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Abstract
We consider optimal control problems for a system governed by a stochastic
differential equation driven by a d-dimensional Brownian motion where both the drift
and the diffusion coefficient are controlled. It is well known that without additional
convexity conditions the strict control problem does not admit an optimal control. To
overcome this difficulty, we consider the relaxed model, in which admissible controls
are measure-valued processes and the relaxed state process is governed by a
stochastic differential equation driven by a continuous orthogonal martingale
measure. This relaxed model admits an optimal control that can be approximated by a
sequence of strict controls by the so-called chattering lemma. We establish optimality
necessary conditions, in terms of two adjoint processes, extending Peng’s maximum
principle to relaxed control problems. We show that relaxing the drift and diffusion
martingale parts directly as in deterministic control does not lead to a true relaxed
model as the obtained controlled dynamics is not continuous in the control variable.

Mathematics Subject Classification: Primary 93E20; 60H30; secondary 60H10;
60F99
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1 Introduction
Our main goal in this paper is to prove a stochastic maximum principle for relaxed controls
in the case where both the drift and the diffusion coefficient are controlled.

It is well known that the two main approaches to handling optimal control problems are
the dynamic programming by Bellman and the maximum principle by Pontryagin [36].
The maximum principle provides a set of necessary conditions for optimality that an op-
timal control must satisfy, as detailed in [36]. These conditions include a forward equation
for the state process, a backward equation for the adjoint variable, and minimization of
the Hamiltonian function.

Within stochastic control, two main approaches for a stochastic maximum principle
emerge, based on the solution concept (weak/strong) and control type (open-loop/feed-
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back). The first approach, for strong solutions with open-loop controls, was established
by [23] using spike variations. In [17] the author employed martingale methods and the
Girsanov theorem to derive a maximum principle for weak solutions with feedback con-
trols.

In [10] the author addressed systems where the diffusion coefficient depends on the
control variable, utilizing convex perturbations and the first-order adjoint variable. His
result constitutes a weak maximum principle with the variational inequality applied to
the Gâteaux derivative of the Hamiltonian. In [30], a global maximum principle was es-
tablished for a nonconvex domain and controlled diffusion coefficient, involving the in-
troduction of a second-order adjoint process. This extension was further developed for
jump-diffusion processes in [33].

Pontryagin’s maximum principle has proven widespread application in solving problems
related to mathematical finance and portfolio optimization, as shown in [31]. We recom-
mend [36] for a comprehensive overview and detailed references on the subject.

The main motivation behind relaxed controls lies in their property to guarantee the exis-
tence of optimal solutions in this class. This concept originated with Young’s work [37] on
generalized solutions in the calculus of variations, leading to the notion of Young measure.
Subsequently, this framework was extended to deterministic control theory, giving rise to
the concept of relaxed control. A key challenge in nonconvex control problems arises from
the lack of closure of the set of strict controls under simple convergence of measurable
functions. Relaxed controls elegantly address this challenge by replacing strict controls
with random Dirac probability measures. This effectively transforms the set of strict con-
trols into a compact subset of probability measures, ensuring closure under the topology
of weak convergence. This “relaxation” of the convergence requirement enables us to for-
mulate the optimal control problem as a continuous function optimization over a compact
metric space, guaranteeing the existence of an optimal solution. The authors in [9, 16, 24]
established the first existence results of relaxed controls for stochastic differential equa-
tions with uncontrolled diffusion coefficients. Subsequently, more complex systems with
controlled diffusion coefficients were tackled by [14, 18, 19]. Using Krylov’s method of
Markovian selection, they proved that the optimal relaxed control can be expressed in a
feedback form. Furthermore, in [22] the authors used an abstract approach based on the
concept of occupation measure to prove the existence of optimal relaxed controls.

1.1 The relaxed stochastic maximum principle and contributions of the paper
Optimality necessary conditions for stochastic systems in the form of Pontryagin’s max-
imum principle have been developed for relaxed controls in [7, 8, 28] in the case of con-
tinuous diffusions. These results have been extended to mean-field systems in [3–5]. See
also [2, 12, 32] for versions of the relaxed stochastic maximum principle including dou-
bly forward-backward stochastic differential equations and stochastic equations driven by
G-Brownian motion.

Our main goal in this paper is to prove a stochastic maximum principle for relaxed con-
trols in the case where both the drift and the diffusion coefficient are controlled. We show
that the natural pathwise representation of the relaxed state process satisfies a stochastic
differential equation driven by an orthogonal continuous martingale measure [15].

Note that another type of relaxation has been considered in the literature [1, 6, 35],
where the authors replace the drift and the diffusion coefficients in the controlled stochas-
tic equation by their integrals with respect to the relaxed control as in the deterministic
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control problems. They obtain a linear convex relaxed control problem. We prove that the
main drawback of this type of relaxation is that the dynamics obtained is not continuous
with respect to the control variable by providing a counterexample. As a byproduct, the
relaxed and strict control problems have different value functions and the control problem
obtained cannot be considered as a true relaxation. This is the first main contribution of
the present paper.

Our second main result is to derive necessary conditions for optimality satisfied by
an optimal relaxed control in the form of a Peng stochastic maximum principle. This is
achieved through first- and second-order adjoint processes. By using the so-called Chat-
tering lemma, the optimal relaxed control is approximated by a sequence of nearly op-
timal strict controls. Under pathwise uniqueness of the stochastic equation associated
with the relaxed control, we prove a strong approximation result for the controlled pro-
cesses. Ekeland’s variational principle then allows us to derive necessary conditions for
near-optimality satisfied by the sequence of strict controls. The final step involves prov-
ing the convergence of the corresponding adjoint processes and Hamiltonian functions,
completing the proof.

Our work extends the existing maximum principles in several ways. It generalizes Peng’s
principle [30] to relaxed controls and [28] to include controlled diffusion coefficient. Fur-
thermore, assuming that a strict optimal control exists, we recover Peng’s original prin-
ciple [30]. The key advantage of our result is that it applies to a natural class of controls,
which is the closure of the class of strict controls, and for which the existence of an op-
timal solution is guaranteed. Another advantage of our method is that it is based on an
approximation procedure, which could be helpful to solve numerically problems arising
in practical situations. Our method relies on an approximation scheme, making it a valu-
able tool for addressing various numerical problems encountered in real-world control
applications.

The rest of the paper is organized as follows. In the second section, we formulate the
control problem and introduce the assumptions of the model. The third section is devoted
to the relaxed model. In the last section, we prove rigorously the second-order maximum
principle for the relaxed control problem, representing the main contribution of this paper.

