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Abstract
This article proposes a class of nonsmooth Filippov pest–predator ecosystems with
intermittent control strategies based on the pest’s antipredator behavior. aiming to
investigate the influence of control strategies and switching thresholds on pest
control. First, a comprehensive theoretical analysis of various equilibria within the
Filippov system is undertaken, emphasizing the presence and stability of sliding
mode dynamics and pseudoequilibrium. Secondly, through numerical simulations,
the article discusses boundary-focus, boundary-node, and boundary-saddle
bifurcation. Finally, the nonexistence of limit cycles in the Filippov system is
theoretically studied. The research indicates that the solution trajectories of the
model ultimately stabilize either at the real equilibria or at pseudoequilibrium on the
model’s switching surface. Moreover, when the model has multiple coexisting real
equilibrium and pseudoequilibrium, the pest-control strategy is correlated with the
initial density of both the pest and the predator population.

Keywords: Nonsmooth Filippov system; Sliding bifurcation; Boundary equilibrium
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1 Introduction
The disturbance caused by agricultural pests has always been a significant issue in agricul-
tural production. Due to the excessive use of chemical pesticides, traditional pest-control
methods have gradually shown their limitations. Therefore, the search for a more compre-
hensive and sustainable control strategy has become particularly urgent. Integrated Pest
Management (IPM) combines various methods such as chemical control, biological con-
trol, and physical control [1–3], becoming the primary approach to pest control. In the
early twentieth century, especially in the 1930s, mathematicians Volterra and Lotka con-
ducted research on the mathematical models of interactions between predators and prey.
They proposed the famous Lotka–Volterra model [4, 5], laying the theoretical foundation
for later IPM strategies. Building upon the classical Lotka–Volterra model, we establish
the following pest–enemy management model with a Holling-IV-type functional response
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function:
⎧
⎨

⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – βx(t)y(t),
dy(t)

dt = μx(t)y(t)
a+x2(t) – δy(t) – ηx(t)y(t),

(1)

where x(t) represents the density of pests and y(t) represents the density of enemies; r
represents the intrinsic growth rate; K represents the capacity; δ denotes the natural death
rate of the natural enemies; μ is the conversion rate of prey into predator; while β denotes
the predation rate and η represents the antipredation coefficient.

The main objective of Integrated Pest Management strategy is not to completely eradi-
cate pests, but to implement control measures when the pest-population density reaches
economic thresholds, keeping pest density within a tolerable range [6–11]. Considering
the intermittent use of pesticides, meaning the continuous adoption of integrated pest-
management strategies for a period until the pest-population density falls below the eco-
nomic damage threshold, it is necessary to characterize this intermittent control strategy
using the Filippov nonsmooth dynamical system. Filippov nonsmooth dynamical systems
have found widespread application across various fields, including mathematics, physics,
life sciences, medicine, and engineering [12–21]. In recent years, extensive research by ex-
perts and scholars has led to rapid development in the theory of Filippov systems [22–28].
Based on model (1), we derive the following Filippov ecological system with intermittent
control strategy:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= rx(t)(1 –
x(t)
K

) – βx(t)y(t),

dy(t)
dt

=
μx(t)y(t)
a + x2(t)

– δy(t) – ηx(t)y(t),

⎫
⎪⎪⎬

⎪⎪⎭

x < ET ,

dx(t)
dt

= rx(t)(1 –
x(t)
K

) – βx(t)y(t) – px(t),

dy(t)
dt

=
μx(t)y(t)
a + x2(t)

– δy(t) – ηx(t)y(t) + τ ,

⎫
⎪⎪⎬

⎪⎪⎭

x > ET ,

(2)

where ET denotes the economic threshold; p ∈ [0, 1) represents the mortality rate of pests
caused by pesticide spraying; τ represents the number of enemies released at time t.

