ t2
0 (c22+c23z(θsω)) ds‖h‖6p

2p ≤ cec24
∫ t

0 (1+|z(θsω)|) ds‖h‖6p
2p. (3.33)

Taking the inner product of (3.28) with |ϕ|2p–2ϕ, we obtain

d
dt

‖ϕ‖2p
2p + 2p

(
–�ϕ, |ϕ|2p–2ϕ

)
+ 2p

(
F ′(x,α–1(θtω)v1

)
ϕ, |ϕ|2p–2ϕ

)

+ 2p
([

F ′(x,α–1(θtω)
(
v1 + θ4(v2 – v1)

))
– F ′(x,α–1(θtω)v1

)]
w, |ϕ|2p–2ϕ

)

= 2pbz(θtω)‖ϕ‖2p
2p. (3.34)

Using Lemma 3.1 and (3) in Lemma 3.2, we have

2p
∣
∣([F ′(x,α–1(θtω)

(
v1 + θ4(v2 – v1)

))
– F ′(x,α–1(θtω)v1

)]
w, |ϕ|2p–2ϕ

)∣∣

≤ 2p
∥∥F ′(x,α–1(θtω)

(
v1 + θ4(v2 – v1)

))

– F ′(x,α–1(θtω)v1
)∥∥

L(L6p(D),L2p(D))‖w‖6p‖ϕ‖2p–1
2p

≤ cα–1(θtω)
(
1 + α2–p(θtω)‖v1‖p–2

6p + α2–p(θtω)‖v2‖p–2
6p

)‖w‖2
6p‖ϕ‖2p–1

2p

≤ cα–2p(θtω)
(
1 + α2p(2–p)(θtω)‖v1‖2p(p–2)

6p + α2p(2–p)(θtω)‖v2‖2p(p–2)
6p

)‖w‖4p
6p + c‖ϕ‖2p

2p

≤ c25α
–2p(θtω)

(
1 + 2α2p(2–p)(θtω)M2p(p–2)

0 (θtω)
)‖w‖4p

6p + c‖ϕ‖2p
2p

= M3(θtω)‖w‖4p
6p + c‖ϕ‖2p

2p, (3.35)

where

M3(ω) = c25α
–2p(ω)

(
1 + 2α2p(2–p)(ω)M2p(p–2)

0 (ω)
)
. (3.36)
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Putting (3.35) into (3.34), we have

d
dt

‖ϕ‖2p
2p ≤ (c26 + c27z(θtω)‖ϕ‖2p

2p + M3(θtω)‖w‖4p
6p,

Apply Gronwall’s lemma to get

∥
∥ϕ(t)

∥
∥2p

2p ≤
∫ t

0
e–

∫ s
t (c26+c27z(θlω)) dlM3(θsω)

∥
∥w(s)

∥
∥4p

6p ds. (3.37)

Then from (3.33) and (3.37), we obtain, for any t > 0,

∥∥ϕ(t)
∥∥2p

2p ≤ c28

∫ t

0
M3(θsω)e–

∫ s
t (c26+c27z(θlω)) dlec29

∫ s
0 (1+|z(θsω)|) ds ds‖h‖4p

2p

≤ c28ec29
∫ t

0 (1+|z(θsω)|) ds
∫ t

0
M3(θsω)e–

∫ s
t (c26+c27z(θlω)) dl ds‖h‖4p

2p. (3.38)

(3.38) implies that, for fixed t and ω, v(t,ω) is uniformly Fréchet differentiable for every
point in χ1(ω) in the topology of L2p(D). The proof is completed. �

3.3 Decomposition of v(t,ω)
In this subsection, we consider the linear version in L2p(D)

Du0

(
v(t,ω)

)
= lim

h→0

v(t,ω, u0 + hv0) – v(t,ω, u0)
h

.

Let w(t) = v1(t) – v2(t) = v(t,ω, u0 + hv0) – v(t,ω, u0), then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dw
dt – �w + α1–p(θtω)(|v1|p–1v1 – |v2|p–1v2)

+ α(θtω)[f (x,α–1(θtω)v1) – f (x,α–1(θtω)v2)] = bz(θtω)w, x ∈ D, t > 0,

w = 0, x ∈ ∂D, t > 0,

w(0) = hv0, x ∈ D.