2 Formulation of the problem and notations
We consider in this paper stochastic control problems of the following type.

Let (�,F , (Ft)t≥0, P) be a probability space equipped with a complete filtration (Ft)t≥0

satisfying the usual conditions. Let (Bt) be a standard d-dimensional Brownian motion.
Consider a compact set A in R

k , and let Uad be the class of strict controls, which are
measurable, Ft-adapted processes u : [0, T] × � −→ A. For any u ∈ Uad, we consider the
control problem where the controlled process is a solution of the following stochastic dif-
ferential equation (SDE):

⎧
⎨

⎩

dXt = b(t, Xt , ut) dt + σ (t, Xt , ut) dBt

X0 = x.
(2.1)

We assume that

b : [0; T] ×R
n ×A −→R

n
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σ : [0; T] ×R
n ×A −→Mn×d(R)

are bounded and Borel measurable functions.
The expected cost corresponding to a strict control u is given by

J(u) = E
[

g(XT ) +
∫ T

0
h(t, Xt , ut) dt

]

, (2.2)

where

g : Rn −→ R

h : [0, T] ×R
n ×A −→R

are Borel measurable functions.
The solution X of the above SDE is called the response of the control u ∈ Uad. The ob-

jective of the strict control problem is to minimize the cost functional J(·) over the set
Uad, subject to equation (2.1). A control that solves this problem is called optimal. A strict
control u∗ ∈ Uad is called optimal if it achieves the infimum of J(u) over Uad.

Notations Throughout this paper, we will use the following notations.
x · y: the inner product of the vectors x and y.
|x| = |x1| + |x2| + · · · + |xn| for a n-dimensional vector x = (x1, x2, . . . , xn).
A∗: the transpose of a matrix A.
fx: the gradient of the function f with respect to x.
fxx: the Hessian of a scalar function f .
Mn×d(R): the space of n × d matrices.
A: a compact subset of Rk called the action space.
Uad: the space of strict controls.
P([0, T] ×A): the space of probability measure on the compact set [0, T] ×A.
V: the subset of P([0, T] × A) consisting of probability measures whose projection on

[0, T] is the Lebesgue measure.
R: the space of relaxed controls.
C2

b(Rd;R): the space of bounded continuous functions having bounded continuous first-
and second-order derivatives.
D([0, T],Rn): is the Skorokhod space of functions that are continuous from the right and

have limits from the left.

Assumptions Let us assume the following conditions on the coefficients.
(A1) The maps b, σ , h, g , and f are continuous and bounded.
(A2) b, σ , h, g admit derivatives up to the second order with respect to x, which are

bounded and continuous in (x, a).
Under the above hypothesis, (2.1) has a unique strong solution and the cost functional

(2.2) is well defined from Uad into R.
Note that for questions of existence of optimal controls, the probability space, Brownian

motion may change with the control u. Indeed, the existence of optimal controls uses
heavily the concept of weak solution of stochastic differential equations. It is worth noting
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that for weak solutions of the stochastic differential equations, the probability space and
Brownian motion are parts of the solution. Another way to deal with weak solutions is to
use martingale problems [21].

The infinitesimal generator L, associated with our controlled SDE, is the second-order
differential operator acting on functions f in C2

b(Rn;R), defined by

Lf (t, x, a) =
(∑

i,j
aij

∂2f
∂xixj

+
∑

i
bi

∂f
∂xi

)

(t, x, a), (2.3)

where aij(t, x, u) denotes the generic term of the symmetric matrix σσ ∗(t, x, u) [21].
As it is well known, weak solutions for Itô SDEs are equivalent to the existence of solu-

tions of the corresponding martingale problems [21]. The approach by martingale prob-
lems simplifies limit analysis and avoids the relaxation complications associated with the
stochastic integral part [14]. Let us define a strict control using martingale problems.

Definition 2.1 A strict control is a term α = (�,F ,Ft , P, ut , Xt) such that
(1) (�,F ,Ft , P) is a probability space equipped with a filtration (Ft)t≥0 satisfying the

usual conditions.
(2) (ut) is an A-valued process, progressively measurable with respect to (Ft).
(3) (Xt) is Rn-valued Ft– adapted, with continuous paths, such that

f (Xt) – f (x) –
∫ t

0
Lf (s, Xs, us) ds is a P-martingale.

Remark 2.2 1) Condition 3) in the above definition is equivalent to saying that SDE (2.1)
has a weak solution.

2) Under assumptions A1 and A2 the controlled equation (2.1) has a unique strong so-
lution for every fixed probability space and Brownian motion. So we fix the probability
reference, and a strict control (ut) will be just an A-valued process progressively measur-
able with respect to (Ft). There is no need to specify the probability space.

3 The relaxed control problem
3.1 A typical example
As we are going to see in a simple example, most control problems have no optimal so-
lutions within the space of strict controls [14]. Let us consider the following well-known
example from deterministic control [11].

Minimize

J(u) =
∫ 1

0

(
X(t)

)2 dt (3.1)

over the set U of measurable functions u : [0, 1] → {–1, 1}, where X(t) is the solution of

⎧
⎨

⎩

dX(t) = u(t) dt

X(0) = 0.
(3.2)

We have infu∈U J(u) = 0.
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Indeed let us consider the sequence of Rademacher functions:

un(t) = (–1)k if
k
n

≤ t ≤ (k + 1)
n

, 0 ≤ k ≤ n – 1.

It is not difficult to show that |Xun (t)| ≤ 1/n and |J(un)| ≤ 1/n2, which implies that
infu∈U J(u) = 0. There is, however, no control û such that J (̂u) = 0 because this would imply
that for every t, Xû(t) = 0; and as a consequence we obtain ût = 0, which is impossible.
This limit, if it exists, would be the natural candidate for optimality.

The classical way to overcome this difficulty is to introduce relaxed controls, which are
measure-valued functions that describe the introduction of a stochastic parameter. Let
dtδu(t)(da) be the product measure on [0, 1] × {–1, 1} such that its projection on [0, 1] is
the Lebesgue measure and is defined as follows:

∫∫

[0,1]×{–1,1}
f (t, a) dtδu(t)(da) = f (t, ut).

δu(t)(da) denotes the Dirac measure concentrated at the point u(t).
The following lemma is known in deterministic control. We give its proof for the sake

of completeness.

Lemma 3.1 Let dtδun(t)(da) be the relaxed control associated with the Rademacher func-
tion un(t), then the sequence (dtδun(t)(da)) converges weakly to dt 1

2 (δ–1 + δ1)(da).

Proof It is sufficient to show that for every bounded continuous function f : [0, 1] ×
{–1, 1} −→ R

∫∫

[0,1]×{–1,1}
f (t, a)μn(dt, du) converges to

∫∫

[0,1]×{–1,1}
f (t, a)μ(dt, du) =

1
2

(∫

[0,1]
f (t, –1) dt +

∫

[0,1]
f (t, 1) dt

)

,

as n −→ +∞.
Assume n = 2m.

∫∫

[0,1]×{–1,1}
f (t, a)μn(dt, du) =

n–1∑

k=0

∫ (k+1)/n

k/n
f
(
t, (–1)k)dt

=
m–1∑

k=0

∫ (2j+1)/2m

2j/2m
f (t, 1) dt +

m–1∑

k=0

∫ (2j+2)/2m

(2j+1)/2m
f (t, –1) dt.

f (t, –1) and f (t, 1) are continuous on [0, 1], which is bounded and closed, then they are
uniformly continuous. Then, for some ε > 0, there exists N ∈N

∗ such that for every m ≥ N
such that |t – s| < 1

m we have |f (t, a) – f (s, a)| < ε for a = 1 or a = –1.
This implies in particular that

∣
∣
∣
∣

∫ (2j+1)/2m

2j/2m
f (t, a) dt –

∫ (2j+2)/2m

(2j+1)/2m
f (t, a) dt

∣
∣
∣
∣ <

ε

2m
for j = 0, 1, . . . , m – 1,
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and therefore

∣
∣
∣
∣
∣

m–1∑

j=0

∫ (2j+1)/2m

2j/2m
f (t, a) dt –

m–1∑

j=0

∫ (2j+2)/2m

(2j+1)/2m
f (t, a) dt

∣
∣
∣
∣
∣

<
ε

2
.

