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Abstract
Breast cancer is the most common type of cancer in women. Chemotherapy is
primarily used for patients with stage 2 to 4 breast cancer. Most chemotherapy drugs
are effective at destroying rapidly growing and proliferating cancer cells. However,
drugs also damage normal, rapidly growing cells, which can lead to serious side
effects. Breast cancer treatment with chemotherapy can affect heart health. Side
effects of chemotherapy on the heart are called cardiotoxicity. Therefore, we have
constructed a mathematical model from the breast cancer patient population. In this
article, we utilize the Caputo–Fabrizio fractional order derivative for mathematical
modeling of the breast cancer stages in chemotherapy patients. The use of
Caputo–Fabrizio fractional derivative provides a more valuable insight into the
complexity of the breast cancer model. The stability of the fractional order model is
also proven by the P-stable approach of the fixed point theorem. Also, the numerical
simulations are performed via Laplace Adomian decomposition method to establish
the dependence of the breast cancer dynamics on the order of the fractional
derivatives. Based on the geometric results in the figures, we can conclude that the
magnitude of the fractional order has a considerable impact on the days, which the
maximum or minimum of the system solutions are reached, with a shift in the time at
which this happens as the fractional order decreases from 1. However, it is obvious
that the solutions of Caputo–Fabrizio fractional model approach the relevant results
of the classical integer order system, when the fractional order approaches to 1.
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1 Introduction
Cancer is one of the leading causes of death in many countries around the world. Cancer
development is a gradual process through which normal body cells acquire mutations that
allow them to escape their normal function in tissue and survive on their own. Breast
cancer is the most common type of cancer in women.

The stages of cancer determine the severity of the cancer. The method used by doctors
to describe the stage of the cancer is the TNM (tumor, node, metastasis) system. This

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-024-03800-z
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-024-03800-z&domain=pdf
mailto:nasrineghbali@gmail.com
mailto:eghbali@uma.ac.ir
mailto:nosrati@ubonab.ac.ir
http://creativecommons.org/licenses/by/4.0/


Mohammadpoor et al. Advances in Continuous and Discrete Models          (2024) 2024:6 Page 2 of 19

system uses three criteria to determine the cancer stage, namely tumor size, spread to
lymph nodes, and spread to other organs (metastasis). There are different types of can-
cer treatment. These are surgery, radiotherapy, hormone therapy, targeted therapy, and
chemotherapy. This cancer treatment is used to kill cancer cells, remove cancer cells, or
prevent cancer cells from receiving cell division signals. Chemotherapy is the most com-
monly used cancer treatment.

Chemotherapy not only has a positive effect on the patient’s recovery, but is also harm-
ful to their health. Treating breast cancer with chemotherapy can cause unwanted side
effects on the heart called cardiotoxicity. The cardiotoxicity of chemotherapy has infected
patients from children to adults for 35 years [1]. Common cardiotoxic chemotherapy reg-
imens include anthracycline and trastuzumab. Complications of oncological treatment
with anthracyclines and trastuzumab have dramatic clinical consequences that can lead
to heart failure. Prevention of cardiotoxicity due to chemotherapy remains a challenge for
cardiologists and cancer experts to date.

Mathematical modeling can be used to qualify the dynamics of various diseases in na-
ture, such as tumor growth [2], cancer [3, 4], behavior of two-trophic plant-herbivore [5],
COVID-19 epidemic [6], phytoplankton-zooplankton model in phytoplankton population
[7], etc. However, mathematical models and computer simulations can help monitor tu-
mor growth and cell distribution and observe genetic mutations that lead to aggressive
growth and metastasis. On the other hand, finding the analytical and numerical solutions
of this models and stability analysis of them has attracted the attention of many researchers
[8–10].

Today, fractional calculus describes many complex biological systems by using differ-
ent definitions of fractional operators, such as the transmission of nerve impulses [11],
modeling of two avian influenza epidemic by two fractal-fractional derivatives [12], the
behavior of immune and tumor cells in immunogenetic tumor model with nonsingular
fractional derivative [13], the outbreak of dengue fever [14], the modeling and optimal
control of diabetes and tuberculosis coexistence [15], optimal control of a tumor-immune
surveillance with nonsingular derivative operator [16], etc. Although these studies pro-
duced better results than the classical integer order models, satisfactory precision may
not have been achieved over the entire period due to the appearance of a singularity in the
definition of traditional fractional derivatives, the fact that makes these operators useful
for describing nonlocal dynamics [17] impractical. To overcome this difficulty, two new
nonsingular fractional derivatives in [18] and [19] were proposed.

In this study, we generalize the classical (integer order) system to a novel fractional order
system based on the Caputo–Fabrizio (C F ) derivative, a new fractional operator with a
nonsingular exponential kernel. This fractional order derivative has been used for model-
ing the anthrax disease in animals [20], the epidemic of childhood diseases [21], etc. To the
best of authors’ knowledge, the aforementioned fractional model for the breast cancer is
introduced for the first time in literature. In contrast to the previous works, this study dis-
cusses mathematical models at the population level of people with cancer. We construct
the mathematical model analysis of breast cancer stages with side effects on the heart in
chemotherapy patients.