The model (2) can be expressed as:
⎧
⎨

⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – βx(t)y(t) – εpx(t),
dy(t)

dt = μx(t)y(t)
a+x2(t) – δy(t) – ηx(t)y(t) + ετ ,

(3)

where

ε =

⎧
⎨

⎩

0, H(Z) = x – ET < 0,

1, H(Z) = x – ET > 0.
(4)

Let H(Z) = x – ET and vector field Z = (x(t), y(t))T . Furthermore, the discontinuity
boundary � separating the two regions G1 = {Z ∈ R2

+|H(Z) < 0} and G2 = {Z ∈ R2
+|H(Z) >

0} is defined as

� =
{

Z ∈ R2
+|H(Z) = 0

}
,
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then the Filippov system (3) and (4) can be modified to

dZ(t)
dt

=

⎧
⎨

⎩

FG1 (Z), Z ∈ G1,

FG2 (Z), Z ∈ G2,
(5)

where

FG1 (Z) =

⎡

⎢
⎢
⎢
⎣

rx(t)
(

1 –
x(t)
K

)

– βx(t)y(t)

μx(t)y(t)
a + x2(t)

– δy(t) – ηx(t)y(t)

⎤

⎥
⎥
⎥
⎦

and

FG2 (Z) =

⎡

⎢
⎢
⎢
⎣

rx(t)
(

1 –
x(t)
K

)

– βx(t)y(t) – px(t)

μx(t)y(t)
a + x2(t)

– δy(t) – ηx(t)y(t) + τ

⎤

⎥
⎥
⎥
⎦

.

For convenience, let us denote the subsystems of Filippov system (5) on regions G1 and
G2 as systems S1 and S2.

The structure of our paper is organized as follows: The next section delves into the ex-
amination of the existence and stability of equilibria for the two subsystems of the Filippov
system. Section 3 explores the existence of various equilibria of the Filippov system, with
special emphasis on the existence and stability of pseudoequilibrium. In Sect. 4, we inves-
tigate the nonexistence of boundary equilibrium bifurcation and limit cycles. This paper
concludes with some biological implications drawn from theoretical analysis and numer-
ical simulations.

2 Preliminaries
2.1 The existence and stability of the equilibria of subsystem S1

If x < ET , subsystem S1 is given by

⎧
⎨

⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – βx(t)y(t),
dy(t)

dt = μx(t)y(t)
a+x2(t) – δy(t) – ηx(t)y(t).

(6)

The two isoclines of model (6) are as follows

y =
r
β

(

1 –
x
K

)

and

ηx3 + δx2 – (μ – aη)x + aδ = 0. (7)

We consider the second equation (7), which is a cubic equation in one dollar, let

f (x) .= ηx3 + δx2 – (μ – aη)x + aδ = 0.
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Taking the first and second derivatives of the function f (x) with respect to x gives:

f ′(x) = 3ηx2 + 2δx – (μ – aη); f ′′(x) = 6ηx + 2δ > 0,

thus, f ′(x) is strictly increasing. When (μ – aη) ≤ 0, we have f ′(x) > 0, indicating that f (x)
is monotonically increasing, with f (0) = aδ > 0. Therefore, subsystem S1 does not have any
internal equilibria. When (μ – aη) > 0, f ′(x) = 0 has a positive root

xg =
–δ +

√
δ2 + 3η(μ – aη)

3η
.

Therefore, f (x) strictly decreases on the interval (0, xg) and strictly increases on the interval
(xg ,∞). If f (xg) > 0, the equation f (x) = 0 has no positive roots, meaning that subsystem
S1 has no internal equilibrium, If f (xg) = 0, subsystem S1 has an internal equilibrium Eg =
(xg , yg), where

yg =
r
β

(

1 –
xg

K

)

.