But we know that

m–1∑

j=0

∫ (2j+1)/2m

2j/2m
f (t, a) dt +

m–1∑

j=0

∫ (2j+2)/2m

(2j+1)/2m
f (t, a) dt =

∫

[0,1]
f (t, a) dt.

Therefore

lim
m→+∞

m–1∑

j=0

∫ (2j+1)/2m

2j/2m
f (t, a) dt = lim

m→+∞

m–1∑

j=0

∫ (2j+2)/2m

(2j+1)/2m
f (t, a) dt = 1/2

∫

[0,1]
f (t, a) dt,

a = 1 or – 1,

and

lim
n→+∞

n–1∑

k=0

∫ (k+1)/n

k/n
f
(
t, (–1)k)dt =

1
2

(∫

[0,1]
f (t, 1) dt +

∫

[0,1]
f (t, –1) dt

)

=
∫ 1

0

∫

{–1,1}
f (t, a)

1
2

(δ–1 + δ1)(da) dt,

which achieves the proof.
The case where n is odd can be proved by using the same arguments. �

Remark 3.2 The sequence of Rademacher functions is a typical example of a minimizing
sequence with no limit in the set of strict controls. However, its weak limit is dt(1/2)(δ–1 +
δ1)(da).

Now we can define the relaxed control as any probability measure on [0, 1] × {–1, 1}
defined by μ = dt.μt(da), and the relaxed dynamics will be

Xμ(t) =
∫ t

0

∫

{–1,1}
a.μs(da) ds.

The corresponding relaxed cost functional is given by

J (μ) =
∫ 1

0

(
Xμ(t)

)2 dt.

Let us point out that in the case where the relaxed control μ is associated with a strict
control u, in other words μ = dt.δu(t)(da), then J (μ) = J(u).

It is clear that if μ∗ = dt(1/2)(δ–1 +δ1)(da), Xμ(t) =
∫ t

0
∫

A
a.(1/2)(δ–1 +δ1)(da) ds = 0, there-

fore J (μ∗) = 0. This means that dt(1/2)(δ–1 + δ1)(da) is an optimal control in the space of
relaxed controls.



Mezerdi and Mezerdi Advances in Continuous and Discrete Models          (2024) 2024:8 Page 8 of 24

3.2 The set of relaxed controls
The idea of relaxed control is to replace the A-valued process ut with a P(A)-valued pro-
cess μt , where P(A) is the space of probability measures equipped with the topology of
weak convergence. Then μ may be identified as a random product measure on [0, T] ×A,
whose projection on [0, T] coincides with the Lebesgue measure.

Let V be the set of product measures on [0, T] ×A whose projection on [0, T] coincides
with the Lebesgue measure dt. It is clear that every μ in V may be disintegrated as μ =
dt.μt(da), where μt(da) is a transition probability [14].
V as a closed subspace of the compact space of probability measures P([0, T] × A) is

compact for the topology of weak convergence. In fact it can be proved that it is compact
also for the topology of stable convergence, where test functions are measurable, bounded
functions f (t, a) continuous in a. See [14] for further details.

Definition 3.3 A relaxed control on the filtered probability space (�,F , (Ft)t≥0, P) is a
random variable μ = dt.μt(da) with values in V such that μt(da) is progressively measur-
able with respect to (Ft)t≥0 and such that for each t, 1(0;t] μ is Ft-measurable.

The problem now is to define rigourously the dynamics associated with a relaxed con-
trol. More precisely, since the diffusion term is controlled, one has to define the concept
of martingale measure.

Let us denote by R the collection of all relaxed controls.

3.3 The relaxed dynamics
When dealing with existence results, it is important to point out that the probability space
and Brownian motion are parts of the relaxed control. The following definition gives a
precise meaning of the notion of control.

Definition 3.4 A relaxed control is a term α = (�,F ,Ft , P,μ, Xt) such that
(1) (�,F ,Ft , P) is a probability space equipped with a filtration (Ft)t≥0 satisfying the
usual conditions.
(2) μ is a V-valued process, μ(ω, dt, du) = dt.μ(ω, t, du), and μ(ω, t, du) is progressively

measurable with respect to (Ft) and such that for each t, 1(0,t].μ is Ft– adapted.
(3) (Xt) is Rn-valued Ft-adapted, with continuous paths, such that

f (Xt) – f (x) –
∫ t

0

∫

A

Lf (s, Xs, a)μ(s, da) ds is a P-martingale. (3.3)

Let us define the corresponding relaxed cost functional by

J (μ) = E
[

g(XT ) +
∫ T

0

∫

A

h(t, Xt , a)μ(t, da) dt
]

. (3.4)

In case the relaxed control is defined by dtδut (da), we recover the cost functional corre-
sponding to the strict control u. More precisely, J (dtδut (da)) = J(u).

It is proved in [14] that the relaxed control problem admits an optimal solution.

Theorem 3.5 Under assumption (A1), the relaxed optimal control problem defined by the
martingale problem (3.3) and the relaxed cost functional (3.4) admits an optimal solution.
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In what follows we give a pathwise representation of the solution of the relaxed martin-
gale problem in terms of an Itô stochastic differential equation driven by an orthogonal
martingale measure. Martingale measures were introduced by Walsh [34], see also [15, 25]
for more details.

Definition 3.6 Let (�,F ,Ft , P) be a filtered probability space and M(t, B) be a random
process, where B ∈ B(A) the Borel σ -field of A. M is an (Ft , P)-martingale measure if:

1)For every B ∈ B(A), (M(t, B))t≥0 is a square integrable martingale, M(0, B) = 0.
2)For every t > 0, M(t, .) is a σ -finite L2-valued measure.
It is called continuous if for each B ∈ B(A), M(t, B) is continuous and orthogonal if

M(t, B).M(t, C) is a martingale whenever B ∩ C = ∅.

Remark 3.7 When the martingale measure M is orthogonal, it is proved in [34] the
existence of a random positive σ -finite measure μ(dt, da) on [0, T] × A such that
〈M(., B), M(., B)〉t = μ([0, t] × B) for all t > 0, and B ∈ B(A). μ(dt, da) is called the covari-
ance measure of M.

Theorem 3.8 1) Let P be a solution of the martingale problem (3.3). Then P is the law of
a d-dimensional adapted and continuous process X defined on an extension of the space
(�,F ,Ft , P) and which is a solution of the following SDE starting at x:

⎧
⎨

⎩

dXt =
∫

A
b(t, Xt , a)μt(da) dt +

∫

A
σ (t, Xt , a) M(da, dt),

X0 = x,
(3.5)

where M = (Mk)d
k=1 is a family of d-strongly orthogonal continuous martingale measures,

each of them having intensity dtμt(da).
2) Under assumptions (A1) and (A2), SDE (3.5) has a unique strong solution.