(3.39)

Defining W (t) = limh→0
w
h , we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dW
dt – �W + pα1–p(θtω)|v1|p–1W

+ f ′(x,α–1(θtω)v1)W = bz(θtω)W , x ∈ D, t > 0,

W = 0, x ∈ ∂D, t > 0,

W (0) = v0, x ∈ D.

(3.40)

We split (3.40) into

⎧
⎪⎪⎨

⎪⎪⎩

dW1
dt – �W1 + pα1–p(θtω)|v1|p–1W1 = bz(θtω)W1, x ∈ D, t > 0,

W1 = 0, x ∈ ∂D, t > 0,

W1(0) = v0, x ∈ D,

(3.41)
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and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dW2
dt – �W2 + pα1–p(θtω)|v1|p–1W2

+ f ′(x,α–1(θtω)v1)(W1 + W2) = bz(θtω)W2, x ∈ D, t > 0,

W2 = 0, x ∈ ∂D, t > 0,

W2(0) = 0, x ∈ D.

(3.42)

Clearly, we have W (t) = W1(t) + W2(t).
In the following, we prove that W2(T) is compact in L2p(D) and W1(T) is contractive in

the mean in L2p(D) for some T > 1. The proof of the following lemma is similar to some
parts of Lemma 3.1, here we only give the sketch.

Lemma 3.4 Suppose (1.3)∼(1.5) hold, then for a.s. ω ∈ �,
(1) for any t > 1, W2(t,ω) is compact in L2p(D);
(2) there exists a tempered random variable λt,ω , such that for any t > 0 it holds that

‖W1(t,ω)‖L(L2p(D)) < λt,ω ;
(3) for any ε0 ∈ (0, 1

2 ), ε1 > 0, there exists T > 1, which is independent of ω such that
–∞ < E[lnβω] < 0, where βω = 4(1 + ε1)λω + 2ε0, λω = λT ,ω .

Sketch of Proof (1) As the proof of (3.20), by taking the inner product of (3.40) and
(3.41) with |W |6p–2W and |W1|6p–2W1 respectively we obtain that W (t) and W1(t) are
bounded from L2p(D) into L6p(D) for every t ≥ t∗ and for some t∗ = t∗(ω) ∈ (0, 1). Thus
W2(t) = W (t) – W1(t) is bounded from L2p(D) into L6p(D). similarly, it is also a standard
procedure to get that W2(t) is bounded from L2p(D) into H1

0 (D) for any t > 1. Therefore,
by the compact embedding H1

0 (D) ↪→ L2(D) and the interpolative inequality

‖u‖2p ≤ ‖u‖θ
6p‖u‖1–θ ,

it is easy to prove that W2(t) is compact in L2p(D) for t > 1.
(2) Multiplying (3.41) by |W1|2p–2W1, and using (3.8) and (3.9), we get

d
dt

‖W1‖2p
2p +

(
c31 – c32z(θtω)

)‖W1‖2p
2p ≤ 0,

Thus,

∥
∥W1(t)

∥
∥2p

2p ≤ e–
∫ t

0 (c31–c32z(θsω)) ds‖v0‖2p
2p.

Let

λt,ω = 2e– 1
2p

∫ t
0 (c31–c32z(θsω)) ds, (3.43)

then for any t > 0 we have ‖W1(t,ω)‖L(L2p(D)) < λt,ω .
(3) From (3.2), we see limt→+∞ λt,ω = 0, thus limt→+∞ E[λt,ω] = 0. There exists a T , which

is independent of ω such that, for any t ≥ T , it holds that ln(2ε0) + 2(1+ε1)
ε0

E[λt,ω] < 0. Let
λω = λT ,ω , then we have

E[lnβω] = E
[
ln

(
4(1 + ε1)λω + 2ε0

)]
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= ln(2ε0) + E

[
ln

(
1 +

2(1 + ε1)
ε0

λω

)]
≤ ln(2ε0) +

2(1 + ε1)
ε0

E[λω] < 0.

