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Abstract
Fabrizio and Caputo suggested an extraordinary definition of fractional derivative,
which has been used in many fields. The SIDARTHE infectious disease model with
regard to COVID-19 is studied by the new notion in this paper. Making use of the
Banach fixed point theorem, the existence and uniqueness of the model’s solution are
demonstrated. Then, an efficient method is utilized to deduce the iterative scheme.
Finally, some numerical simulations of the model under various fractional orders and
parameters are shown. From the computed result, we can see that it not only
supports the theoretical demonstration, but also has an intensive insight into the
characteristics of the model.
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1 Introduction
Since the burst of COVID-19, a good many countries have been in immense fright. It is a
disease spread by contact and breathing. Infected people usually present with cough, fever,
diarrhea, and other symptoms. It is highly contagious and can cause lung failure. During
the outbreak of this disease, people in many cities were forced to stay at home. Moreover,
another bad news is that old people and children are far more likely to become infected
with this disease than adults. A feature of this epidemic is that a person may be infectious
but has no symptoms, it brings a great difficulty to preventive work. Although scientists
have been working tirelessly, there is no drug that can effectively treat this disease so far [1–
4]. So studying the dynamic characteristics of the COVID-19 outbreak is a major means
to prevent and eliminate this disease.

The mathematical model is a powerful tool that has been used by mathematicians and
infectious disease scientists for many years [5]. This amazing mathematical tool can help
us quickly grasp detailed information about infectious diseases in a short period of time
and predict possible transmission paths. Even with very little real data, we can establish
preliminary models based on experience to implement predictions. In the last several
years, many epidemic models have been studied by researchers. Bohner and Stamov estab-
lished an SIR model with pulse delay and obtained global stability criteria for the solution
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through the Lyapunov method [6]. Based on the SIR model, a nonlinear SEIRRPV model
was investigated by introducing new exposed, recovered, and dead people [7]. Wanduku
used the parameters that were estimated from real data to a discrete time Markov chain
model to forecast the situation in the United States [8]. Wang et al. applied the basic re-
productive ratio theory of the reaction-diffusion infectious disease model to numerical
simulation and concluded that periodic models may overestimate actual data [9]. Elbaz
and El-Awady established an epidemic model of soft drugs and analyzed the sensitivity
of the model by numerical simulation [10]. Yang et al. studied an SEIR infectious disease
model that can be sexually transmitted, and they believed that the incubation period has a
considerable impression on the peak of the contagion [11]. A time-delay AIDS model with
educational movement and information was established, and the extinction, persistence,
and spread speed of the disease were studied in detail [12]. Sun et al. looked at the SVIR
model with both vaccination and incubation [13]. Basnarkov built the SEAIR model by
capturing two dynamic characteristics of infectious diseases: delay and absence of symp-
toms [14]. A new SVEIS stochastic model was proposed based on the hypothesis that
parameters satisfy Ornstein–Uhlenbeck process with mean regression [15]. An improved
SEIHR model was used to study the effectiveness of isolation measures in Hong Kong,
and the authors concluded that the model has backward bifurcation. They also used par-
tial rank correlation coefficients to study the influence of parameters on the model [16].
Real data from the epidemic were utilized to estimate the basic reproduction number and
infection rate of the model, and effective epidemic prevention and control measures were
proposed [17].

With the development of scientific theory, the ideology of fractional calculus has been
widely applied in mathematics, physics, engineering, chemistry, and other scientific fields
after it emerged. There are some commonly used definitions, they are Riemann–Liouville,
Grünwald–Letnikov, and Caputo fractional calculus [18]. Owing to the memory, histor-
ical, and nonlocal effects of fractional operators, the essence and characteristics of the
model that are not available by integer operators can be understood more deeply with frac-
tional derivative. Therefore, more and more epidemic models are depicted by fractional
derivatives [19, 20]. Balzotti et al. studied the susceptibility–infection-susceptibility frac-
tional model under the condition that the population is unchanging [21]. The fractional
order smoking model under Caputo definition was established in [22]. The differences be-
tween the differential transformation method and the homotopy transformation method
were discussed. Emmanuel used the Atangana–Baleanu–Caputo definition to build a non-
linear fractional smoking model and carried out a numerical study [23]. Liu considered
a fractional SIR model with multiple stages in the case of heterogeneous networks [24].
Saratha improved the Riemann–Liouville definition by the Mittag-Leffler function and
verified his results with nonlinear fractional differential equations [25]. A fractional order
model containing three types of infected populations was established to study the spread
of avian influenza [26], and the authors believed that the solution of the model is closely
related to the order. Pan and Li applied the GMMP scheme to get the numerical solution of
their Ebola model, and the grid approximation method was utilized to get the best param-
eters; the numerical results showed that their model predicted real outbreaks well [27].
The author concluded that isolation helps to control the epidemic by conducting stabil-
ity and bifurcation analysis on the proposed fractional SE1E2IQR model [28]. The LaSalle
invariance principle and the Lyapunov functional were utilized to demonstrate the asymp-
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totic stability at the equilibrium point of the proposed fractional order SEIR model, and
the numerical results supported theoretical analysis [29]. To acquire numerical solutions
of the SIQR model, Paul used the Laplace iterative transform method; he also compared
the effects of different numerical methods [30]. The sensitivity of models to parameter
changes under different definitions was studied in [31], and the authors found that these
changes may lead to chaotic behavior in the dynamic system. The authors considered the
SEIGRDP model under population mobility and showed the validity of the model based
on real data [32]. The fractional ABC operator was applied to the SEIR COVID-19 model,
and optimal parameters of the model were obtained by using the least square method. The
simulation proved the superiority of the fractional derivative [33].

However, Caputo and Fabrizio noticed that the common definitions (C, RL, GL) have
singular kernels that may cause some negative influences on mathematical models. To
eliminate them, Fabrizio and Caputo proposed a new definition in their work [34], which
we will use in this study. Compared with the published literature, our innovations are
as follows: (a)To the best of our knowledge, the fractional order SIDARTHE infectious
disease model under Caputo–Fabrizio definition is investigated for the first time in this
work; (b)We use the Banach fixed point theorem to prove the existence and uniqueness of
the model solution, which was not considered in [35] although we used the same model
as the author.