Proof Let us give an outline of the proof.
1) Suppose that X is a solution of SDE (3.5) on some probability space (�,F ,Ft , P), and

let f ∈ C2
b(Rn,R). An application of Itô’s formula gives

f (Xt) = f (X0) +
∫ t

0

∫

A

fx(Xs)b(s, Xs, a)μs(da) ds +
∫ t

0

∫

A

fx(Xs)σ (s, Xs, a)M(ds, da)

+
1
2

∫ t

0

∫

A

fxx(Xs)σσ ∗(s, Xs, a)μs(da) ds.

It is clear that f (Xt)– f (X0)–
∫ t

0
∫

A
Lf (s, Xs, a).μ(s, da) ds =

∫ t
0
∫

A
fx(Xs)σ (s, Xs, a)M(ds, da),

which is a martingale.
Conversely suppose that P is a solution of the relaxed martingale problem (3.3). This

implies that

f (Xt) – f (x) –
∫ t

0

∫

A

Lf (s, Xs, a).μ(s, da) ds

is a (P,Ft)-martingale for any f ∈ C2
b
(
R

d,R
)
.
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Choose f (x) = xi the ith coordinate of x, where x = (x1, x2, . . . , xn) ∈ BR the ball of center
0 and radius R in R

d , BR = {x ∈ R
d/|x| < R}. Define the first exist time of the process Xt

from the ball BR, τR = inf{t : Xt /∈ BR}.
f being C2

b , it follows that 
R
i = Xi(t ∧ τR) – Xi(0) –

∫ t∧τR
0

∫

A
bi(s, Xs, a)μs(da) ds is a

(P,Ft) continuous square integrable (P,Ft)-martingale. Therefore 
i(t) = Xi(t) – Xi(0) –
∫ t

0
∫

A
bi(s, Xs, a)μs(da) ds is a (P,Ft) continuous (P,Ft)– local martingale for any i =

1, 2, . . . , n.
Now, choosing f ∈ C2

b(Rd) such that f (x) = xixj for x = (x1, x2, . . . , xn) ∈ BR, we see simi-
larly that 〈
i,
j〉(t) =

∫ t
0
∫

A
aij(s, Xs, a)μs(da) ds with (aij) is the symmetric matrix σσ ∗ and

〈
i,
j〉(t) is the bounded variation process such that 
i(t)
j(t) – 〈
i,
j〉(t) is a (P,Ft)–
local martingale for all i, j. According to Theorem III-10 in [15], on an extension of the
probability space (�,F ,Ft , P), there exists a family of d-strongly orthogonal continuous
martingale measures M = (Mk)d

k=1, each of them having intensity dtμt(da) such that


i(t) =
d∑

k=1

∫ t

0

∫

A

σik(s, Xs, a)Mk(ds, da),

which achieves the proof.
2) The proof is similar to the existence and uniqueness of the solution of an SDE under

Lipschitz conditions [21]. �

Remark 3.9 i) Note that the family of orthogonal martingale measures M = (Mk)d
k=1 cor-

responding to the relaxed control dtμt(da) is not unique.
ii) From now on, the probability space and the Brownian motion (Bt) are fixed. So, a

relaxed control will be defined as in Definition 3.3. The Brownian motion (Bt) remains a
Brownian motion on this new probability space, but the filtration is no longer the natural
filtration of (Bt).

Now we are able to define precisely the relaxed control problem by the following.
Minimize over R the cost functional J (μ) defined by (3.4) subject to the relaxed dy-

namics (3.5).

3.3.1 Approximation of the relaxed control problem
In this section we will prove that the relaxed control problem is the closure of the set of
strict controls. This means that if (un) is a sequence of strict controls such that (δun

t (da) dt)
converges to μt(da) dt weakly, then the sequence of corresponding trajectories (Xn) con-
verges to Xμ where Xμ is the solution of relaxed SDE (3.5). This implies in particular that
the map μ −→ Xμ is continuous; and as a consequence, the strict and relaxed problems
have the same value function.

The following lemma [11, 29], which is classical in deterministic as well as in stochastic
control, shows that the closure (for the topology of weak convergence) of the set of strict
controls is exactly the set of relaxed controls. We give the proof for the sake of complete-
ness.

Lemma 3.10 (Chattering lemma)) Let μ be a relaxed control. Then there exists a sequence
of strict controls (un) with values in A such that

μn
t (da) dt = δun

t (da) dt converges weakly to μt(da) dt P-a.s.
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Proof For any g continuous in [0, T] × A, suppose that μ(t, da) has continuous sample
paths. Let n ≥ 1, and let (Ti = [ti, si[) be subintervals of the interval [0, T] of length not
exceeding 2–n. Cover A by finitely many disjoint sets (Aj) such that diameter (Aj) ≤ 2–n.
Choose a point (ti, aij) in Ti × Aj. We have

∑
j μ(ti, Aj) = 1. Subdivide each Ti further into

disjoint left-closed, right-open intervals Tij such that its length is the product of μ(ti, Aj)
with the length of Ti. ∀ ε > 0, for n large enough, we have

∣
∣g(t, a) – g(ti, aij)

∣
∣ < ε for (t, a) ∈ Ti × Aj,

sup
a

∣
∣g(t, a) – g(ti, a)

∣
∣ < ε for t ∈ Ti.

Define the sequence of predictable process μn(·) by μn(t, da) = δaij (da) for t ∈ Tij. And by
path-continuity of u(·), we may increase n further if necessary to obtain

∣
∣
∣
∣

∫ T

0

∫

A
g(t, a)μn(t, da) dt –

∫ T

0

∫

A
g(t, a)μ(t, da) dt

∣
∣
∣
∣

≤ 4εT +
∣
∣
∣
∣

∑

i,j

(∫

Tij

g(t, aij) dt –
∫

Tij

∫

A
g(ti, aij)μ(ti, da) dt

)∣
∣
∣
∣

≤ 4εT ,

which completes the proof. In case μ(t, da) is not continuous, we use an approximation
by continuous functions. �

Proposition 3.11 1) Let μ = μt(da) dt be a relaxed control. Then there exists a continuous
orthogonal martingale measure M(dt, da) whose covariance measure is given by μt(da) dt.

2) If we denote Mn(t, B) =
∫ t

0
∫

B δun
s (da) dWs, where (un) is defined as in the last lemma,

then for every bounded predictable process ϕ : � × [0, T] × A → R, such that ϕ(ω, t, .) is
continuous, we have

E
[(∫ t

0

∫

A

ϕ(ω, t, a)Mn(dt, da) –
∫ t

0

∫

A

ϕ(ω, t, a)M(dt, da)
)2]

→ 0 as n −→ +∞

for a suitable Brownian motion B defined on an eventual extension of the probability space.

Proof See [25] pages 196–197. �

The following theorem gives us the continuity of the controlled dynamics with respect
to the control variable in the sense of law.

Theorem 3.12 Let μ be a relaxed control and Xμ be the corresponding relaxed process.
Assume that the relaxed SDE (3.5) has a unique weak solution. Then there exists a sequence
(un) of strict controls such that the sequence (Xun ) converges in law to Xμ.

Proof According to the Chattering lemma, there exists (un) of strict controls such that
dtδun

t (da) converges weakly to μt(da) dt, P-a.s. Let (Xun ) and Xμ be the solutions of (3.5)
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corresponding to dtδun
t (da) and dtμt(da).