The proof is completed. �

We choose the constant T obtained in Lemma 3.4, and set

M4(ω) =
(

c28ec29
∫ T

0 (1+|z(θsω)|) ds
∫ T

0
M3(θsω)e–

∫ s
T (c26+c27z(θlω)) dl ds

) 1
2p

. (3.44)

Then M4(ω) is positive and tempered, and we can rewrite (3.38) as

∥∥ϕ(T ,ω)
∥∥

2p ≤ M4(ω)‖h‖2
2p. (3.45)

Let

M4(ω)‖h‖2p ≤ ε0, (3.46)

and define

r0,ω = ε0M–1
4 (ω), (3.47)

then from Proposition 4.3.3 in [33] we know that r0,ω is tempered. Moreover, r0,ω satisfies
(2.1). (3.45)–(3.47)implies that for any fixed ε0 > 0, we have ‖ϕ(T ,ω)‖2p ≤ ε0‖h‖2p for all
0 < ‖h‖2p < r0,ω , thus (2.1) hold.

3.4 Construction of χ (ω) and the main result
In this subsection, we construct Nω and the positively invariant set χ (ω) described in
(H1) ∼ (H5) for the RDS φ(t,ω) and prove that Kω , Nω and βω satisfy (H5). Since A2p(ω) is
the random attractor for the RDS φ(t,ω) in L2p(D) (see Theorem 3.1), A2p(ω) is compact in
L2p(D). We assume the

⋃Nr0,ω (A2p(ω))
i=1 B(ui; r0,ω) is the covering of A2p(ω) in L2p(D), where

Nr0,ω (A2p(ω)) is the minimal number of balls with radius r0,ω covering A2p(ω) in L2p(D),
then by Lemma 2.3 in [20] we get:

Lemma 3.5 There exists a random variable r̂ω (0 < r̂ω < r0,ω) such that

Nr0,ω (A2p(ω))⋃

i=1

B(ui; r0,ω) ⊃Nr̂ω
(
A2p(ω)

)
,

where Nr̂ω (A2p(ω)) denotes the closed r̂ω-neighborhood of A2p(ω).

Define

χ (ω) =
( ⋃

s>TB̂0
(ω)+1

φ(s, θ–sω)B0(θ–sω)
)

∩Nr̂ω
(
A2p(ω)

)(⊂ χ1(ω)
)
. (3.48)

Since the r̂ω-neighborhood of A2p(ω) is absorbing, χ (ω) is nonempty and satisfies

Nω = Nr0,ω

(
χ (ω)

) ≤ Nr0,ω

(
A2p(ω)

)
. (3.49)
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Lemma 3.6 Suppose (1.3)∼(1.5) hold, then –∞ < E[lnβω] < 0, 0 ≤ E[ln Kω] < ∞ and 0 ≤
E[ln Nω] < ∞.

Proof The first result has been proved in Lemma 3.4.
From [18, 19], we have the following results:

E
[
eε

∫ τ+t
τ |z(θsω)|ds] ≤ e

ε√
α

t , α3 ≥ ε2 ≥ 1, τ ∈R, t ≥ 0, (3.50)

E
[
eε|z(ω)|] ≤

(
1 +

|ε|√
π

)
eε2

. (3.51)

Taking the inner product of (3.27) by |U|2p–2U , we can get

d
dt

‖U‖2p
2p –

(
c33 + c34z(θsω)

)‖U‖2p
2p ≤ 0,

Thus

∥
∥U(t)

∥
∥2p

2p ≤ e
∫ t

0 (c33+c34z(θsω)) ds‖h‖2p
2p.

This implies that

sup
v∈χ (ω)

∥
∥Dvφ(t,ω)

∥
∥

2p ≤ e
∫ t

0 (c33+c34z(θsω)) ds. (3.52)

From Lemma 2.2 in [21] (see also Lemma 2.2 in [20]), we can get that ν(ω) ≤
c supv∈χ (ω) ‖v‖2p. Since χ (ω) ⊂ B0(ω), we have

ν(ω) ≤ c sup
v∈χ (ω)

‖v‖2p ≤ c sup
v∈χ (ω)

‖v‖6p ≤ cM0(ω). (3.53)

Recall that (see (3.21) and (3.15))

M0(ω) = M
1
6
2 (ω),

M2(ω) = 1 + c13ec15
∫ 0

–1 |z(θsω)|dsM3
1(θ–1ω) + c14ec16

∫ 0
–1 |z(θsω))|ds

∫ 0

–1

(
1 + α6p(θsω)

)
ds,

and

M1(ω) = c7

∫ 0

–∞
e
∫ s

0 ( c4
2 –c6z(θlω)) dl(1 + α2p(θsω)

)
ds.