Comparative results between this method and the classic method [22] verify the ef-
fectiveness of the proposed fractional architecture compared to the pre-existent classical
model.
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Dynamic analysis performed on systems of equations includes calculation of equilib-
rium points and stability analysis. Investigation of equilibrium and stability points was
used to determine the dynamics of the five populations over time. In analyzing the stabil-
ity of equilibrium points, we used the Routh–Hurwitz criterion [23].

The Laplace Adomian decomposition method (LADM) is a combination of Laplace
transform and the Adomian decomposition method, which is a systematic and powerful
tool to achieve the semi-analytical solutions for the fractional order equations involving
nonsingular kernel. This approach is employed to obtain the semi-analytical solution of a
system of differential equations describing a disease in [24–27] etc. Motivated by this, in
this research we solve the fractional order of the breast cancer by LADM.

This paper is structured as follows. Section 2 is devoted to some preliminaries and defi-
nitions of Caputo–Fabrizio fractional order operators. In Sect. 3, we formulate the math-
ematical model of breast cancer in the C F fractional framework. By using the LADM,
the semi-analytical solutions of the proposed fractional model are provided in Sect. 4. In
Sect. 5, the stability of the system is analyzed using the Sumudu transform and the itera-
tion method. In Sect. 6, with the help of available data, we perform numerical simulations.
Finally, conclusions are summarized in Sect. 7.

2 Preliminaries
In this section we present some definitions and properties of fractional derivatives that
will be helpful throughout the article.

Definition 2.1 Assume that α ∈ (n – 1, n] so that n = [α] + 1. For a function w̃ ∈
ACn

R
([0, +8)), the fractional derivative of Caputo type is given by

C Dα
t
[
ũ(t)

]
=

∫ t

0
ũn(ζ )

(t – ζ )n–α–1

�(n – α)
dζ ,

provided that the integral is finite-valued.

Definition 2.2 [18] Let ũ ∈ H1(a, b), b > a, and α ∈ [0, 1]. Then the Caputo–Fabrizio
derivative is defined as follows:

CFDα
t
[
ũ(t)

]
=

M (α)
1 – α

∫ t

a
ũ′(ζ ) exp

[
–α

t – ζ

1 – α

]
dζ , (1)

where M (α) indicates the normalization of the function satisfying the condition M (0) =
M (1) = 1. If ũ /∈ H1(a, b), then

CFDα
t
[
ũ(t)

]
=

M (α)
1 – α

∫ t

a

(
ũ(t) – ũ(ζ )

)
exp

[
–α

t – ζ

1 – α

]
dζ . (2)

Definition 2.3 [28] Let 0 < α < 1. The integral of the fractional order α for a function ũ(t)
is defined as follows:

CF Iα
t
[
ũ(t)

]
=

2(1 – α)
(2 – α)M (α)

ũ(t) +
2α

(2 – α)M (α)

∫ t

0
ũ(ζ ) dζ , t ≥ 0. (3)
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Considering M (α) = 2
2–α

, the authors in [28] give the new C F fractional derivative of
order 0 < α < 1, which is defined as follows:

CFDα
t
[
ũ(t)

]
=

1
1 – α

∫ t

a
ũ′(s) exp

[
–α

t – ζ

1 – α

]
dζ . (4)

Lemma 2.1 [29] The Laplace transform of the C F fractional derivative is given as follows:

L
[
CFDα

t ũ(t)
]
(ζ ) =

sũ(t) – ũ(0)
ζ + α(1 – ζ )

. (5)

Definition 2.4 [29] The Sumudu transform of the fractional C F -derivative for ũ is de-
fined by

ST
[
CFDα

t
]
(ζ ) = M (α)

ST [ũ(t)] – ũ(0)
ζ + α(1 – ζ )

. (6)

3 Model formulation of breast cancer stages
The patients are classified into four subpopulations of stage 1 to stage 4. Changes in popu-
lation dynamics from these subpopulations are depicted in a diagram called the compart-
ment diagram, which is drawn in Fig. 1. The model was constructed from five compart-
ments representing subpopulations of the breast cancer patients. Each subpopulation is
represented by variables A, B, C, D, and E. Subpopulation A represents patients with Duc-
tal Carcinoma In Situ cancer, stages 1, 2A, and 2B. Subpopulation B represents stage 3A
and 3B cancer patients. Subpopulation C expresses the cancer patients of stage 4. Subpop-
ulation D indicates the cancer patients with disease-free conditions after chemotherapy.

Figure 1 Compartment diagram of breast cancer in people population
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In disease-free conditions, cancer is no longer seen by observation. Subpopulation E ex-
presses cancer patients who have cardiotoxicity. The compartment diagram is shown in
Fig. 1. The breast cancer stages model is introduced by the following system [22]:

dA
dt

= ð
∗
1 – μADA – μABA,

dB
dt

= ð
∗
2 + μABA + μDBD – μBDB – μBCB – μBEB – ξ̂2B,

dC
dt

= ð
∗
3 + μBCB + μDCD – μCDC – μCEC – ξ̂3C,

dD
dt

= μADA + μBDB + μCDC – μDBD – μDCD – μDED,

dE
dt

= μDED + μCEC + μBEB – ξ̂1E. (7)

Stages 1 and 2 of the cancer patients were assigned to a subpopulation A with rate θ1.
Patients in subpopulation A who have received chemotherapy have two options, namely
recovery 4 (disease-free) at the rate μAD or worse at the rate μAB. The patients who were
treated in hospital for the first time mostly suffered from stage 3 cancer and were therefore
attributed to subpopulation B with rate θ2. Patients in subpopulation B could die of cancer
at a rate of γ2.