E
(∣
∣Xun

t – Xun
s

∣
∣2|Ft

) ≤ E
∫ t

s

∫

A

∣
∣b

(
u, Xun

s , a
)∣
∣2

δun
s (da) ds

+
∫ t

s

∫

A

∣
∣σ

(
u, Xun

s , a
)∣
∣2

δun
s (da) ds.

Since b and σ are bounded, it follows that

E
(∣
∣Xun

t – Xun
s

∣
∣2|Ft

)≤ C|t – s|.

Therefore (Xun ) is tight on the space D([0, T],Rd). Since (dtδun
t (da)) converges weakly

to dtμs(da) and Mn(dt, da) = δun
s (da) dBs converges to M(dt, da), and according to the

uniqueness in law of the relaxed SDE (3.5), it holds that (Xun ) converges in law to Xμ. �

We will prove under pathwise uniqueness that the approximation holds in quadratic
mean.

Theorem 3.13 Let μ be a relaxed control, and let X be the solution of (3.5). Assume that the
coefficients of stochastic differential equation (2.1) are continuous and bounded. Assume
also that pathwise uniqueness holds for (3.5). Then there exists a sequence (un) of strict
controls such that

i) lim
n→∞ E

[
sup

0≤t≤T

∣
∣Xn

t – Xt
∣
∣2

]
= 0.

ii) There exists a subsequence
(
unk

)
such that J

(
unk

)
converges to J(μ), (3.6)

where Xn denotes the solution of the stochastic differential equation (3.5) associated with
(un).

Proof i) Let μ be a relaxed control, then by Lemma 3.10 there exists a sequence (un) such
that μn

t (da) dt = δun
t (da) dt −→ μt(da) dt in R, P-a.s. Let Xn and X be the solutions of (3.5)

associated with μn and μ, respectively. Suppose that the result of Theorem 3.13 is false,
then there exists γ > 0 such that

inf
n

E
[∣
∣Xn

t – Xt
∣
∣2] ≥ γ . (3.7)

According to the compactness of A and the boundedness of the coefficients of SDE (3.5),
it follows that the family of processes


n =
(
μn,μ, Xn, X, Mn, M

)

is tight. Then, by the Skorokhod selection theorem [21], there exist a probability space
(�̃, F̃ , P̃) and a sequence 
̃n = (μ̃n, υ̃n, X̃n, Ỹ n, M̃n, Ñn) defined on it such that:

i) For each n ∈N, the laws of 
n and 
̃n coincide;
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ii) There exists a subsequence (
̃nk ), still denoted by of 
̃n, which converges to 
̃, P̃ –a.s.,
where 
̃ = (μ̃, υ̃, X̃, Ỹ , M̃, Ñ). By the uniform integrability, we have

γ ≤ lim inf
n

E
[

sup
0≤t≤T

∣
∣Xn

t – Xt
∣
∣2

]
= lim inf

n
Ẽ
[

sup
0≤t≤T

∣
∣X̃n – Ỹ n∣∣2

]
= Ẽ

[
sup

0≤t≤T
|X̃ – Ỹ |2

]
,

where Ẽ is the expectation with respect to P̃. According to i), we see that X̃n and Ỹ n satisfy
the following equations:

⎧
⎨

⎩

dX̃s
n =

∫

Ab(s, X̃s
n, a)μ̃n(da) ds +

∫

Aσ (s, X̃s
n, a) dM̃n(ds, da)

X̃0
n = x,

⎧
⎨

⎩

dỸs
n =

∫

Ab(s, Ỹs
n, a)υ̃n(da) ds +

∫

Aσ (s, Ỹs
n, a) dÑn(ds, da)

Ỹ0 = x.

Since (
̃n) converges to 
̃, P̃ – a.s., (X̃n) and (Ỹ n) converge respectively to X̃ and Ỹ , which
satisfy

⎧
⎨

⎩

dX̃s =
∫

Ab(s, X̃s, a)μ̃(da) ds +
∫

Aσ (s, X̃s, a) dM̃(ds, da)

X̃0 = x,
⎧
⎨

⎩

dỸs =
∫

Ab(s, Ỹs, a)υ̃(da) ds +
∫

Aσ (s, Ỹs, a) dÑ(ds, da)

Ỹ0 = x.

According to Lemma 3.10, the sequence (μn,μ) converges to (μ,μ) in R2. Moreover,

law
(
μn,μ

)
= law

(
μ̃n, υ̃n),

(
μ̃n, υ̃n) ⇒ (μ̃, υ̃), P̃-a.s in R2.

Hence, law(μ̃, υ̃) = law(μ,μ), which implies that μ̃ = υ̃ , P̃ – a.s. By the same method, we
can prove that M̃ = Ñ , P̃ – a.s. According to the pathwise uniqueness of equation (3.5), it
follows that X̃ = Ỹ , P̃ – a.s., which contradicts (3.7). i) is proved.

ii) This is a direct consequence of i) along with the continuity and boundedness of the
functions h and g . �

Remark 3.14 1) Using the same arguments, we can replace the sequence (δun
t (da) dt) by

any sequence (μn
t (da) dt) of relaxed controls converging weakly to μt(da) dt. This means

in particular that the function μ −→ Xμ is continuous.
2) As a consequence of the last theorem, the value functions of the strict and relaxed

control problems are equal. Therefore, by relaxing the control problem, the value function
remains unchanged. Moreover, the relaxed control problem has an optimal solution.

3.3.2 Discussion of another relaxed model
Assume that both the drift and the diffusion coefficients are controlled. Let us consider
another type of relaxation of the controlled stochastic differential equation, suggested in
the literature by many authors [1, 6, 35]. Instead of relaxing the infinitesimal generator
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of the controlled process, the authors considered the direct relaxation of the stochastic
differential equation as in deterministic control. This is carried out by integrating directly
the drift and diffusion coefficient against the relaxed control, which gives the following
equation:

⎧
⎨

⎩

dXt =
∫

A
b(t, Xt , a)μt(da) dt +

∫

A
σ (t, Xt , a)μt(da) dBt

X0 = x.
(3.8)

This “relaxed” form has the advantage to be linear with respect to the control variable,
with a convex compact set of controls. However, its solution has a serious drawback in that
it is not continuous with respect to the control variable. As a consequence, it follows that
the value functions of the strict and relaxed control problems cannot be equal. Therefore,
it cannot be considered as a true relaxed model. Moreover we have no mean to prove the
existence of an optimal relaxed control as the dynamics and the cost functional are not
continuous with respect to the control variable.

Indeed, consider the control problem governed by the following SDE:
⎧
⎨

⎩

dXt = ut dBt

X0 = x,

where admissible controls are measurable functions u : [0, 1] →A ={–1, 1}.
The corresponding “relaxed” equation is defined by

⎧
⎨

⎩

dXt =
∫

A
aμt(da) dBt

X0 = x.
(3.9)

Proposition 3.15 The solution of the controlled SDE (3.9) is not continuous in the control
variable.

Proof Consider the sequence of Rademacher functions

un(t) = (–1)k if
k
n

≤ t ≤ (k + 1)
n

, 0 ≤ k ≤ n – 1.