Using Young’s inequality and
√

x ≤ ex, we get

M1(ω) = c
∫ 0

–∞
e

c4
2 s–2c6

∫ s
0 z(θlω) dl ds + c

∫ 0

–∞
e

c4
2 s(1 + α4p(θsω)

)
ds. (3.54)

and

ln M1(ω) = ln

(
c7

∫ 0

–∞
e
∫ s

0 ( c4
2 –c6z(θlω)) dl(1 + α2p(θsω)

)
ds

)
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≤ ln

[
c
(∫ 0

–∞
e

c4
2 s–2c6

∫ s
0 z(θlω) dl ds

) 1
2
(∫ 0

–∞
e

c4
2 s(1 + α4p(θsω)

)
ds

) 1
2
]

≤ c +
∫ 0

–∞
e

c4
2 s–2c6

∫ s
0 z(θlω) dl ds +

∫ 0

–∞
e

c4
2 s(1 + α4p(θsω)

)
ds. (3.55)

From (3.54)–(3.55) and applying (3.50)–(3.51), we have E[M1(ω)] < +∞,E[ln M1(ω)] <
+∞. Similarly, we get E[M2(ω)] < +∞,E[ln M2(ω)] < +∞. Thus, from (3.53), we see

E
[
ν(ω)

]
< +∞, E

[
lnν(ω)

]
< +∞. (3.56)

By using (2.3), (3.43), and (3.52) with t = T , we have the following estimate

ln Kω = lnν(ω) + ν(ω)
(

ln 2 + ln

(
1 +

supv∈χ (ω) ‖Dvφ(T ,ω)‖2p + 2λω

2λωε

))

≤ lnν(ω) + ν(ω)
(

ln 2 +
1
ε

+
supv∈χ (ω) ‖Dvφ(T ,ω)‖2p

2λωε

)

≤ c35 + lnν(ω) + c36ν
2p(ω) + c37

(
supv∈χ (ω) ‖Dvφ(T ,ω)‖2p

2λωε

) 2p
2p–1

≤ c35 + lnν(ω) + c36ν
2p(ω) + c40e

∫ T
0 (c38+c39|z(θsω|) ds. (3.57)

Therefore, from (3.50), (3.51), (3.56), and (3.57), we conclude that 0 ≤ E[ln Kω] < ∞.
To prove 0 ≤ E[ln Nω] < ∞, we assume that the sequence {λj}∞j=1, 0 < λ1 ≤ λ2 ≤ · · · ≤

λj → ∞, j → ∞, and a family of elements {ej}∞j=1 of D(–�), which forms an orthogonal
basis in both L2(D) and H1

0 (D) such that

–�ej = λjej, ∀j ∈ N .

Given n, let Xn = span {e1, . . . , en} and Pn : L2(D) → Xn be the projection operator. For any
v ∈ H1

0 (D), we write v = Pmv + (I – Pm)v := v1 + v2.
Let w1 = Pmw, w2 = (I – Pm)w, where w is the solution of (3.26). Now we multiply (3.26)

with –�w1 to get

d
dt

‖∇w1‖2 + ‖�w1‖2 +
(
F ′(x,α–1(θtω)

(
v1 + θ (v2 – v1)

))
w, –�w1

)
= bz(θtω)‖∇w1‖2.