Patients belonging to this subpopulation may become disease free after chemotherapy
at the rate μBD and also deteriorate at the rate μBC . Subpopulation B with more intensive
chemotherapy than subpopulation A may cause patients to experience cardiotoxicity at
the μBE rate.

Patients receiving treatment for the first time may also be included in subpopulation
C because the cancer has progressed to metastasis or stage 4. During this disease, it is
unlikely that chemotherapy will cure the cancer, so the rate toward a disease-free rate is
expected to be μCD, being the lowest compared to μAD and μBD. Conversely, the rate μCE

towards cardio toxicity is considered to be of great value since the patient is undergoing
very intensive chemotherapy. In this subpopulation there were also cancer deaths at a rate
of γ3.

Disease freedom in subpopulation D can be increased for patients with subpopulations
A, B, and C. This state of freedom from disease can last forever or only for a short time. If
it lasts for just a while, patients in subpopulation D can revert to subpopulations B and C,
with their respective rates being μDB and μDC . Over a longer period of time, subpopula-
tion D may also experience direct cardiotoxicity at the μDE rate. Patients who experience
cardiotoxicity or who belong to subpopulation E may suffer cardiac death at a rate of γ1.
The brief descriptions of the parameters of model (7) are given in Table 1.

We convert the ODE system (7) to the new C F fractional model of order α ∈ (0, 1) as
follows:

CFDα
t A(t) = ð

∗
1 – (μAD + μAB)A(t),

CFDα
t B(t) = ð

∗
2 + μABA(t) + μDBD(t) – (μBD + μBC + μBE + ξ̂2)B(t),

CFDα
t C(t) = ð

∗
3 + μBCB(t) + μDCD – (μCD + μCE + ξ̂3)C(t),



Mohammadpoor et al. Advances in Continuous and Discrete Models          (2024) 2024:6 Page 6 of 19

Table 1 Parameter description

Parameter Description

ð∗
1 Number of new patients diagnosed to suffer in stage 1 and 2 cancer

ð∗
2 Number of new patients diagnosed to suffer in stage 3 cancer

ð∗
2 Number of new patients diagnosed to suffer in stage 4 cancer

μAD Rate of stage 1 or 2 patients who experience a complete response
μAB Increased rate from stage 1 or 2 to stage 3 (progressive disease)
μBD Rate of stage 3 patients who experience a complete response
μBC Increased rate from stage 3 to stage 4 (progressive disease)
μBE Rate of stage 3 cancer chemotherapy patients who experience cardiotoxicity
μCD Rate of stage 4 patients who experience complete response
μCE Rate of stage 4 cancer chemotherapy patients who experience cardiotoxicity
μDB Rate of disease-free patients who relapse back to stage 3
μDC Rate of disease-free patients who relapse back to stage 4
μDE Rate of disease-free patients who experience cardiotoxic
ξ̂1 Death rate of cardiotoxic patients
ξ̂2 Death rate of stage 3 cancer patients
ξ̂3 Death rate of stage 4 cancer patients

CFDα
t D(t) = μADA(t) + μBDB(t) + μCDC(t) – (μDB + μDC + μDE)D(t),

CFDα
t E(t) = μDED(t) + μCEC(t) + μBEB(t) – ξ̂1E(t), (8)

subject to the initial conditions

A(0) = A0 ≥ 0, B(0) = B0 ≥ 0, C(0) = C0 ≥ 0,

D(0) = D0 ≥ 0, E(0) = E0 ≥ 0.

4 Solution of model by LADM
In this section, we solve system (8) using the Laplace Adomian decomposition method.
LADM combines two powerful techniques: the Adomian decomposition method and the
Laplace transform. First, through the Laplace transform we obtain from both sides of
equations (8):

ζL{A(t)} – A(0)
ζ + α(1 – ζ )

= L
{
ð

∗
1 – (μAD + μAB)A(t)

}
,

ζL{B(t)} – B(0)
ζ + α(1 – ζ )

= L
{
ð

∗
2 + μABA(t) + μDBD(t) – (μBD + μBC + μBE + ξ̂2)B(t)

}
,

ζL{C(t)} – C(0)
ζ + α(1 – ζ )

= L
{
ð

∗
3 + μBCB(t) + μDCD(t) – (μCD + μCE + ξ̂3)C(t)

}
,

ζL{D(t)} – D(0)
ζ + α(1 – ζ )

= L
{
μADA(t) + μBDB(t) + μCDC(t) – (μDB + μDC + μDE)D(t)

}
,

ζL{E(t)} – E(0)
ζ + α(1 – ζ )

= L
{
μDED(t) + μCEC(t) + μBEB(t) – ξ̂1E(t)

}
. (9)

Now, by applying the inverse Laplace transform on the current system, we get:

A(t) = A(0) + L–1
{

ζ + α(1 – ζ )
ζ

L
{
ð

∗
1 – (μAD + μAB)A(t)

}
}

,

B(t) = B(0) + L–1
{

ζ + α(1 – ζ )
ζ

L
{
ð

∗
2 + μABA(t) + μDBD(t)
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– (μBD + μBC + μBE + ξ̂2)B(t)
}}

,

C(t) = C(0) + L–1
{

ζ + α(1 – ζ )
ζ

L
{
ð

∗
3 + μBCB(t) + μDCD(t)