According to Lemma 3.1, the sequence of relaxed controls (dt.δun(t)(da)) converges
weakly to dt. 1

2 (δ–1 + δ1)(da).
Let Xn

t be the solution of SDE (3.9) associated with the relaxed control dt.δun(t)(da). It is
clear that

Xn
t =

∫ t

0

[∫

A

aδun(s)(da)
]

dBs =
∫ t

0
un(s) dBs

is a continuous martingale with quadratic variation 〈Xn, Xn〉t =
∫ t

0 u2
n(s).ds = t. Therefore

(Xn
t ) is a Brownian motion constructed possibly on an augmented probability space.
Let X∗ be the relaxed state process corresponding to the limit μ∗ = dt. 1

2 (δ–1 + δ1)(da),
then

X∗(t) =
∫ t

0

∫

A

a.(1/2)(δ–1 + δ1)(da) dBt = 0.
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It is obvious that the sequence of state processes (Xn
t ) does not converge in any topology

to X∗
t . Indeed

E
[∣
∣Xn

t – X∗
t
∣
∣2] = E

[∣
∣Xn

t
∣
∣2] = E

[∣
∣
∣
∣

∫ t

0
un(s).dBs

∣
∣
∣
∣

2]

=
∫ t

0
u2

n(s).ds = t. �

Remark 3.16 1) It is clear that the right limit is a Brownian motion, which could be rep-
resented as X∗(t) =

∫ t
0
∫

A
a.M(ds, da) where M(dt, da) =

∑2
i=1

√
1
2 dBi

s1(αi∈da), where B1 and
B2 are independent Brownian motions constructed possibly on an augmentation of the
probability space.

2) As a consequence of the last proposition, the value functions of the strict and “relaxed”
control problems could be different. Moreover, even if the set V is compact, there is no
mean to prove the existence of an optimal control for this model.

3) Unlike the model based on SDE (3.5), the controlled stochastic equation (3.8) is driven
by the martingale measure μt(da) dBt , which is not orthogonal. Its intensity is given by
μt(da) ⊗ μt(da) ⊗ dt. This is a worthy martingale measure in the sense of Walsh [34].

4 Necessary conditions for optimality
We know from the previous section that an optimal relaxed control μ exists in the set R.
This implies the existence of a filtered probability space still denoted by (�,F , (Ft)t≥0, P), a
measure-valued control dtμt(da), and an orthogonal martingale measure M(da, dt) whose
covariance measure is dtμt(da) such that:

⎧
⎨

⎩

dXt =
∫

A
b(t, Xt , a)μt(da) dt +

∫

A
σ (t, Xt , a) M(da, dt)

X(0) = x
(4.1)

and

J(μ) = inf
{

J(ν);ν ∈R
}

. (4.2)

Our goal in this section is to derive necessary conditions for optimality satisfied by the
optimal relaxed control μ. According to the Chattering lemma, dtμt(da) can be approxi-
mated in the sense of weak convergence by a sequence (un) of strict controls. We start by
establishing the necessary conditions of near optimality that are satisfied by the strict con-
trols (un). This important auxiliary result is based on Ekeland’s variational principle [13]
and is interesting in itself. Indeed in most practical situations it is sufficient to characterize
and compute nearly optimal controls.

Lemma 4.1 (Ekeland’s variational principle) Let (E, d) be a complete metric space and
f : E → R be lower semicontinuous and bounded from below. Given ε > 0, suppose that
uε ∈ E satisfies f (uε) ≤ inf(f ) + ε. Then, for any λ > 0, there exists ν ∈ E such that

• f (ν) ≤ f (uε),
• d(uε ,ν) ≤ λ,
• f (ν) ≤ f (ω) + ε

λ
d(ω,ν) for all ω �= ν .
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Let us endow the set Uad of strict controls with an appropriate metric. For any u and
v ∈ Uad, we set

d(u,ν) = P ⊗ dt
{

(ω, t) ∈ � × [0; T]; u(t,ω) �= ν(t,ω)
}

,

where P ⊗ dt is the product measure of P with the Lebesgue measure dt.

Remark 4.2 It is well known that (Uad, d) is a complete metric space and that the cost
functional J is continuous from Uad into R, see [26].

Now, let μ ∈ R be an optimal relaxed control and denote by X the solution of (4.1)
controlled by μ. From Lemma 3.10 and Theorem 3.13, there exists a sequence (un) of
strict controls such that

μn
t (da) dt = δun

t (da) dt −→ μt(da) dt weakly P-a.s, as n → +∞

and

lim
n→∞ E

[∣
∣Xn

t – Xμ
t
∣
∣2] = 0,

where Xn is the solution of (3.5) corresponding to μn = δun
t (da) dt.

Let us introduce the usual Hamiltonian of the system

H(t, x, u, p, q, r) =
〈
b(t, x, u), p

〉
+ tr

(
q∗σ (t, x, u)

)
– h(t, x, u),

where A∗ denotes the transpose of the vector or matrix A.
We define as in [36] by (p, q) and (P, Q) the first- and second-order adjoint processes

satisfying the following backward SDEs, assuming that (Ft) is the natural filtration of the
Brownian motion:

⎧
⎨

⎩

dp(t) = –[b∗
x(t)p(t) +

∑d
j=1 σ

j
x(t)qj(t) – hx(t)] dt + qt dBt

pT = –gx(xT ).
(4.3)

⎧
⎪⎪⎨

⎪⎪⎩

dPt = –[b∗
x(t)Pt + Ptbx(t) +

∑d
j=1 σ

j∗
x (t)Ptσ

j
x(t)Qt

+
∑d

j=1[σ j∗
x (t)Qj

t + Qj
tσ

j
x(t)] + Hxx(t)] +

∑
Qj

t dBt

PT == –gxx(xT ),

(4.4)

where bx(t) = bx(t, Xt , ut) and σ
j
x(t) = σ

j
x(t, Xt , ut) and hx(t) = hx(t, Xt , ut).

Under conditions (A1) and (A2), BSDEs (4.3) and (4.4) have unique solutions satisfying
the following estimates:

E
[

sup
0≤t≤T

|pt|2 +
∫ T

0
|qt|2 dt

]

< ∞,

E
[

sup
0≤t≤T

|Pt|2 +
∫ T

0
|Qt|2 dt

]

< ∞.
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Remark 4.3 In case (Ft) is not necessarily the natural filtration of the Brownian motion,
we must add in the backward equations (4.3) and (4.4) two cadlag martingales that are
orthogonal to the Brownian motion. This comes from the Itô representation theorem for
Brownian martingales.

4.1 Necessary conditions for near optimality
The generalized Hamiltonian H associated with a strict control u and the corresponding
state process X is defined as in [36] by

H(u(·),X(·))(t, y, v) = H
(
t, y, v, pt , qt – Ptσ (t, Xt , ut)

)
–

1
2

Tr
[
σ (t, Xt , ut)∗Ptσ (t, Xt , ut)

]
,

where (p, q) and (P, Q) are solutions of the adjoint equations (4.3) and (4.4). The following
theorem gives necessary conditions for near optimality for the strict control un in terms
of an approximate maximum principle. See [38] Theorem 4.1 for a complete proof of this
intermediary result.