Since v1, v2 ∈ χ (ω), by applying (3.23), we can estimate the nonlinearity as

∣
∣(F ′(x,α–1(θtω)

(
v1 + θ (v2 – v1)

))
w, –�w1

)∣∣

≤ c
∫

D

(
1 +

∣∣α–1(θtω)v1
∣∣2p–2 +

∣∣α–1(θtω)v2
∣∣2p–2)|w|2 +

1
2
‖�w1‖2

≤ c
(
1 + α2–2p(θtω)‖v1‖2p–2

2p + α2–2p(θtω)‖v2‖2p–2
2p

)‖w‖2
2p +

1
2
‖�w1‖2

≤ c41
(
1 + α2–2p(θtω)‖v1‖2p–2

6p + α2–2p(θtω)‖v2‖2p–2
6p

)‖w‖2
2p +

1
2
‖�w1‖2

≤ M5(θtω)‖w‖2
2p +

1
2
‖�w1‖2, (3.58)
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where

M5(ω) = c41
[
1 + 2α2–2p(ω)M2p–2

0 (ω)
]
. (3.59)

Therefore

d
dt

‖∇w1‖2 – bz(θtω)‖∇w1‖2 ≤ M5(θtω)‖w‖2
2p.

Applying the Gronwall’s inequality

∥∥∇w1(t)
∥∥2 ≤ eb

∫ t
0 z(θsω) ds∥∥∇w1(0)

∥∥2 +
∫ t

0
e–b

∫ s
t z(θlω) dlM5(θsω)

∥∥w(s)
∥∥2

2p ds

≤ eb
∫ t

0 z(θsω) ds‖∇h‖2 +
∫ t

0
e–b

∫ s
t z(θlω) dlM5(θsω)

∥
∥w(s)

∥
∥2

2p ds. (3.60)

Putting (3.31) into (3.60) and using the inequality
√

x ≤ ex, we have

∥∥∇w1(t)
∥∥2 ≤ eb

∫ t
0 z(θsω)) ds‖∇h‖2 +

∫ t

0
e–b

∫ s
t z(θlω) dle

∫ s
0 (c42+c43z(θlω)) dlM5(θsω) ds‖h‖2

2p

≤ c
(

eb
∫ t

0 z(θsω) ds +
∫ t

0
e–b

∫ s
t z(θlω) dle

∫ s
0 (c42+c43z(θlω)) dlM5(θsω) ds

)
‖∇h‖2

≤ c
(

eb
∫ t

0 |z(θsω)|ds + eb
∫ t

0 |z(θsω)|dse
∫ t

0 (c42+c43|z(θlω)|) dl
∫ t

0
M5(θsω) ds

)
‖∇h‖2

≤ c
(
eb

∫ t
0 |z(θsω)|ds + eb

∫ t
0 |z(θsω)|dse

∫ t
0 (c42+c43|z(θlω)|) dle2

∫ t
0 M5(θsω) ds)‖∇h‖2

≤ ce
∫ t

0 (2b|z(θsω)|+c42+c43|z(θsω)|+2M5(θsω)) ds‖∇h‖2 = c44e
∫ t

0 C1(θsω) ds‖∇h‖2, (3.61)

with

C1(ω) = 2b
∣∣z(ω)

∣∣ + c42 + c43
∣∣z(ω)

∣∣ + 2M5(ω). (3.62)

Similarly, we take the inner product of (3.26) with –�w2 to get

d
dt

‖∇w2‖2 +
1
2
‖�w2‖2 ≤ M5(θtω)‖w‖2

2p + bz(θtω)‖∇w2‖2.

By applying Poincaré inequality

‖�v2‖2 ≥ λm+1‖∇v2‖2, ∀v ∈ D(–�),

we get

d
dt

‖∇w2‖2 +
λm+1

2
‖∇w2‖2 ≤ M5(θtω)‖w‖2

2p + bz(θtω)‖∇w2‖2,

Thus

∥
∥∇w2(t)

∥
∥2 ≤ e– λm+1

2 t∥∥∇w2(0)
∥
∥2 + e– λm+1

2 t
∫ t

0
e

λm+1
2 sM5(θsω)

∥
∥w(s)

∥
∥2

2p ds
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+ e– λm+1
2 t

∫ t

0
e

λm+1
2 sbz(θsω)

∥∥∇w2(s)
∥∥2 ds

≤ e– λm+1
2 t‖∇h‖2 + e– λm+1

2 t
∫ t

0
e

λm+1
2 sM5(θsω)

∥
∥w(s)

∥
∥2

2p ds

+ e– λm+1
2 t

∫ t

0
e

λm+1
2 sbz(θsω)

∥∥∇w(s)
∥∥2 ds. (3.63)

To estimate ‖∇w(t)‖2, we multiply (3.26) by –�w and using a similar inequality as (3.58)
to get

d
dt

‖∇w‖2 +
1
2
‖�w‖2

≤ M5(θtω)‖w‖2
2p + bz(θtω)‖∇w‖2 ≤ (

bz(θtω) + cM5(θtω)
)‖∇w‖2.