– (μCD + μCE + ξ̂3)C(t)
}
}

,

D(t) = D(0) + L–1
{

ζ + α(1 – ζ )
ζ

L
{
μADA(t) + μBDB(t) + μCDC(t)

– (μDB + μDC + μDE)D(t)
}}

,

E(t) = E(0) + L–1
{

ζ + α(1 – ζ )
ζ

L
{
μDED(t) + μCEC(t) + μBEB(t) – ξ̂1E(t)

}}
. (10)

By decomposing the unknown functions of system (8) into the sums of infinite number of
components defined by the decomposition method, we have

A(t) =
∞∑

n=0

An(t), B(t) =
∞∑

n=0

Bn(t), C(t) =
∞∑

n=0

Cn(t),

D(t) =
∞∑

n=0

Dn(t), E(t) =
∞∑

n=0

En(t).

(11)

By substituting (11) in (10), we get

L
{ ∞∑

n=0

An(t)

}

=
A(0)
ζ

+
ζ + α(1 – ζ )

ζ 2 ð
∗
1 – (μAD + μAB)

ζ + α(1 – ζ )
ζ

L
{ ∞∑

n=0

An(t)

}

,

L
{ ∞∑

n=0

Bn(t)

}

=
B(0)
ζ

+
ζ + α(1 – ζ )

ζ 2 ð
∗
2

+
ζ + α(1 – ζ )

ζ
L

{

μAB

∞∑

n=0

An(t) + μDB

∞∑

n=0

Dn(t)

– (μBD + μBC + μBE + γ2)
∞∑

n=0

Bn(t)

}

,

L
{ ∞∑

n=0

Cn(t)

}

=
C(0)
ζ

+
ζ + α(1 – ζ )

ζ 2 ð
∗
3

+
ζ + α(1 – ζ )

ζ
L

{

μBC

∞∑

n=0

Bn(t) + μDC

∞∑

n=0

Dn(t)

– (μCD + μCE – γ3)
∞∑

n=0

Cn(t)

}

,

L
{ ∞∑

n=0

Dn(t)

}

=
D(0)
ζ

+
ζ + α(1 – ζ )

ζ
L

{

μAD

∞∑

n=0

An(t)

+ μBD

∞∑

n=0

Bn(t) + μCD

∞∑

n=0

Cn(t)
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– (μDB + μDC + μDE)
∞∑

n=0

Dn(t)

}

,

L
{ ∞∑

n=0

En(t)

}

=
E(0)
ζ

+
ζ + α(1 – ζ )

ζ
L

{

μDE

∞∑

n=0

Dn(t)

+ μCE

∞∑

n=0

Cn(t) + μBE

∞∑

n=0

Bn(t) – γ1

∞∑

n=0

En(t)

}

, (12)

L(A0) =
A0

ζ
,

L(A1) =
ζ + α(1 – ζ )

ζ

[
ð∗

1
ζ

– (μAD + μAD)L{A0}
]

,

L(A2) =
ζ + α(1 – ζ )

ζ

[
ð∗

1
ζ

– (μAD + μAD)L{A1}
]

,

...

L(An+1) =
ζ + α(1 – ζ )

ζ

[
ð∗

1
ζ

– (μAD + μAD)L{An}
]

,

L(B0) =
B0

ζ
,

L(B1) =
ζ + α(1 – ζ )

ζ

[
ð∗

2
ζ

+ μABL{A0} + μDBL{D0} – (μBD + μBC + μBE + ξ̂2)L{B0}
]

,

L(B2) =
ζ + α(1 – ζ )

ζ

[
ð∗

2
ζ

+ μABL{A1} + μDBL{D1} – (μBD + μBC + μBE + ξ̂2)L{B1}
]

,

...

L(Bn+1) =
ζ + α(1 – ζ )

ζ

[
ð∗

2
ζ

+ μABL{An} + μDBL{Dn}

– (μBD + μBC + μBE + ξ̂2)L{Bn}
]

,

L(C0) =
C0

ζ
,

L(C1) =
ζ + α(1 – ζ )

ζ

[
ð∗

3
ζ

+ μBCL{B0} + μDCL{D0} – (μCD + μCE + ξ̂3)L{C0}
]

,

L(C2) =
ζ + α(1 – ζ )

ζ

[
ð∗

3
ζ

+ μBCL{B1} + μDCL{D1} – (μCD + μCE + ξ̂3)L{C1}
]

,

...

L(Cn+1) =
ζ + α(1 – ζ )

ζ

[
ð∗

3
ζ

+ μBCL{Bn} + μDCL{Dn} – (μCD + μCE + ξ̂3)L{Cn}
]

,

L(D0) =
D0

ζ
,

L(D1) =
ζ + α(1 – ζ )

ζ

[
μADL{A0} + μBDL{B0} + μCDL{C0}

– (μDB + μDC + μDE)L{D0}
]
,
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L(D2) =
ζ + α(1 – ζ )

ζ

[
μADL{A1} + μBDL{B1} + μCDL{C1}

– (μDB + μDC + μDE)L{D1}
]
,

...