Proposition 4.4 There exists a sequence of strict controls (un) such that

J
(
un) = J

(
μn) ≤ J(μ) + εn = inf

ν∈R
J(ν) + εn,

and there exist unique adapted solutions (pn, qn) and (Pn, Qn) of the adjoint equations (4.3)
and (4.4), corresponding to the admissible pair (un, Xn), such that for any γ ∈ [0, 1/3)

E
[∫ T

0
H

(
t, Xn

t , un
t
)

dt
]

≥ sup
a∈A

E
[∫ T

0
H

(
t, Xn

t ,α
)

dt
]

– εγ . (4.5)

Proof Let us give the outline of the proof. According to the optimality of μ and the Chat-
tering lemma, there exist a sequence (εn) of positive numbers with limn→∞ εn = 0 and a
sequence of strict controls (un) such that (un)

J
(
un) = J

(
μn) ≤ J(μ) + εn = inf

u∈U
J(u) + εn.

According to a suitable version of Lemma 4.1 with λ = ε
2
3 ,

J
(
un) ≤ J(u) + ε

1
3 d

(
un, u

)
, ∀u ∈ Uad. (4.6)

Let us define the perturbation

un,h =

⎧
⎨

⎩

a if t ∈ [t0; t0 + h]

un otherwise.
(4.7)

From (4.6) we have

0 ≤ J
(
un,h) – J

(
un) + ε

1
3 d

(
un,h, un).
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Using the definition of d, it holds that

0 ≤ J
(
un,h) – J

(
un) + ε

1
3 h. (4.8)

Let us denote by xn,h the solution of (2.1) corresponding to un,h, which is defined in (4.7).
To get the desired variational inequality we differentiate the function J(un,h) with respect
to h at h = 0. See [38] Theorem 4.1 for details. �

4.2 The relaxed maximum principle
Let X be the corresponding optimal state process associated with the optimal relaxed con-
trol μ, and (p, q) and (P, Q) be the solutions of the adjoint equations (4.9) and (4.10) asso-
ciated with (μ, X). We assume that (Ft) is the natural filtration of the Brownian motion.

⎧
⎨

⎩

dp(t) = –[b∗
x(t)p(t) +

∑d
j=1 σ

jT
x (t)qj(t) – hx(t)] dt + qt dBt

pT = –gx(xT ),
(4.9)

and
⎧
⎪⎪⎨

⎪⎪⎩

dPt = –[b∗
x(t)Pt + Ptbx(t) +

∑d
j=1 σ

j∗
x (t)Ptσ

j
x(t)Qt

+
∑d

j=1[σ j∗
x (t)Qj

t + Qj
tσ

j
x(t)] + Hxx(t)] dt +

∑
Qj

t

PT = –gxx(XT ),

(4.10)

where k = k(t, Xt ,μt) =
∫

Ak(t, Xt , a)μt(da), and k stands to be bx, σx, fx, hx, and Hxx.
The generalized Hamiltonian function associated with the optimal pair (μ, X) is defined

by

H(μ,X(·))(t, y, v) = H
(
t, y, v, pt , qt – Ptσ (t, Xt ,μ)

)
–

1
2

Tr
[
σ (t, Xt ,μ)∗Ptσ (t, Xt ,μ)

]
.

Theorem 4.5 (Relaxed maximum principle) Assume (A1) and (A2). Let (μ, X) be an opti-
mal pair, then there exist unique adapted solutions (p, q) and (P, Q) of the adjoint equations
(4.9) and (4.10), respectively, such that

E
[∫ T

0
H(t, Xt ,μ) dt

]

= sup
α∈A

E
[∫ T

0
H(t, Xt ,α) dt

]

. (4.11)

The proof of this theorem is based on the following stability theorem of adjoint processes
with respect to the control variable.

Theorem 4.6 (Stability theorem for BSDEs) Let (pn, qn), (Pn, Qn), and (resp.(p, q), (P, Q))
be the solutions of (4.3) and (4.4) associated with the pair (un, Xn) (resp the solutions of (4.9)
and (4.10) associated with the pair (μ, X). Then we have

i) lim
n→∞ E

[

sup
t≤T

∣
∣pn – p

∣
∣2 +

∫ T

t

∣
∣qn – q

∣
∣2 ds

]

= 0 (4.12)

and

ii) lim
n→∞ E

[

sup
t≤T

∣
∣Pn – P

∣
∣2 +

∫ T

t

∣
∣Qn – Q

∣
∣2 ds

]

= 0. (4.13)
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Proof i) Let us write down the drivers of the first-order adjoint equations (4.3) and (4.9)
corresponding to (un, Xn) and (μ, X).

Gn(t, pn
t , qn

t
)

= –bn
x(t)pn(t) +

d∑

j=1

σ j,n
x (t)qn(t) – hn

x(t)

G(t, pt , qt) = –bx(t)p(t) +
d∑

j=1

σ j
x(t)q(t) – hx(t),

where

f n(t) = f
(
t, Xn

t , un
t
)

=
∫

A

f
(
t, Xn

t , a
)
δun

t (da) for f = bx,σx, hx,

f (t) = f
(
t, X(t),μ(t)

)
=

∫

A
f
(
t, X(t), a

)
μ(t, da) where f stands for bx,σx, hx.

By using the result of Hu and Peng [20], Theorem 2.1, it is sufficient to show that

lim
n→∞ E

[∣
∣
∣
∣

∫ T

t

(
Gn(t, pt , qt) – G(t, pt , qt)

)
dt

∣
∣
∣
∣

2]

= 0.

Indeed, we have

∣
∣
∣
∣

∫ T

t

(
Gn(t, pt , qt) – G(t, pt , qt)

)
dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ T

t

(
bn

x(t) – bx(t)
)
p(t) dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

t

(
σ n

x (t) – σ x(t)
)
q(t) dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

t

(
hn

x(t) – hx(t)
)

dt
∣
∣
∣
∣.

(4.14)

Let us deal with the first term on the right-hand side of (4.14).

∫ T

t

(
bn

x(t) – bx(t)
)
p(t) dt

=
∫ T

t

(∫

A

bx
(
t, Xn

t , a
)
δun

t (da) –
∫

A
bx(t, Xt , a)μt(da)

)

p(t) dt

=
∫ T

t

(∫

A

bx
(
t, Xn

t , a
)
δun

t (da) –
∫

A
bx(t, Xt , a)δun

t (da)
)

p(t) dt

+
∫ T

t

(∫

A

bx(t, Xt , a)δun
t (da) –

∫

A
bx(t, Xt , a)μt(da)

)

p(t) dt.

(4.15)

bx being Lipschitz in x and (Xn
t ) converges to Xt uniformly in t in probability imply that

the first term on the right-hand side of (4.15) converges in probability to 0.
In addition, we have E(sup0≤t≤T |p(t)|2) < +∞, therefore sup0≤t≤T |p(t)| < +∞, P-a.s,

which implies the existence of a P-negligible set N such that for each ω /∈ N there exist
M(ω) < +∞ s.t. sup0≤t≤T |p(t)| ≤ M(ω).