The frame of this paper is as follows: the definitions and properties of CF fractional
calculus are recommended in Sect. 2. In Sect. 3, we suggest the integer order model and
the fractional order model; making use of the Banach fixed point theorem, the existence
and uniqueness of the model’s solution are derived. In the subsequent section, we first
derive an effective iteration scheme, then we analyze the feature of the model according
to the simulation results. In the last section, the ultimate conclusion is stated.

2 The new CF fractional calculus
Definition 1 [34] Set m ∈ H1(a, b) and δ ∈ [0, 1], the novel CF fractional order derivative
operator is advised as follows:

CF
a Dδ

t
(
m(t)

)
=

Z(δ)
1 – δ

∫ t

a
exp

[
–δ

t – x
1 – δ

]
m′(x) dx. (1)

In Eq. (1), the symbol Z(δ) is called normalization function by Caputo and Fabrizio, and
it satisfies the condition that Z(0) = Z(1) = 1.

If m /∈ H1(a, b), for example, m ∈ L1(–∞, c), where c > b, then the definition will be
expressed as

CF
a Dδ

t
(
m(t)

)
=

δM(δ)
1 – δ

∫ c

–∞
exp

[
–δ

t – x
1 – δ

]
(
m(t) – m(x)

)
dx. (2)

Definition 2 [34] If we consider ω = 1–δ
δ

and ω ∈ [0, +∞], then we can get that δ ∈ [0, 1],
so Eq. (1) can be showed as follows:

CF
a Dω

t
(
m(t)

)
=

X(ω)
ω

∫ t

a
exp

[
–

t – x
ω

]
m′(x) dx, (3)
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where the symbol X(ω) is a normalization function that is similar to Z(δ), and X(0) =
X(∞) = 1. Besides, we also have

lim
ω→0

1
ω

exp

[
–

(t – x)
ω

]
= ψ(t – x). (4)

These are the concepts of CF fractional differentiation. Moreover, Losada and Nieto
moved the corresponding CF fractional order integral.

Definition 3 [36] Let us consider that 0 < δ < 1, m is a random function, and the CF frac-
tional integral is set as follows:

CF
0 Iδ

t m(t) =
2(1 – δ)

(2 – δ)Z(δ)
m(t) +

2δ

(2 – δ)Z(δ)

∫ t

0
m(s) ds, t ≥ 0. (5)

Remark 1 [36] Nieto has noticed that the CF type fractional order integral of one function
m of order 0 < δ < 1 is the mean value of m and its integral. It means that

2(1 – δ)
(2 – δ)Z(δ)

+
2δ

(2 – δ)Z(δ)
= 1, (6)

due to this, we can infer that Z(δ) = 2
2–δ

, 0 < δ < 1.

Definition 4 [36] From the point of Remark 1, the new CF type fractional derivative is
revised by Losada and Nieto, and it has the following form:

CF
a Dδ

t
(
m(t)

)
=

1
1 – δ

∫ t

a
exp

[
–δ

t – x
1 – δ

]
m′(x) dx. (7)

3 The new SIDARTHE fractional mathematical model of COVID-19 with the CF
derivative

The integer order SIDARTHE model was introduced by Giordano et al. [37], and it can be
expressed as follows:

dS
dt

= –mSI – nSD – pSA – qSR,

dI
dt

= mSI + nSD + pSA + qSR – aI – cI – uI,

dD
dt

= aI – eD – rD,

dA
dt

= cI – bA – gA – vA,

dR
dt

= eD + bA – jR – wR,

dT
dt

= gA + jR – zT – oT ,

dH
dt

= uI + rD + vA + wR + zT ,

dE
dt

= oT .

(8)
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Table 1 Connotation of variables or parameters

Parameters or variables Explanation

S Susceptible (healthy)
I Infected (symptomless, undiscovered)
D Diagnosed (symptomless,discovered)
A Ailing (symptomatic, undiscovered)
R Recognized (symptomatic, discovered)
T Threatened (infectious, discovered)
H Healed
E Extinct
m Percentage of infected after S and I tough
n Percentage of infected after S and D tough
p Possibility of infected after S and A tough
q Odds of infected after S and R tough
a Probability of detection of asymptomatic carriers
b Probability of detection of symptomatic carriers
c Probability of symptoms in the undetected
e Probability of symptoms being detected
g Probability that A have life-threatening symptoms
j Probability that R have life-threatening symptoms
o Death ratio of T
u Heal ratio of I
v Heal ratio of A
w Heal ratio of R
r Heal ratio of D
z Heal ratio of T

In the above system, the general population is set to eight classifications, and we express
them by the capital letters S, I, R, A, D, T, E, and H. Arguments are expressed in lowercase
letters and all of them are positive, their meanings and difference [35, 37] are shown in
Table 1.

Replacing the integer order operator mentioned above by the CF fractional operator,
these expressions can be inferred:

CF
0 Dδ

t S = –mSI – nSD – pSA – qSR,
CF
0 Dδ

t I = mSI + nSD + pSA + qSR – aI – cI – uI,
CF
0 Dδ

t D = aI – eD – rD,
CF
0 Dδ

t A = cI – bA – gA – vA,
CF
0 Dδ

t R = eD + bA – jR – wR,
CF
0 Dδ

t T = gA + jR – zT – oT ,
CF
0 Dδ

t H = uI + rD + vA + wR + zT ,
CF
0 Dδ

t E = oT ,

(9)

the initial conditions are set as follows:

S(0) = c1, I(0) = c2, D(0) = c3, A(0) = c4,

R(0) = c5, T(0) = c6, H(0) = c7, E(0) = c8.
(10)

In addition, we find that the sum CF
0 Dδ

t S + CF
0 Dδ

t I + CF
0 Dδ

t D + CF
0 Dδ

t A + CF
0 Dδ

t R + CF
0 Dδ

t T +
CF
0 Dδ

t H + CF
0 Dδ

t E is equal to zero in this system. This means that the total population S + I +
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R+A+D+T +E +H is taken to be a constant. We define the norm ‖(S, I, R, A, D, T , E, H)‖ =
‖S‖ + ‖I‖ + ‖R‖ + ‖A‖ + ‖D‖ + ‖T‖ + ‖E‖ + ‖H‖, where ‖S‖ = sup{|S(t)| : t ∈ G}, and G is
the Banach space [38], the other seven norms are similar to this.