L(Dn+1) =
ζ + α(1 – ζ )

ζ

[
μADL{An} + μBDL{Bn} + μCDL{Cn}

– (μDB + μDC + μDE)L{Dn}
]
,

L(E0) =
E0

ζ
,

L(E1) =
ζ + α(1 – ζ )

ζ

[
μDEL{D0} + μCEL{C0} + μBEL{B0} – ξ̂1L{E0}

]
,

L(E2) =
ζ + α(1 – ζ )

ζ

[
μDEL{D1} + μCEL{C1} + μBEL{B1} – ξ̂1L{E1}

]
,

...

L(En+1) =
ζ + α(1 – ζ )

ζ

[
μDEL{Dn} + μCEL{Cn} + μBEL{Bn} – ξ̂1L{En}

]
. (13)

Taking the Laplace inverse on both sides of above equations, we get

A0 = A0, B0 = B0, C0 = C0, D0 = D0, E0 = E0,

A1 =
[
ð

∗
1 – (μAD + μAB)A0

](
1 + α(t – 1)

)
,

B1 =
[
ð

∗
2 + μABA0 + μDBD0 – (μBD + μBC + μBE + ξ̂2)B0

](
1 + α(t – 1)

)
,

C1 =
[
ð

∗
3 + μBCB0 + μDCD0 – (μCD + μCE + ξ̂3)C0

](
1 + α(t – 1)

)
,

D1 =
[
μADA0 + μBDB0 + μCDC0 – (μDB + μDC + μDE)D0

](
1 + α(t – 1)

)
,

E1 = [μDED0 + μCEC0 + μBEB0 – ξ̂1E0]
(
1 + α(t – 1)

)
,

A2 = ð
∗
1
(
1 + α(t – 1)

)

–
(
α2t2 – 2α2t + 2αt + (α – 1)2)[(μAD + μAB)

[
ð

∗
1 – (μAD + μAB)A0

]]
,

B2 = ð
∗
2
(
1 + α(t – 1)

)
–

(
α2t2 – 2α2t + 2αt + (α – 1)2)[–μAB

[
ð1 – (μAD + μAB)A0

]

– μDB
[
μADA0 + μBDB0 + μCDC0 – (μDB + μDC + μDE)D0

]

+ (μBD + μBC + μBE + ξ̂2)
[
ð

∗
2 + μABA0 + μDBD0 – (μBD + μBC + μBE + ξ̂2)B0

]

... (14)

Similarly, we can get the rest of the terms. So, we get the solution of the model as an infinite
series

A(t) =
∞∑

n=0

An(t), B(t) =
∞∑

n=0

Bn(t), C(t) =
∞∑

n=0

Cn(t),

D(t) =
∞∑

n=0

Dn(t), E(t) =
∞∑

n=0

En(t).

(15)
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5 Stability analysis
Special solution by using ST

In this part, we use the Sumudu transform for system (8):

ST
(
CFDα

t A(t)
)

= ST
[
ð

∗
1 – (μAD + μAB)A(t)

]
,

ST
(
CFDα

t B(t)
)

= ST
[
ð

∗
2 + μABA(t) + μDBD(t) – (μBD + μBC + μBE + ξ̂2)B(t)

]
,

ST
(
CFDα

t C(t)
)

= ST
[
ð

∗
3 + μBCB(t) + μDCD(t) – (μCD + μCE + ξ̂3)C(t)

]
,

ST
(
CFDα

t D(t)
)

= ST
[
μADA(t) + μBDB(t) + μCDC(t) – (μDB + μDC + μDE)D(t)

]
,

ST
(
CFDα

t E(t)
)

= ST
[
μDED(t) + μCEC(t) + μBEB(t) – ξ̂1E(t)

]
. (16)

By using Definition 2.4, we get

M (α)
ST [A(t)] – A(0)

1 + α(ζ – 1)
= ST

[
ð

∗
1 – (μAD + μAB)A(t)

]
,

M (α)
ST [B(t)] – B(0)

1 + α(ζ – 1)
= ST

[
ð

∗
2 + μABA(t) + μDBD(t) – (μBD + μBC + μBE + ξ̂2)B(t)

]
,

M (α)
ST [C(t)] – C(0)

1 + α(ζ – 1)
= ST

[
ð

∗
3 + μBCB(t) + μDCD(t) – (μCD + μCE + ξ̂3)C(t)

]
,

M (α)
ST [D(t)] – D(0)

1 + α(ζ – 1)

= ST
[
μADA(t) + μBDB(t) + μCDC(t) – (μDB + μDC + μDE)D(t)

]
,

M (α)
ST [E(t)] – E(0)

1 + α(ζ – 1)
= ST

[
μDED(t) + μCEC(t) + μBEB(t) – ξ̂1E(t)

]
. (17)

We obtain

ST
[
A(t)

]
= A(0) +

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
1 – (μAD + μAB)A(t)

]
,

ST
[
B(t)

]
= B(0) +

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
2 + μABA(t) + μDBD(t)

– (μBD + μBC + μBE + ξ̂2)B(t)
]
,

ST
[
C(t)

]
= C(0) +

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
3 + μBCB(t) + μDCD(t)

– (μCD + μCE + ξ̂3)C(t)
]
,

ST
[
D(t)

]
= D(0) +

1 + α(ζ – 1)
M (α)

ST
[
μADA(t) + μBDB(t) + μCDC(t)

– (μDB + μDC + μDE)D(t)
]
,

ST
[
E(t)

]
= E(0) +

1 + α(ζ – 1)
M (α)

ST
[
μDED(t) + μCEC(t) + μBEB(t) – ξ̂1E(t)