Thus

‖∇w‖2 ≤ e
∫ t

0 (bz(θsω)+cM5(θsω)) ds‖∇h‖2. (3.64)

From (3.31), (3.63), and (3.64), we obtain

∥∥∇w2(t)
∥∥2

≤ e– λm+1
2 t‖∇h‖2 + e– λm+1

2 t
∫ t

0
e

λm+1
2 sM5(θsω)e

∫ s
0 (c42+c43z(θlω)) dl ds‖h‖2

2p

+ e– λm+1
2 t

∫ t

0
e

λm+1
2 sbz(θsω)e

∫ s
0 (bz(θlω)+cM5(θlω)) dl ds‖∇h‖2

≤ e– λm+1
2 t‖∇h‖2 + ce

∫ t
0 (c42+c43|z(θsω)|) dse– λm+1

2 t
∫ t

0
e

λm+1
2 sM5(θsω) ds‖∇h‖2

+ e
∫ t

0 (b|z(θlω)|+cM5(θlω)) dle– λm+1
2 t

∫ t

0
e

λm+1
2 sbz(θsω) ds‖∇h‖2

≤ e– λm+1
2 t‖∇h‖2 + ce

∫ t
0 (c42+c43|z(θlω)|) ds

× e– λm+1
2 t

(∫ t

0
eλm+1s ds

) 1
2
(∫ t

0
M2

5(θsω) ds
) 1

2 ‖∇h‖2

+ e
∫ t

0 (b|z(θlω)|+cM5(θlω)) dle– λm+1
2 t

(∫ t

0
eλm+1s ds

) 1
2
(∫ t

0
b2z2(θsω) ds

) 1
2 ‖∇h‖2

≤ e– λm+1
2 t‖∇h‖2 + ce

∫ t
0 (c42+c43|z(θsω)|) ds 1√

λm+1

(∫ t

0
M2

5(θsω) ds
) 1

2 ‖∇h‖2

+ e
∫ t

0 (b|z(θlω)|+cM5(θlω)) dl 1√
λm+1

(∫ t

0
b2z2(θsω) ds

) 1
2 ‖∇h‖2

≤ e– λm+1
2 t‖∇h‖2 +

c45√
λm+1

ec46
∫ t

0 (1+|z(θsω)|+z2(θsω)+M5(θsω)+M2
5(θsω)) ds‖∇h‖2

≤ e–t‖∇h‖2 + δe
∫ t

0 C2(θsω) ds‖∇h‖2, (3.65)
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where

δ =
c45√
λm+1

, C2(ω) = c46
(
1 +

∣
∣z(ω)

∣
∣ + z2(ω) + M5(ω) + M2

5(ω)
)
. (3.66)

Setting

C0(ω) = C1(ω) + C2(ω), (3.67)

then from (3.50) and (3.51), one can check that E[C2
0(ω)] < ∞. Since (3.61) and (3.65)

hold for any t > 0, we first choose t0 ≥ ln 4. Then fix m large enough such that 0 < δ ≤
1
8 e

– 2
ln 3

2
t2
0E[C2

0 (ω)]
, thus (3.61) and (3.65) implies that φ(t,ω) satisfies (II) in Theorem 2.2 in

[34]. Thanks to the case (II) in Theorem 2.2 in [34], we have the following covering:

A2p(ω) ⊂
n1n2···nk⋃

j=1

BH1
0 (D)

(
uj

0k ; e– k
2 ln 4

3 bω

)
, (3.68)

where BH1
0 (D)(u

j
0k ; e– k

2 ln 4
3 bω) denotes the ball in H1

0 (D), E[ln bω] < ∞ and

nl ≤
(√

m
δ

+ 1
)m

, l = 1, 2 · · ·k. (3.69)

Since ‖u‖2p ≤ c̃‖u‖H1
0 (D), (3.68) implies

A2p(ω) ⊂
n1n2···nk⋃

j=1

B
(
uj

0k ; c̃e– k
2 ln 4

3 bω

)
, (3.70)

where B(uj
0k ; c̃e– k

2 ln 4
3 bω) denotes the ball in L2p(D).