4 Existence and uniqueness of the solution of the SIDARTHE model of
COVID-19 epidemic

In the forth part, taking advantage of fixed point theorem [38–43], the existence of the
SIDARTHE fractional order system’s solution will be proved, then we would like to show
the uniqueness. At first, we will prove the existence of the solution. Applying the CF frac-
tional order integral operation on both sides of the equal sign of Eq. (9), we can get these
formulas:

S(t) – S(0) = CF
0 Iδ

t {–mSI – nSD – pSA – qSR},
I(t) – I(0) = CF

0 Iδ
t {mSI + nSD + pSA + qSR – aI – cI – uI},

D(t) – D(0) = CF
0 Iδ

t {aI – eD – rD},
A(t) – A(0) = CF

0 Iδ
t {cI – bA – gA – vA},

R(t) – R(0) = CF
0 Iδ

t {eD + bA – jR – wR},
T(t) – T(0) = CF

0 Iδ
t {gA + jR – zT – oT},

H(t) – H(0) = CF
0 Iδ

t {uI + rD + vA + wR + zT},
E(t) – E(0) = CF

0 Iδ
t {oT}.

(11)

Taking into account the conception of the CF fractional order integral Eq. (5), we can
rewrite Eq. (11) as follows:

S(t) – S(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
–mS(t)I(t) – nS(t)D(t) – pS(t)A(t) – qS(t)R(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
–mS(s)I(s) – nS(s)D(s) – pS(s)A(s) – qS(s)R(s)

]
ds,

I(t) – I(0) =
2(1 – δ)

(2 – δ)Z(δ)
{

S(t)
[
mI(t) + nD(t) + pA(t) + qR(t)

]
–

[
aI(t) + cI(t) + uI(t)

]}

+
2δ

(2 – δ)Z(δ)

∫ t

0

{
S(s)

[
mI(s) + nD(s) + pA(s) + qR(s)

]
– I(s)(a + c + u)

}
ds,

D(t) – D(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
aI(t) – eD(t) – rD(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
aI(s) – eD(s) – rD(s)

]
ds,

A(t) – A(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
cI(t) – bA(t) – gA(t) – vA(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
cI(s) – bA(s) – gA(s) – vA(s)

]
ds, (12)
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R(t) – R(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
eD(t) + bA(t) – jR(t) – wR(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
eD(s) + bA(s) – jR(s) – wR(s)

]
ds,

T(t) – T(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
gA(t) + jR(t) – zT(t) – oT(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
gA(s) + jR(s) – zT(s) – oT(s)

]
ds,

H(t) – H(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
uI(t) + rD(t) + vA(t) + wR(t) + zT(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
uI(s) + rD(s) + vA(s) + wR(s) + zT(s)

]
ds,

E(t) – E(0) =
2(1 – δ)

(2 – δ)Z(δ)
[
oT(t)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
oT(s)

]
ds.

For convenience, we explain the following functions as kernels:

B1(t, S) = –mS(t)I(t) – nS(t)D(t) – pS(t)A(t) – qS(t)R(t),

B2(t, I) = mS(t)I(t) + nS(t)D(t) + pS(t)A(t) + qS(t)R(t) – aI(t) – cI(t) – uI(t),

B3(t, D) = aI(t) – eD(t) – rD(t),

B4(t, A) = cI(t) – bA(t) – gA(t) – vA(t),

B5(t, R) = eD(t) + bA(t) – jR(t) – wR(t),

B6(t, T) = gA(t) + jR(t) – zT(t) – oT(t),

B7(t, H) = uI(t) + rD(t) + vA(t) + wR(t) + zT(t),

B8(t, E) = oT(t).

(13)

Theorem 1 The functions B1, B2, B3, B4, B5, B6, B7, and B8 satisfy the Lipschitz condition.
Moreover, if the following inequalities hold, these functions are contractions:

0 ≤ ml2 + nl3 + pl4 + ql5 < 1,

0 ≤ ml1 + a + c + u < 1,

0 ≤ e + r < 1,

0 ≤ b + g + v < 1,

0 ≤ j + w < 1,

0 ≤ z + o < 1,

0 ≤ c1 < 1,

0 ≤ c2 < 1.

(14)
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Proof Before we start the proof, we set ‖S(t)‖ ≤ l1, ‖I(t)‖ ≤ l2, ‖D(t)‖ ≤ l3, ‖A(t)‖ ≤ l4,
‖R(t)‖ ≤ l5, ‖T(t)‖ ≤ l6, ‖H(t)‖ ≤ l7, ‖E(t)‖ ≤ l8, i.e., all of them are bounded functions.
Let us first consider B1, we take two different functions S and Ŝ, then we estimate the norm
below:

∥∥B1(t, S) – B1(t, Ŝ)
∥∥

=
∥∥–m

[
S(t) – Ŝ(t)

]
I(t) – n

[
S(t) – Ŝ(t)

]
D(t)

– p
[
S(t) – Ŝ(t)

]
A(t) – q

[
S(t) – Ŝ(t)

]
R(t)

∥∥

≤ ∥∥m
[
S(t) – Ŝ(t)

]
I(t)

∥∥ +
∥∥n

[
S(t) – Ŝ(t)

]
D(t)

∥∥

+
∥∥p

[
S(t) – Ŝ(t)

]
A(t)

∥∥ +
∥∥q

[
S(t) – Ŝ(t)

]
R(t)

∥∥

≤ [
m

∥∥I(t)
∥∥ + n

∥∥D(t)
∥∥ + p

∥∥A(t)
∥∥ + q

∥∥R(t)
∥∥]∥∥[

S(t) – Ŝ(t)
]∥∥

≤ (ml2 + nl3 + pl4 + ql5)
∥∥[

S(t) – Ŝ(t)
]∥∥

= β1
∥∥[

S(t) – Ŝ(t)
]∥∥,

(15)

where β1 = ml2 + nl3 + pl4 + ql5.
Then we get

∥
∥B1(t, S) – B1(t, Ŝ)

∥
∥ ≤ β1

∥
∥[

S(t) – Ŝ(t)
]∥∥. (16)

Therefore, we have shown that B1 satisfies the Lipschitz condition, where β1 is the Lip-
schitz constant and B1 is the Lipschitz function for S. Similarly, the other seven functions
also conform to the Lipschitz conditions given as follows:

∥∥B2(t, I) – B2(t ,̂ I)
∥∥ ≤ β2

∥∥[
I(t) – Î(t)

]∥∥,
∥∥B3(t, D) – B3(t, D̂)

∥∥ ≤ β3
∥∥[

D(t) – D̂(t)
]∥∥,

∥∥B4(t, A) – B4(t, Â)
∥∥ ≤ β4

∥∥[
A(t) – Â(t)

]∥∥,
∥∥B5(t, R) – B5(t, R̂)

∥∥ ≤ β5
∥∥[

R(t) – R̂(t)
]∥∥,

∥∥B6(t, T) – B6(t, T̂)
∥∥ ≤ β6

∥∥[
T(t) – T̂(t)

]∥∥,
∥∥B7(t, H) – B7(t, Ĥ)

∥∥ ≤ β7
∥∥[

H(t) – Ĥ(t)
]∥∥,

∥
∥B8(t, E) – B8(t, Ê)

∥
∥ ≤ β8

∥
∥[

E(t) – Ê(t)
]∥∥,

(17)

where

β2 = ml1 + a + c + u,

β3 = e + r,

β4 = b + g + v,

β5 = j + w,

β6 = z + o,

β7 = c1,

β8 = c2,

(18)
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and c1, c2 are arbitrary positive constants. Additionally, if Eq. (14) holds, these functions
are contractions. �

In view of these eight functions, substituting Eq. (13) into Eq. (12), we obtain

S(t) = S(0) +
2(1 – δ)

(2 – δ)Z(δ)
B1(t, S) +

2δ

(2 – δ)Z(δ)

∫ t

0
B1(s, S) ds,

I(t) = I(0) +
2(1 – δ)

(2 – δ)Z(δ)
B2(t, I) +

2δ

(2 – δ)Z(δ)

∫ t

0
B2(s, I) ds,

D(t) = D(0) +
2(1 – δ)

(2 – δ)Z(δ)
B3(t, D) +

2δ

(2 – δ)Z(δ)

∫ t

0
B3(s, D) ds,

A(t) = A(0) +
2(1 – δ)

(2 – δ)Z(δ)
B4(t, A) +

2δ

(2 – δ)Z(δ)

∫ t

0
B4(s, A) ds,

R(t) = R(0) +
2(1 – δ)

(2 – δ)Z(δ)
B5(t, R) +

2δ

(2 – δ)Z(δ)

∫ t

0
B5(s, R) ds,

T(t) = T(0) +
2(1 – δ)

(2 – δ)Z(δ)
B6(t, T) +

2δ

(2 – δ)Z(δ)

∫ t

0
B6(s, T) ds,

H(t) = H(0) +
2(1 – δ)

(2 – δ)Z(δ)
B7(t, H) +

2δ

(2 – δ)Z(δ)

∫ t

0
B7(s, H) ds,

E(t) = E(0) +
2(1 – δ)

(2 – δ)Z(δ)
B8(t, E) +

2δ

(2 – δ)Z(δ)

∫ t

0
B8(s, E) ds.

(19)

Now we provide these recursive formulas:

Sn(t) =
2(1 – δ)

(2 – δ)Z(δ)
B1(t, Sn–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B1(s, Sn–1) ds,

In(t) =
2(1 – δ)

(2 – δ)Z(δ)
B2(t, In–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B2(s, In–1) ds,

Dn(t) =
2(1 – δ)

(2 – δ)Z(δ)
B3(t, Dn–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B3(s, Dn–1) ds,

An(t) =
2(1 – δ)

(2 – δ)Z(δ)
B4(t, An–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B4(s, An–1) ds,

Rn(t) =
2(1 – δ)

(2 – δ)Z(δ)
B5(t, Rn–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B5(s, Rn–1) ds,

Tn(t) =
2(1 – δ)

(2 – δ)Z(δ)
B6(t, Tn–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B6(s, Tn–1) ds,

Hn(t) =
2(1 – δ)

(2 – δ)Z(δ)
B7(t, Hn–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B7(s, Hn–1) ds,

En(t) =
2(1 – δ)

(2 – δ)Z(δ)
B8(t, En–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B8(s, En–1) ds,

(20)

where these initial values are included

S0(t) = S(0),

I0(t) = I(0),
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D0(t) = D(0),

A0(t) = A(0), (21)

R0(t) = R(0),

T0(t) = T(0),

H0(t) = H(0),

E0(t) = E(0).

In terms of Eq. (20), let us take the difference between two adjacent terms as follows:

λn(t) = Sn(t) – Sn–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B1(t, Sn–1) – B1(t, Sn–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B1(s, Sn–1) – B1(s, Sn–2)

]
ds,

ηn(t) = In(t) – In–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B2(t, In–1) – B2(t, In–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B2(s, In–1) – B2(s, In–2)

]
ds,

μn(t) = Dn(t) – Dn–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B3(t, Dn–1) – B3(t, Dn–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B3(s, Dn–1) – B3(s, Dn–2)

]
ds,

εn(t) = An(t) – An–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B4(t, An–1) – B4(t, An–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B4(s, An–1) – B4(s, An–2)

]
ds, (22)

εn(t) = Rn(t) – Rn–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B5(t, Rn–1) – B5(t, Rn–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B5(s, Rn–1) – B5(s, Rn–2)

]
ds,

ζn(t) = Tn(t) – Tn–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B6(t, Tn–1) – B6(t, Tn–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B6(s, Tn–1) – B6(s, Tn–2)

]
ds,
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ιn(t) = Hn(t) – Hn–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B7(t, Hn–1) – B7(t, Hn–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B7(s, Hn–1) – B7(s, Hn–2)

]
ds,

κn(t) = En(t) – En–1(t)

=
2(1 – δ)

(2 – δ)Z(δ)
[
B8(t, En–1) – B8(t, En–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B8(s, En–1) – B8(s, En–2)

]
ds.

We can easily find from Eq. (22) that

n∑

i=0

λi(t) = Sn(t),
n∑

i=0

ηi(t) = In(t),

n∑

i=0

μi(t) = Dn(t),
n∑

i=0

εi(t) = An(t),

n∑

i=0

εi(t) = Rn(t),
n∑

i=0

ζi(t) = Tn(t),

n∑

i=0

ιi(t) = Hn(t),
n∑

i=0

κi(t) = En(t).