]
. (18)

Taking the inverse ST on the above system, we obtain the following recursive formula:

An+1(t) = An(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
1 – (μAD + μAB)A(t)

]}
,
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Bn+1(t) = Bn(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
2 + μABA(t) + μDBD(t)

– (μBD + μBC + μBE)B(t) – ξ̂2B(t)
]}

,

Cn+1(t) = Cn(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
3 + μBCB(t) + μDCD(t)

– (μCD + μCE + ξ̂3)C(t)
]
}

,

Dn+1(t) = Dn(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μADA(t) + μBDB(t) + μCDC(t)

– (μDB + μDC + μDE)D(t)
]}

,

En+1(t) = En(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μDED(t) + μCEC(t)

+ μBEB(t) – ξ̂1E(t)
]
}

. (19)

The approximate solution of the above system is

A(t) = lim
n→∞ An(t), B(t) = lim

n→∞ Bn(t), C(t) = lim
n→∞ Cn(t),

D(t) = lim
n→∞ Dn(t), E(t) = lim

n→∞ En(t). (20)

Stability analysis of iteration method

Consider the Banach space (X ,‖·‖), a self-map P onX , and the recursive method Tn+1 =
�(P ,Tn). Denote M (P) 	= ∅ to be a fixed point set of P and limn→∞ Tn = t ∈ M (P). Let
{x∗

n} ⊆ X and define en = ‖x∗
n+1 – �(P , x∗

n)‖. If limn→∞ en = 0 implies that limn→∞ x∗
n = t,

then the iterative method Tn+1 = Tn+1 = �(P ,Tn) is said to be P-stable. Suppose that the
sequence {x∗

n} is bounded. If Picard iteration Tn+1 = PTn is satisfied in all conditions, then
Tn+1 = PTn is P-stable.

In this order, we need the following.

Theorem 5.1 [23] Let P be a self-map on X such that

‖Px – Py‖ ≤ H1‖x – Px‖ + H2‖x – y‖

for all x, y ∈X , where H1 ≥ 0, H2 ∈ [0, 1).

Theorem 5.2 Let P be given as follows:

P
[
An(t)

]
= An+1(t) = An(0) + ST –1

{
1 + α(ζ – 1)

M (α)
ST

[
ð

∗
1 – (μAD + μAB)A(t)

]
}

,

P
[
Bn(t)

]
= Bn+1(t)

= Bn(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
2 + μABA(t) + μDBD(t)
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– (μBD + μBC + μBE + ξ̂2)B(t)
]}

,

P
[
Cn(t)

]
= Cn+1(t)

= Cn(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
3 + μBCB(t) + μDCD(t)

– (μCD + μCE + ξ̂3)C(t)
]}

,

P
[
Dn(t)

]
= Dn+1(t)

= Dn(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μADA(t) + μBDB(t) + μCDC(t)

– (μDB + μDC + μDE)D(t)
]
}

,

P
[
En(t)

]
= En+1(t)

= En(0) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μDED(t) + μCEC(t)

+ μBEB(t) – ξ̂1E(t)
]
}

. (21)

Then P is P-stable if the following conditions hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 – (μAD + μAB)F1(ν) < 1,

1 – (μBD + μBC + μBE + ξ̂2)F2(ν) + μABF3(ν) + μDBF4(ν)) < 1,

1 – (μCD + μCE + ξ̂3)F5(ν) + μBCF6(ν) + μDCF7(ν)) < 1,

1 – (μDB + μDC + μDE)F8(ν) + μADF9(ν) + μBDF10(ν) + μDEF11(ν)) < 1,

1 – ξ̂1F12(ν) + μDEF13(ν) + μCEF14(ν) + μBEF15(ν)) < 1.

(22)

Proof Computing the following iterations for all (r, s) ∈ N , we prove that P has a fixed
point.

P
[
Ar(t)

]
– P

[
As(t)

]

= Ar(t) – As(t) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
1 – (μAD + μAB)Ar(t)

]
}

– ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
1 – (μAD + μAB)As(t)

]}
,

P
[
Br(t)

]
– P

[
Bs(t)

]

= Br(t) – Bs(t) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
2 + μABAr(t) + μDBDr(t)

– (μBD + μBC + μBE + ξ̂2)Br(t)
]
}

– ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
2 + μABAs(t)

+ μDBDs(t) – (μBD + μBC + μBE + ξ̂2)Bs(t)
]}

,

P
[
Cr(t)

]
– P

[
Cs(t)

]
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= Cr(t) – Cs(t) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
3 + μBCBr(t) + μDCDr(t) – (μCD

+ μCE + ξ̂3)Cr(t)
]}

– ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
3 + μBCBs(t) + μDCDs(t)

– (μCD + μCD + μCE + ξ̂3)Cs(t)
]
}

,

P
[
Dr(t)

]
– P

[
Ds(t)

]

= Dr(t) – Ds(t) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μADAr(t) + μBDBr(t) + μCDCr(t)

– (μDB + μDC + μDE)Dr(t)
]}

– ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μADAs(t)

+ μBDBs(t) + μCDCs(t) – (μDB + μDC + μDE)Ds(t)
]
}

,

P
[
Er(t)

]
– P

[
Es(t)

]

= Er(t) – Es(t) + ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μDEDr(t) + μCECr(t)