In particular, for each ω /∈ N , the function bx(t, Xt , E(Xt), a)p(t).1[0,t] is a measurable
bounded function in (t, a) and continuous in a; therefore it is a test function for the stable
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convergence. Hence, by using the fact that (δun
t (da) dt) converges in V to μt(da) dt, P-a.s.,

it follows that the second term on the right-hand side tends to 0, P-a.s.
The other terms containing p(t) can be handled by using the same techniques.
The terms in (4.14) containing q(t) can be treated similarly. However, one should pay a

little more attention as q(t) is just square integrable (in (t,ω)). More precisely,

∣
∣
∣
∣

∫ T

t

(
σ j,n

x (t) – σ x(t)
)
q(t) dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ T

t

(
σ j,n

x (t) – σ x(t)
)
q(t)1{|q(t)|≤N} dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

t

(
σ j,n

x (t) – σ x(t)
)
q(t)1{|q(t)|≥N} dt

∣
∣
∣
∣.

The first integral on the right-hand side may be treated by using similar arguments as
previously as the function (σ n

x (t) – σ x(t))q(t)1{|q(t)|≤N} is measurable bounded and contin-
uous in a. The second term tends to 0 by Chebyshev’s inequality using the square integra-
bility of q(t).

ii) is proved by using similar arguments. �

Proof of Theorem 4.5. The main result is proved by passing to the limit in inequality (4.5)
and using Theorem 4.6 to get the desired inequality (4.11). �

Corollary 4.7 Under the same conditions as in Theorem 4.5 it holds that

E
[∫ T

0
H(t, Xt ,μ) dt

]

= sup
υ∈P(A)

E
[∫ T

0
H(t, Xt ,υ) dt

]

, (4.16)

where H(t, Xt ,υ) =
∫

A
H(t, Xt , a)υ(da) and P(A) is the space of probability measures on A.

Proof Since {δa(da); a ∈A} ⊂ P(A), it is clear that the inequality

sup
υ∈P(A)

E
[∫ T

0
H(t, Xt ,υ)

]

≥ sup
a∈A

E
[∫ T

0
H(t, Xt , a)

]

is obvious. Let us prove the inequality from the other sense. If υ ∈ P(A) is a probability
measure on A, then

E
[∫ T

0
H(t, Xt ,υ) dt

]

∈ conv

{

E
[∫ T

0
H(t, Xt , a) dt

]

, a ∈A

}

,

where conv(B) is the convex hull of B.
Hence, by using Fubini’s theorem, it holds that

sup
υ∈P(A)

E
[∫ T

0
H(t, Xt ,υ) dt

]

≤ sup
a∈A

E
[∫ T

0
H(t, Xt , a) dt

]

,

which implies that

E
[∫ T

0
H(t, Xt ,υ) dt

]

≤ sup
a∈A

E
[∫ T

0
H(t, Xt , a) dt

]

. �
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Remark Since P(A) is a subspace of V whose elements are constant (in (ω, t)) relaxed
controls, then (4.16) may be replaced by

E
[∫ T

0
H

(
t, Xt ,μ∗)dt

]

= sup
υ∈V

E
[∫ T

0
H(t, Xt ,υt) dt

]

. (4.17)

Corollary 4.8 (Pontryagin’s relaxed maximum principle). Under the same conditions as
in Theorem 4.5, there exists a Lebesgue negligible subset N in the interval [0, T] such that
for any t not in N it holds that

H(t, Xt ,μt) = sup
υ∈V

H(t, Xt ,υ), P-a.s. (4.18)

Proof Let ε ∈]0, T[ and B ∈Fε , for small h > 0 define the relaxed control

μh
t =

⎧
⎨

⎩

υ1B for ε < t < ε + h

μt otherwise,

where υ is a probability measure on A. It follows from (4.16) that

1/h
∫ ε+h

ε

E
[
1BH(t, Xt ,μt)

]
dt ≥ 1/h

∫ θ+h

θ

E
[
1BH(t, Xt ,υ)

]
dt.

Therefore passing at the limit as h tends to zero, we obtain

E
[
1BH(ε, Xε ,με)

] ≥ E
[
1BH(ε, Xε ,υ)

]

for any ε not in some Lebesgue null set N .
The last inequality is true for all B ∈ Fε, , then for any bounded Fε-measurable random

variable F it holds that

E
[
FH(ε, Xε ,με)

] ≥ E
[
FH(ε, Xε ,υ)

]
,

which leads to

E
[
H(ε, Xε ,με)/Fε

] ≥ E
[
H(ε, Xε ,υ)/Fε

]
.

We conclude by using the measurability of the Hamiltonian with respect to Fε . �

4.3 Example
To illustrate our results, we present an example inspired from [36]. To simplify the nota-
tions, we suppose that the problem is one dimensional. Assume that the dynamics is given
by

⎧
⎨

⎩

dxt = u(t) dBt , t ∈ [0, 1]

x0 = 0
(4.19)
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and the cost functional is defined by

J(u) =
1
2

E
[∫ 1

0

∣
∣
∣
∣x

2
t –

1
2

u2
t

∣
∣
∣
∣dt + x(1)2

]

.

The strict controls are measurable functions from [0, 1] to the set {–1, 1}.
By replacing xt =

∫ 1
0 u(s) dBs in the cost functional, we obtain

J(u) =
1
2

E
[∫ 1

0

(
3
2

– t
)

u(t)2 dt
]

.

Since ( 3
2 – t) > 0 for any t ∈ [0, 1], it is clear that J(u) attains its minimum for u(t) = 0,

with the state process x(t) = 0. But this is impossible as the strict controls take only the
values –1 and 1.

Let us define the relaxed optimal control problem. As the action space A = {–1, 1}, a re-
laxed control is defined explicitly by

dt.μt(da) = dt.
[
α(t)δ1(da) +

(
1 – α(t)

)
δ–1(da)

]
,

where α(t) is a measurable function such that 0 ≤ α(t) ≤ 1.
The cost functional associated with a relaxed control is then defined by

J(μ) = E
[∫ 1

0

(
3
2

– t
)

(
∫

{–1,1}
a
[
α(t)δ1(da) +

(
1 – α(t)δ–1(da)

])2 dt
]

= E
[∫ 1

0

(
3
2

– t
)

(
2α(t) – 1

)2 dt
]

.

The cost functional attains its minimum at α(t) = 1
2 and the optimal control is given by

μ = dt
(

1
2
δ1(da) +

1
2
δ–1(da)

)

.

Let us verify that this optimal control satisfies the necessary conditions of Theorem 4.5.
The first- and second-order adjoint processes (pt , qt) and (Pt , Qt) are the unique adapted

solutions of first- and second-order adjoint equations. The unique solutions are (pt , qt) =
(0, 0) and (Pt , Qt) = (2t – 4, 0).

It follows that the generalized Hamiltonian is given by

H
(
t, X(t), a

)
=

1
2
(
P(t) + 1

)
u2 + q(t)u

=
1
2

(2t – 3)u2.

Therefore the generalized Hamiltonian for relaxed controls is defined by

H
(
t, x∗(t),μ

)
=

1
2

(2t – 3)(
∫

{–1,1}
a
[
α(t)δ1(da) +

(
1 – α(t)δ–1(da)

])2

=
1
2

(2t – 3)
(
2α(t) – 1

)2.
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(2t – 3) being negative for t ∈ [0, 1], it follows that the generalized Hamiltonian is concave,
then attains it maximum at α(t) = 1

2 .
Therefore the relaxed optimal control dtμ(da) = dt( 1

2δ1(da) + 1
2δ–1(da)) satisfies the

maximum principle.
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