(23)

Let us assess the value of λn(t). Taking the norm for the first formula in Eq. (22), we can
get

∥
∥λn(t)

∥
∥ =

∥
∥Sn(t) – Sn–1(t)

∥
∥

=
∥
∥∥
∥

2(1 – δ)
(2 – δ)Z(δ)

[
B1(t, Sn–1) – B1(t, Sn–2)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B1(s, Sn–1) – B1(s, Sn–2)

]
ds

∥∥
∥∥

≤ 2(1 – δ)
(2 – δ)Z(δ)

∥∥[
B1(t, Sn–1) – B1(t, Sn–2)

]∥∥

+
2δ

(2 – δ)Z(δ)

∥
∥∥
∥

∫ t

0

[
B1(s, Sn–1) – B1(s, Sn–2)

]
ds

∥
∥∥
∥

≤ 2(1 – δ)
(2 – δ)Z(δ)

β1
∥
∥Sn–1(t) – Sn–2(t)

∥
∥

+
2δ

(2 – δ)Z(δ)
β1

∫ t

0

∥∥Sn–1(s) – Sn–2(s)
∥∥ds

=
2(1 – δ)

(2 – δ)Z(δ)
β1

∥
∥λn–1(t)

∥
∥ +

2δ

(2 – δ)Z(δ)
β1

∫ t

0

∥
∥λn–1(s)

∥
∥ds,

(24)
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i.e.,

∥∥λn(t)
∥∥ ≤ 2(1 – δ)

(2 – δ)Z(δ)
β1

∥∥λn–1(t)
∥∥ +

2δ

(2 – δ)Z(δ)
β1

∫ t

0

∥∥λn–1(s)
∥∥ds. (25)

We propose the following theorem on consideration of the formulas above.

Theorem 2 The fractional order SIDARTHE mathematics model for COVID-19 has solu-
tions if there is a real number t0 such that

2(1 – δ)
(2 – δ)Z(δ)

βi +
2δ

(2 – δ)Z(δ)
βit0 < 1, where i = 1, 2, . . . , 8. (26)

Proof In the previous part of this article, we have demonstrated that the kernels satisfy
the Lipschitz condition, and we have assumed that these functions S(t), I(t), D(t), A(t),
R(t), T(t), H(t), E(t) are bounded. Considering Eq. (25) and Eq. (26), then applying the
recursive method subsequently, we can infer that

∥∥λn(t)
∥∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β1

)
+

(
2δ

(2 – δ)Z(δ)
β1t

)]n∥∥S0(t)
∥∥

=
[(

2(1 – δ)
(2 – δ)Z(δ)

β1

)
+

(
2δ

(2 – δ)Z(δ)
β1t

)]n∥
∥S(0)

∥
∥.

(27)

Similarly, the other seven inequalities can be deduced as follows:

∥
∥ηn(t)

∥
∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β2

)
+

(
2δ

(2 – δ)Z(δ)
β2t

)]n∥
∥I(0)

∥
∥,

∥∥μn(t)
∥∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β3

)
+

(
2δ

(2 – δ)Z(δ)
β3t

)]n∥∥D(0)
∥∥,

∥∥εn(t)
∥∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β4

)
+

(
2δ

(2 – δ)Z(δ)
β4t

)]n∥∥A(0)
∥∥,

∥
∥εn(t)

∥
∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β5

)
+

(
2δ

(2 – δ)Z(δ)
β5t

)]n∥
∥R(0)

∥
∥,

∥
∥ζn(t)

∥
∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β6

)
+

(
2δ

(2 – δ)Z(δ)
β6t

)]n∥
∥T(0)

∥
∥,

∥
∥ιn(t)

∥
∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β7

)
+

(
2δ

(2 – δ)Z(δ)
β7t

)]n∥
∥H(0)

∥
∥,

∥∥κn(t)
∥∥ ≤

[(
2(1 – δ)

(2 – δ)Z(δ)
β8

)
+

(
2δ

(2 – δ)Z(δ)
β8t

)]n∥∥E(0)
∥∥.

(28)

Equations (27) and (28) show the continuity and existence of the solution of the model. �

Next, we aim to find out a solution of Eq. (9). For this purpose, let us assume that Eq. (19)
is an answer. We note that

S(t) – S(0) =
2(1 – δ)

(2 – δ)Z(δ)
B1(t, S) +

2δ

(2 – δ)Z(δ)

∫ t

0
B1(s, S) ds, (29)
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Sn(t) =
2(1 – δ)

(2 – δ)Z(δ)
B1(t, Sn–1) +

2δ

(2 – δ)Z(δ)

∫ t

0
B1(s, Sn–1) ds. (30)

Supposing that

S(t) – S(0) = Sn(t) + ξn(t), (31)

we will get

ξn(t) =
2(1 – δ)

(2 – δ)Z(δ)
[
B1(t, S) – B1(t, Sn–1)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B1(s, S) – B1(s, Sn–1)

]
ds.

(32)

Taking the norm for Eq. (32) and applying the triangle inequality, we can get

∥
∥ξn(t)

∥
∥ ≤ 2(1 – δ)

(2 – δ)Z(δ)
∥
∥[

B1(t, S) – B1(t, Sn–1)
]∥∥

+
2δ

(2 – δ)Z(δ)

∫ t

0

∥
∥[

B1(s, S) – B1(s, Sn–1)
]∥∥ds

≤ 2(1 – δ)
(2 – δ)Z(δ)

β1‖S – Sn–1‖ +
2δ

(2 – δ)Z(δ)
β1‖S – Sn–1‖t

=
[

2(1 – δ)
(2 – δ)Z(δ)

β1 +
2δ

(2 – δ)Z(δ)
β1t

]
‖S – Sn–1‖,

(33)

i.e.,

∥∥ξn(t)
∥∥ ≤

[
2(1 – δ)

(2 – δ)Z(δ)
β1 +

2δ

(2 – δ)Z(δ)
β1t

]
‖S – Sn–1‖, (34)

and we have

‖S – Sn–1‖ ≤
[

2(1 – δ)
(2 – δ)Z(δ)

β1 +
2δ

(2 – δ)Z(δ)
β1t

]
‖S – Sn–2‖. (35)