+ μBEBr(t) – ξ̂1Er(t)
]
}

– ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
μDEDs(t) + μCECs(t) + μBEBs(t) – ξ̂1Es(t)

]
}

. (23)

By taking the norm and applying the triangular inequality on both sides of the above equa-
tions, we get

∥∥P
[
Ar(t)

]
– P

[
As(t)

]∥∥

≤ ∥
∥Ar(t) – As(t)

∥
∥ +

∥∥
∥∥ST

–1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
1 – (μAD + μAB)Ar(t)

]}

– ST –1
{

1 + α(ζ – 1)
M (α)

ST
[
ð

∗
1 – (μAD + μAB)As(t)

]}
∥∥
∥∥

≤ ∥∥Ar(t) – As(t)
∥∥ + ST –1

[
ST 1 + α(ζ – 1)

M (α)
[∥∥–(μAD + μAB)

(
Ar(t) – As(t)

)∥∥]
]

,

∥∥P
[
Br(t)

]
– P

[
Bs(t)

]∥∥

=
∥
∥Br(t) – Bs(t)

∥
∥ + ST –1

[
ST 1 + α(ζ – 1)

M (α)
[∥∥μAB

(
Ar(t) – As(t)

)∥∥

+
∥∥μDB

(
Dr(t) – Ds(t)

)∥∥ +
∥∥–(μBD + μBC + μBE + ξ̂2)

(
Br(t) – Bs(t)

)∥∥]]

... (24)

Because the solutions have the same behavior, we have

∥
∥Ar(t) – As(t)

∥
∥ ∼= ∥

∥Br(t) – Bs(t)
∥
∥ ∼= ∥

∥Cr(t) – Cs(t)
∥
∥

∼= ∥
∥Dr(t) – Ds(t)

∥
∥ ∼= ∥

∥Er(t) – Es(t)
∥
∥. (25)
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Thus we have

∥
∥P

[
Ar(t)

]
– P

[
As(t)

]∥∥ ≤ [
1 – (μAD + μAB)F1(ν)

]∥∥Ar(t) – As(t)
∥
∥,

∥∥P
[
Br(t)

]
– P

[
Bs(t)

]∥∥

≤ [
1 – (μBD + μBC + μBE + ξ̂2)F2(ν) + μABF3(ν) + μDBF4(ν))

] × ∥∥Br(t) – Bs(t)
∥∥,

∥
∥P

[
Cr(t)

]
– P

[
Cs(t)

]∥∥

≤ [
1 – (μCD + μCE + ξ̂3)F5(ν) + μBCF6(ν) + μDCF7(ν))

] × ∥∥Cr(t) – Cs(t)
∥∥,

∥
∥P

[
Dr(t)

]
– P

[
Ds(t)

]∥∥

≤ [
1 – (μDB + μDC + μDE)F8(ν) + μADF9(ν) + μBDF10(ν) + μDEF11(ν))

]

× ∥∥Dr(t) – Ds(t)
∥∥,

∥
∥P

[
Er(t)

]
– P

[
Es(t)

]∥∥

≤ [
1 – ξ̂1F12(ν) + μDEF13(ν) + μCEF14(ν) + μBEF15(ν))

] × ∥∥Er(t) – Es(t)
∥∥, (26)

where Fi for i = 1, . . . , 15 are functions from ST –1[ST 1+α(ζ–1)
M (α) ] and

1 – (μAD + μAB)F1(ν) < 1,

1 – (μBD + μBC + μBE + ξ̂2)F2(ν) + μABF3(ν) + μDBF4(ν)) < 1,

1 – (μCD + μCE + ξ̂3)F5(ν) + μBCF6(ν) + μDCF7(ν)) < 1,

1 – (μDB + μDC + μDE)F8(ν) + μADF9(ν) + μBDF10(ν) + μDEF11(ν)) < 1,

1 – ξ̂1F12(ν) + μDEF13(ν) + μCEF14(ν) + μBEF15(ν)) < 1. (27)

Then the self-map P has a fixed point. Now, we prove that P satisfies the assumptions
of Theorem 5.2. Let (27) hold, then H2 = (0, 0, 0, 0, 0) and

H1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 – (μAD + μAB)F1(ν) < 1,

1 – (μBD + μBC + μBE + ξ̂2)F2(ν) + μABF3(ν) + μDBF4(ν)) < 1,

1 – (μCD + μCE + ξ̂3)F5(ν) + μBCF6(ν) + μDCF7(ν)) < 1,

1 – (μDB + μDC + μDE)F8(ν) + μADF9(ν)

+ μBDF10(ν) + μDEF11(ν)) < 1,

1 – ξ̂1F12(ν) + μDEF13(ν) + μCEF14(ν) + μBEF15(ν)) < 1.