Since e– k
2 ln 4

3 bω → 0, k → ∞, there exists kω such that

c̃e– kω
2 ln 4

3 bω < r0,ω ≤ c̃e– kω–1
2 ln 4

3 bω, (3.71)

This implies

kω =
[

2(ln c̃ + ln bω – ln r0,ω)
ln 4

3

]
+ 1, (3.72)

here [·] denotes the greatest integer function. Using (3.50), (3.51), and the inequality
√

x ≤
ex, one can show that

E

[
ln

∫ T

0
M3(θsω)e–

∫ s
T (c26+c27z(θlω)) dl ds

]
< +∞.

By the above inequality and the definition of r0,ω in (3.44) and (3.47), we can get E[ln r0,ω] <
∞. Therefore, (3.72) implies E[kω] < ∞. Combining (3.69)∼(3.71), we have

Nr0,ω

(
A2p(ω)

) ≤ n1 · · ·nkω ≤
(√

m
δ

+ 1
)mkω

.
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Therefore, from (3.49) we have

ln Nω ≤ ln Nr0,ω

(
A2p(ω)

) ≤ mkω ln

(√
m
δ

+ 1
)

, (3.73)

this suggests that E[ln Nω] < ∞. The proof is completed. �

It is easy to check the assumption (H3), that is, the Lipschitz continuity for φ(t,ω) in
L2p(D) for any t > 0. From Theorem 3.1, Lemma 3.3, Lemma 3.4, Lemma 3.6 and the con-
struction of χ (ω) in (3.48), we see that φ(t,ω) and χ (ω) satisfy (H0)∼(H5). Therefore, as
a consequence of Theorem 2.1, we have:

Theorem 3.2 Suppose (1.3)∼(1.5) hold. Then the RDS {φ(t,ω)}t≥0,ω∈� defined in (3.6) pos-
sesses a random exponential attractor {E(ω)}ω∈� in L2p(D).

Remark By the definition φ(t,ω, v0) = v(t,ω, v0), �(t,ω, u0) = u(t,ω, u0) and the rela-
tionship u(t,ω, u0) = α–1(θtω)v(t,ω,α(ω)u0), one can immediately get that the RDS
{�(t,ω)}t≥0,ω∈�, which is generated by (1.1)∼(1.5), possesses a random exponential at-
tractor in L2p(D).

4 Conclusion
In this paper, we have studied the asymptotic behavior of the RDS φ(t,ω) generated by
(3.3)–(3.5). First, an abstract result for the existence of a random exponential attractor
is established in general Banach space. Second, a useful asymptotic a priori estimate in
L6p(D) is given. Third, a positively invariant random set χ (ω) in L2p(D) is constructed and
the Fréchet differentiability of φ(T ,ω) in χ (ω) is proved for a large time T . Then φ(T ,ω) is
split into two parts, i. e. W1(T ,ω) and W2(T ,ω), and W1(T ,ω) is proved to be contractive
in the mean in L2p(D) and W2(T ,ω) to be compact in L2p(D). Finally, by checking the
assumptions (H0)∼(H5) presented in the abstract result for φ(t,ω) and χ (ω), the existence
of a random exponential attractor is proved in L2p(D).

It is worth noticing that our case is different from that of [18]. In [18], the author proved
the existence of a random exponential attractor for a stochastic non-autonomous reaction-
diffusion equation with multiplicative white noise in the entire space R

3. The author de-
composed the solutions into two parts, of whose, one part is finite-dimensional which
satisfies the flattening propety [11] and the “tail” part is “quickly decay” for suitable large
x ∈R

3 and large time t. This implies the existence of a finite dimensional random exponen-
tial attractor in the Hilbert space L2(R3). However, the technique relies on the orthogonal
basis {ej}∞j=1 in L2 ⋂

H1
0 and the orthogonal projections Pn : L2(D) → Xn, where Xn = span

{e1, . . . , en}, so that it cannot be applied directly to general Banach space.
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