Therefore, using this process recursively, we can deduce that

∥
∥ξn(t)

∥
∥ ≤

[
2(1 – δ)

(2 – δ)Z(δ)
β1 +

2δ

(2 – δ)Z(δ)
β1t

]
‖S – Sn–1‖

≤
[

2(1 – δ)
(2 – δ)Z(δ)

β1 +
2δ

(2 – δ)Z(δ)
β1t

]

·
[

2(1 – δ)
(2 – δ)Z(δ)

β1 +
2δ

(2 – δ)Z(δ)
β1t

]
‖S – Sn–2‖

≤ · · ·

≤
[

2(1 – δ)
(2 – δ)Z(δ)

β1 +
2δ

(2 – δ)Z(δ)
β1t

]n

‖S – S0‖

≤
[

2(1 – δ)
(2 – δ)Z(δ)

β1 +
2δ

(2 – δ)Z(δ)
β1t

]n+1

‖S‖.

(36)
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It follows from Eq. (36) that

∥∥ξn(t)
∥∥ ≤

[
2(1 – δ)

(2 – δ)Z(δ)
β1 +

2δ

(2 – δ)Z(δ)
β1t

]n+1

· l1
(‖S‖ ≤ l1

)
. (37)

Hence, we have the following formula at t0:

∥
∥ξn(t)

∥
∥ ≤

[
2(1 – δ)

(2 – δ)Z(δ)
β1 +

2δ

(2 – δ)Z(δ)
β1t0

]n+1

· l1. (38)

We have 2(1–δ)
(2–δ)Z(δ)β1 + 2δ

(2–δ)Z(δ)β1t0 < 1 in Theorem 2, making n → ∞, the following formula
will be concluded:

∥∥ξn(t)
∥∥ → 0 (n → ∞). (39)

Then we receive

S(t) – S(0) =
2(1 – δ)

(2 – δ)Z(δ)
B1(t, S) +

2δ

(2 – δ)Z(δ)

∫ t

0
B1(s, S) ds. (40)

In other words, the solution is

S(t) = S(0) +
2(1 – δ)

(2 – δ)Z(δ)
B1(t, S) +

2δ

(2 – δ)Z(δ)

∫ t

0
B1(s, S) ds. (41)

Similarly, if we take

I(t) – I(0) = In(t) + πn(t),

D(t) – D(0) = Dn(t) + �n(t),

A(t) – A(0) = An(t) + �n(t),

R(t) – R(0) = Rn(t) + ςn(t),

T(t) – T(0) = Tn(t) + τn(t),

H(t) – H(0) = Hn(t) + φn(t),

E(t) – E(0) = En(t) + χn(t),

(42)

in the same way, if we take n → ∞, then we can get

∥∥πn(t)
∥∥ → 0,

∥∥�n(t)
∥∥ → 0,

∥∥�n(t)
∥∥ → 0,

∥∥ςn(t)
∥∥ → 0,

∥∥τn(t)
∥∥ → 0,

∥∥φn(t)
∥∥ → 0,

∥∥χn(t)
∥∥ → 0.

(43)
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Finally, we get the other seven formulas of the solution:

I(t) = I(0) +
2(1 – δ)

(2 – δ)Z(δ)
B2(t, I) +

2δ

(2 – δ)Z(δ)

∫ t

0
B2(s, I) ds,

D(t) = D(0) +
2(1 – δ)

(2 – δ)Z(δ)
B3(t, D) +

2δ

(2 – δ)Z(δ)

∫ t

0
B3(s, D) ds,

A(t) = A(0) +
2(1 – δ)

(2 – δ)Z(δ)
B4(t, A) +

2δ

(2 – δ)Z(δ)

∫ t

0
B4(s, A) ds,

R(t) = R(0) +
2(1 – δ)

(2 – δ)Z(δ)
B5(t, R) +

2δ

(2 – δ)Z(δ)

∫ t

0
B5(s, R) ds,

T(t) = T(0) +
2(1 – δ)

(2 – δ)Z(δ)
B6(t, T) +

2δ

(2 – δ)Z(δ)

∫ t

0
B6(s, T) ds,

H(t) = H(0) +
2(1 – δ)

(2 – δ)Z(δ)
B7(t, H) +

2δ

(2 – δ)Z(δ)

∫ t

0
B7(s, H) ds,

E(t) = E(0) +
2(1 – δ)

(2 – δ)Z(δ)
B8(t, E) +

2δ

(2 – δ)Z(δ)

∫ t

0
B8(s, E) ds.

(44)

Namely, Eq. (19) is one solution of the system. That is the end of the proof of existence.
Now, let us consider the uniqueness, we provide the following theorem primarily.

Theorem 3 The system Eq. (9) has only solution if the following inequality is satisfied:

1 –
2(1 – δ)

(2 – δ)Z(δ)
βi –

2δ

(2 – δ)Z(δ)
βit > 0, where i = 1, 2, . . . , 8. (45)

Proof Let us consider the solution S(t), supposing that there is another solution S̃(t), then
we have

S(t) – S̃(t) =
2(1 – δ)

(2 – δ)Z(δ)
[
B1(t, S) – B1(t, S̃)

]

+
2δ

(2 – δ)Z(δ)

∫ t

0

[
B1(s, S) – B1(s, S̃)

]
ds.

(46)

We take the norm on both sides of Eq. (46), and taking into account the triangle inequality,
we have

∥∥S(t) – S̃(t)
∥∥ ≤ 2(1 – δ)

(2 – δ)Z(δ)
∥∥[

B1(t, S) – B1(t, S̃)
]∥∥

+
2δ

(2 – δ)Z(δ)

∫ t

0

∥∥[
B1(s, S) – B1(s, S̃)

]∥∥ds

≤ 2(1 – δ)
(2 – δ)Z(δ)

β1‖S – S̃‖

+
2δ

(2 – δ)Z(δ)
β1t‖S – S̃‖.

(47)

Then we can get

‖S – S̃‖ ≤ 0 (48)
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if

1 –
2(1 – δ)

(2 – δ)Z(δ)
β1 –

2δ

(2 – δ)Z(δ)
β1t > 0. (49)

Then we can deduce that S = S̃, i.e., the solution S is unique.
Similarly, if

1 –
2(1 – δ)

(2 – δ)Z(δ)
βi –

2δ

(2 – δ)Z(δ)
βit > 0, where i = 2, 3, . . . , 8, (50)

employing the same process, we can infer that

I = Ĩ,

D = D̃,

A = Ã,

R = R̃,

T = T̃ ,

H = H̃ ,

E = Ẽ.