(28)

Thus, all the conditions hold for P . Therefore, the proof is complete. �

6 Simulation
In this section, we utilize the procedure introduced in Sect. 4 for solving the fractional
system (8). For having a comparison with some other existing method for solving the
breast cancer model, we applied the parameter and initial values of [22], which are given
in Table 2. All of the results were calculated using the same desktop, Asus DESKTOP-
M0F5LBS, Intel(R)Core(TM)i7-6700HQ CPU@ 2.60 GHz, 16 GB memory.
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Table 2 Parameter and initial values

Parameter Value Parameter Value

ð∗
1 5 μCD 0.10

ð∗
2 20 μCE 0.30

ð∗
2 11 μDB 0.36

μAD 0.63 μDC 0.42
μAB 0.56 μDE 0.30
μBD 0.35 ξ̂1 0.4
μBC 0.62 ξ̂2 0.5
μBE 0.30 ξ̂3 0.8

A0 14 B0 30
C0 20 D0 10
E0 10

Figure 2 Simulation results for α = 1

It is clear that it is impossible to obtain the infinite components of the unknown series
using Adom’s method, so we truncate the series for n = 15. To show the efficiency of the
purposive approach, the fractional model (8) was first solved for α = 1, and the plots of the
numerical solutions are shown in Fig. 2, where the plots are in good agreement with the
results of [22].

For studying the impact of the fractional order on the approximated state functions of
model (8), we examined some values for α, and the numerical results are reported in
Figs. 2–6 in a 15 days period. All the plots in Fig. 2 have decreasing behavior and after
some days possess a stable position. As we can see, for the highest fractional order, α = 1,
the patients in stages 1, 2A, and 2B have reached the minimum number about 4 at the
fourth day and showed a stable behavior after 4 days. On the other hand, for the smallest
fractional order α = 0.7, the population of class A has taken the minimum value about 7
in the sixth day of time period. So, we can conclude that the smoothness of the solution
plots has the direct relation with their fractional orders.

The plots of Fig. 4 depict the number of active cases of the breast cancer patients in the
class B with initial value 30 after 15 days. Similar to the state function A(t), the relevant
plots of B(t) are decreasing, and there is an inverse relation between the magnitude of
alpha and the number of people in this class. As we can see in this figure, for alpha = 0.9, 1,
the solutions have stable behavior after 4 days.
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Figure 3 Simulation results for cancer patients at stage 1 and 2 for some values of α = 0.7

Figure 4 Simulation results for cancer patients at stage 3 for α = 0.7, 0.8, 0.9, 1

Figure 5 Simulation results for cancer patients at stage 4 for α = 0.7, 0.8, 0.9, 1

In Fig. 5, the plots of the approximated solutions for the patients in stage 4 show that the
number of people in this class, first, is increasing for t ∈ (0, 2) and then decreasing until
fifteenth day for α = 0.7, 0.8, 0.9. For α = 0.7, the active cases of this class have reached their
minimum value as 15, where the maximum value has been reached for α = 0.9, after about
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Figure 6 Disease-free population for α = 0.7, 0.8, 0.9, 1

Figure 7 Simulation results for cardiotoxic population for α = 0.7, 0.8, 0.9, 1

one day. However, this intermittent behavior is justified because the patients of class C are
transferred to classes B and D. Consequently, we expect similar behavior for the plots of
D(t).

Similar to Fig. 5, in Fig. 6 the cancer patients with disease-free conditions after
chemotherapy, first, have reached the maximum number at (0, 1) and then decreased until
fifteenth day for α = 0.7, 0.8, 0.9, 1. For α = 0.7, the active cases of this class have decayed
on (1, 15), where the maximum value has been reached for α = 1, after about one day.

The plots of Fig. 7 depict the number of the cancer patients who have cardiotoxicity in
15 days, which are achieved by solving the fractional model (8) for α = 0.7, 0.8, 0.9, 1. The
initial number of this population is 10. All of the plots of this class are increasing and after
some time possess stable behavior. It is obviously evident that the there is a direct relation
between the fractional order and the number of patients of E(t). Also, the related plots for
α = 0.7, 0.8 are less smooth than those for α = 0.9, 1.

7 Conclusion
In this study, a mathematical model was constructed with five variables and sixteen pa-
rameters. Mathematical models were made according to medical phenomena about the
chemo cardio toxicity of breast cancer patients. The system was equipped with fractional
derivatives in the C F sense.
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The model consists of three subpopulations of breast cancer patients by stage, one
disease-free subpopulation, and one cardiotoxic subpopulation. A dynamical analysis is
carried out to determine the number of individual sufferers in each subpopulation at any
time. The investigated results show a stable equilibrium point. Numerical simulations are
made to verify the behavior of solutions around the equilibrium point. Also, stability anal-
ysis was performed via the Sumudo transform, and LADM was utilized for obtaining the
semi-analytical solutions of the purposed system. LADM has no application restrictions
because the perturbation parameter is not required.

Based on the results of simulations, it can be concluded that if all parameters of the
model are constant, the state of the population will be stable at a particular time with any
initial conditions. This shows that the equilibrium point of the system proved to be stable
without conditions. By reducing the relapse rate, an unexpected result is obtained, which
is an increase in cardiotoxic subpopulations. Better results are obtained when reducing
cardiotoxic rates. Under these conditions, the number of disease-free subpopulations in-
creases, and the number of cardiotoxic subpopulations decreases dramatically.

Also, we analyze the effect of the fractional order on the numerical results by varying
the fractional order. As we can see in all diagrams, the subpopulation in class A decreases,
while the fractional order increases. For larger values of fractional orders, the rate of de-
cay in the patients of stages 1 and 2 is faster than the same rates for smaller orders. On
the contrary, the decreasing rate of other subpopulations is faster for small orders of the
fractional order. In the upcoming research works, we will try to model some other cancer
diseases by C F derivative and solve the obtained models by some analytical or numerical
approaches. Further research along these lines is under progress and will be reported in
due time.
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