(51)

�

Hence, the fractional SIDARTHE mathematics model Eq. (9) has a unique solution, the
proof of the uniqueness is finished.

5 Numerical simulation
5.1 Numerical method
In the current section, we study several numerical simulations to observe the effects of the
order δ and other parameters in the SIDARTHE mathematics model. In the last several
years, many numerical techniques have been investigated and used to simulate the epi-
demic models. So, before we start our experiment, it is necessary to introduce one famous
iterative scheme, named the three-step Adams–Bashforth scheme, which was proposed
by Atangana and Owolabi [44]. With the help of it, our numerical scheme can be inferred.

Let us pay our attention to the following differential equation with the CF operator:

CF
0 Dδ

t
(
ν(t)

)
= P

(
t,ν(t)

)
, 0 < δ < 1. (52)

Here we use Caputo and Fabrizio’s definition instead of the definition proposed by Nieto
and Losada [19, 45, 46]. Applying the fractional order integral to the above equation, we
can obtain

ν(t) – ν(0) =
1 – δ

Z(δ)
P
(
t,ν(t)

)
+

δ

Z(δ)

∫ t

0
P
(
s,ν(s)

)
ds. (53)

Discretizing the interval of time [0, t] with the step size h, we can get a sequence, that is,
t0 = 0, tk+1 = tk + h, k = 0, 1, . . . , N – 1, where N = t

h . If we take t = tk+1 and t = tk , then the
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following equation will be inferred:

ν(tk+1) – ν(0) =
1 – δ

Z(δ)
P
(
tk+1,ν(tk+1)

)
+

δ

Z(δ)

∫ tk+1

0
P
(
s,ν(s)

)
ds (54)

and

ν(tk) – ν(0) =
1 – δ

Z(δ)
P
(
tk ,ν(tk)

)
+

δ

Z(δ)

∫ tk

0
P
(
s,ν(s)

)
ds. (55)

From Eq. (54) and Eq. (55) we can infer that

ν(tk+1) – ν(tk) =
1 – δ

Z(δ)
[
P
(
tk+1,ν(tk+1)

)
– P

(
tk ,ν(tk)

)]
+

δ

Z(δ)

∫ tk+1

tk

P
(
s,ν(s)

)
ds. (56)

According to Atangana and Owolabi’s opinion, the integral in Eq. (56) can be discretized
with the help of the Lagrange interpolating method, i.e.,

∫ tk+1

tk

P
(
s,ν(s)

)
ds =

23h
12

P
(
tk ,ν(tk)

)
–

16h
12

P
(
tk–1,ν(tk–1)

)
+

5h
12

P
(
tk–2,ν(tk–2)

)
. (57)

Substituting Eq. (57) into Eq. (56), the following iterative scheme can be deduced readily:

νk+1 = νk +
(

1 – δ

Z(δ)
+

23δh
12Z(δ)

)
P(tk ,νk) –

(
1 – δ

Z(δ)
+

16δh
12Z(δ)

)
P(tk–1,νk–1)

+
(

5δh
12Z(δ)

)
P(tk–2,νk–2),

(58)

where νk+1 = ν(tk+1), νk = ν(tk), νk–1 = ν(tk–1), νk–2 = ν(tk–2).
Now we apply this method to our model, writing the system Eq. (9) into vector form as

follows:

CF
0 Dδ

t
(
ν(t)

)
= P

(
t,ν(t)

)
, 0 < δ < 1, (59)

where

ν(t) =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

S(t)
I(t)
D(t)
A(t)
R(t)
T(t)
H(t)
E(t)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, P
(
t,ν(t)

)
=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

B1(t, S)
B2(t, I)
B3(t, D)
B4(t, A)
B5(t, R)
B6(t, T)
B7(t, H)
B8(t, E)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (60)
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Table 2 The corresponding value for each parameter

Parameter Value Parameter Value Initial condition Value

m 0.57 g 0.0171 S(0) 1 – 223
N

n 0.0114 j 0.0274 I(0) 200
N

p 0.456 o 0.01 D(0) 20
N

q 0.0114 u 0.0342 A(0) 1
N

a 0.171 v 0.0171 R(0) 2
N

b 0.3705 w 0.0171 T (0) 0
c 0.1254 r 0.0342 H(0) 0
e 0.1254 z 0.0171 E(0) 0

Figure 1 Plot for all state variables in Eq. (9) under ode45

Assuming ν(0) = [S(t0), I(t0), D(t0), A(t0), R(t0), T(t0), H(t0), E(t0)]T , using the process
used before, the final recursion formula can be obtained as follows:

νk+1 = νk +
(

1 – δ

Z(δ)
+

23δh
12Z(δ)

)
P(tk ,νk) –

(
1 – δ

Z(δ)
+

16δh
12Z(δ)

)
P(tk–1,νk–1)

+
(

5δh
12Z(δ)

)
P(tk–2,νk–2).

(61)

Now we can begin to proceed our experiment, all the programs and code are based on
MATLAB 2018a. The total population is taken to be one hundred million, we expressed
it by the capital letter N. According to the real statistical data in Italy [37], the initial con-
ditions and parameters are listed in Table 2.

5.2 Discussion
The purpose of the numerical simulation is to examine the influence of order and pa-
rameter change on the dynamic action of the system. For this reason, we use the iterative
scheme of Caputo–Fabrizio derivative derived above to make Figs. 1 to 8. Figures 1 to 5
are the change curves of the eight state variables of the system when using ode45 and the
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Figure 2 Plot for all state variables in Eq. (9) when δ = 1

Figure 3 Plot for all state variables in Eq. (9) when δ = 0.8

order is 1, 0.8, 0.6, and 0.4, respectively. From the figures, we can see that each variable
converges to its equilibrium point after a certain time, but the time is slightly different. Fig-
ure 6 is a comparison diagram of various variables under different orders. It can be seen
from the photos that the system state depends on the fractional order. When the order is
1, the model shows an integer order. In addition, for different orders, each state variable
shows the same change trend; however, their equilibrium points are slightly different, and
the time to converge to the equilibrium point is also slightly different. With the increase
of the order, the model converges to the equilibrium point faster, and with the drop of the
order, the amounts of infected people decrease more obviously; that is to say, the frac-
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Figure 4 Plot for all state variables in Eq. (9) when δ = 0.6

Figure 5 Plot for all state variables in Eq. (9) when δ = 0.4

tional order operator shows the good properties that the integer order operator does not
have, and it can predict the model more accurately. In addition, we can see that with the
growth of time, the number of four types of infected people and one type of critical peo-
ple will be infinitely close to zero, and the whole system will only be left with vulnerable
people, cured people, and dead people, which means that the epidemic will slowly end;
it is similar to the conclusion reached by Giordano [37] using the integer order model.
At the same time, our theoretical results are also verified. Figure 7 is a comparison plot
under different probabilities of the conversion of susceptible persons to infected persons.
From the diagrams, we can see that the different infection rates have a greater impact on
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Figure 6 The behavior for each state variable in Eq. (9) when δ = 1, 0.8, 0.6, 0.4, respectively

the model. With the decrease of the infection rate, the number of susceptible persons will
increase, which means that fewer people will be infected with diseases. At the same time,
the peak values of the four classes of infected human beings and the first type of critical
ones will drop sharply, and the time to reach the peak values will also be delayed. Figure 8
is a diagram under different detection probabilities of asymptomatic infected persons. We
can see from the subplots that the dynamic behavior is similar to Fig. 7 with changing the
parameter a.
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Figure 7 The behavior for each state variable in Eq. (9) whenm = 0.7, 0.6, 0.5, and 0.4, respectively

Tables 3 to 10 show the comparison between the integer derivative and the CF deriva-
tive. It follows from these tables that compared with the standard derivative, the Caputo–
Fabrizio derivative has new properties, and the change of order has a more obvious im-
pact on the model results. Therefore, we conclude that the quantity of infected men will
be significantly diminished by formulating protective measures, such as wearing masks,
limiting travel, maintaining social distancing, increasing the screening of people in close
contact, and isolating infected persons. However, there are some potential limitations in
our model. Like most infectious disease modeling studies of this type, our approach is
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Figure 8 The behavior for each state variable in Eq. (9) when a = 0.3, 0.25, 0.2, and 0.15, respectively

based on some reasonable assumptions, but in a real-world scenario, the progress of the
epidemic will largely depend on the implementation and timing of the measures described
above. Moreover, because the simulation is based on real data on infections in Italy, the
classification of populations in outbreaks in other countries may be different. The differ-
ent measures of different countries may cause small fluctuations in model parameters,
resulting in large differences in simulation results.
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6 Conclusion
In this paper, the SIDARTHE fractional order epidemic model with CF fractional oper-
ator is investigated. Firstly, by taking advantage of the Banach fixed point theorem, we
researched the existence and uniqueness of the system’s solution. In an effort to gain the
numerical solution of the system, the three-step Adams–Bashforth scheme is exploited to
infer the iterative formula. Then we compared the dynamic behavior of the model under
different orders and parameters; moreover, their impacts on the model are discussed. The
research shows that the Caputo–Fabrizio fractional order operator has positive memory
effect, and we can observe the essence of the model more accurately with the help of it,
which is unobtainable by the integer order operator. Eventually, we concluded that reduc-
ing the infection rate and increasing the detection frequency of asymptomatic infected
persons can effectively prevent the spread of infectious diseases, which has important ref-
erence significance for policymakers. In future work, we will try to introduce algorithms
with higher accuracy and improve the model. Some groups of people may be classified
into one category, or new groups of people may be introduced to improve the accuracy
of the model’s description of actual problems. In addition, incorporating real data sets of
COVID-19 epidemiology into the model will help improve the applicability of the model.

Appendix
The differences between the standard and the Caputo–Fabrizio fractional derivatives of
the eight state variables in this paper are listed in Tables 3–10.

Table 3 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for S(t)

t 0 20 40 60 80

ode45 1 0.9975 0.4845 0.1501 0.1329
CFDδ (δ = 0.8) 1 0.9990 0.8165 0.2066 0.1482

Table 4 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for I(t)

t 0 20 40 60 80

ode45 2 ∗ 10–6 0.0012 0.1620 0.0113 0.0015
CFDδ (δ = 0.8) 2 ∗ 10–6 4.95 ∗ 10–4 0.0817 0.0592 0.0055

Table 5 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for D(t)

t 0 20 40 60 80

ode45 2 ∗ 10–7 4.31 ∗ 10–4 0.1021 0.0419 0.0043
CFDδ (δ = 0.8) 2 ∗ 10–7 1.74 ∗ 10–4 0.0338 0.1046 0.0.0217
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Table 6 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for A(t)

t 0 20 40 60 80

ode45 1 ∗ 10–8 2.09 ∗ 10–4 0.0422 0.0058 5.45 ∗ 10–4
CFDδ (δ = 0.8) 1 ∗ 10–8 8.51 ∗ 10–5 0.0158 0.0261 0.0026

Table 7 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for R(t)

t 0 20 40 60 80

ode45 2 ∗ 10–8 3.56 ∗ 10–4 0.1246 0.3157 0.1611
CFDδ (δ = 0.8) 2 ∗ 10–8 1.44 ∗ 10–4 0.0311 0.3153 0.2652

Table 8 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for T (t)

t 0 20 40 60 80

ode45 0 3.77 ∗ 10–5 0.0163 0.1401 0.1793
CFDδ (δ = 0.8) 0 1.51 ∗ 10–5 0.0035 0.0775 0.1617

Table 9 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for H(t)

t 0 20 40 60 80

ode45 0 2.05 ∗ 10–4 0.0676 0.3173 0.4708
CFDδ (δ = 0.8) 0 8.28 ∗ 10–5 0.0175 0.2054 0.3695

Table 10 Distinction between the conventional derivative and the Caputo–Fabrizio fractional
derivative for E(t)

t 0 20 40 60 80

ode45 0 1.72 ∗ 10–6 6.11 ∗ 10–4 0.0159 0.0497
CFDδ (δ = 0.8) 0 4.43 ∗ 10–7 1.13 ∗ 10–4 0.0053 0.0225
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