If f (xg) < 0, subsystem S1 has two internal equilibria, denoted as E11 = (x11, y11) and E12 =
(x12, y12), where

x11 =
–δ +

√
A(cos θ

3 –
√

3 sin θ
3 )

3η
, y11 =

r
β

(

1 –
–δ +

√
A(cos θ

3 –
√

3 sin θ
3 )

3Kη

)

;

x12 =
–δ +

√
A(cos θ

3 +
√

3 sin θ
3 )

3η
, y12 =

r
β

(

1 –
–δ +

√
A(cos θ

3 +
√

3 sin θ
3 )

3Kη

)

,

where A = δ2 +3η(μ–aη), θ = arccos T , T = 2Aδ–3ηB
2
√

A3 , B = –δ(μ–aη)–9ηaδ, and T ∈ (–1, 1).
Next, let us analyze the local stability of equilibrium Eg = (xg , yg) for model (2). we first

compute the Jacobian matrix of the model (2) as follows:

J(x, y) =

(
r(1 – x

K ) – rx
K – βy –βx

μy
a+x2 – 2μx2y

(a+x2)2 – ηy μx
a+x2 – δ – ηx

)

,

upon substituting Exg , we obtain:

J(xg , yg) =

⎛

⎝
– rxg

K –βxg
μyg

a+x2
g

– 2μx2
g yg

(a+x2
g )2 – ηyg 0

⎞

⎠ ,

we can easily calculate the determinant of |J(xg , yg)| as:

∣
∣J(xg , yg)

∣
∣ =

∣
∣
∣
∣
∣
∣

– rxg
K – βxg

μyg
a+x2

g
– 2μx2

g yg

(a+x2
g )2 – ηyg 0

∣
∣
∣
∣
∣
∣

= βxgyg

(
μ(a – x2

g )
(a + x2

g )2 – η

)

. (8)

It follows from f (xg) = 0 that a = ηx3
g +δx2

g –μxg
–δ–ηxg

. By substituting this into (4) we obtain

∣
∣J(xg , yg)

∣
∣ =

β

μ
xgyg

(
μδ – 2η2x3

g – 4δηx2
g – 2δ2xg

)
.
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Let g(x) = μδ – 2η2x3
g – 4δηx2

g – 2δ2xg , taking the derivative of g(x) yields

g ′(x) = –
(
6η2x2

g + 8δηxg + 2δ2) < 0,

which indicates that g(x) is monotonically decreasing for x > 0. Since f ′(xg) = 3ηx2
g + 2δxg –

(μ – aη) = 0 and f (xg) = ηx3
g + δx2

g – (μ – aη)xg + aδ = 0 it follows that

g(xg) = μδ – 2η2x3
g – 4δηx2

g – 2δ2xg = –2η2x3
g – δηx2

g + δ
(
μ – 3ηx2

g – 2δxg
)

= –2η2x3
g – δηx2

g + δ
[
(μ – aη) – 3ηx2

g – 2δxg + aη
]

= –2η2x3
g – δηx2

g + aδη

= η
[
–2ηx3

g – δx2
g – ηx3

g – δx2
g + (μ – aη)xg

]

= ηxg
[
–3ηx2

g – 2δxg + (μ – aη)
]

= 0.

Thus, |J(x2, y2)| = 0, which means that Eg is a degenerate equilibrium.
Next, let us analyze the local stability of the equilibrium E2 = (x2, y2), where f ′(xg) =

3ηx2
g + 2δxg – (μ – aη) = 0 and f (xg) = ηx3

g + δx2
g – (μ – aη)xg + aδ < 0, then we have

g(xg) = μδ – 2η2x3
g – 4δηx2

g – 2δ2xg = –2η2x3
g – δηx2

g + aδη

< η
[
–2η2x3

g – δηx2
g – ηx3

g – δx2
g + (μ – aη)xg

]

= ηxg
[
–3ηx2

g – 2δxg + (μ – aη)
]

= 0

and xg < x2, this implies g(x2) < g(xg) < 0. Thus, |J(x2, y2)| < 0, which means that E2 is a
saddle.

Similarly, for the stability of E1, where f ′(x1) < 0 that

g(x1) = μδ – 2η2x3
1 – 4δηx2

1 – 2δ2x1 > –2η2x3
1 – δηx2

1 + aδη

= ηx1
[
–3ηx2

1 – 2δx1 + (μ – aη)
]

> 0,

which implies |J(x1, y1)| > 0, the trace of J(x1, y1) is trJ(x1, y1) = – rx1
K < 0, thus the positive

equilibrium E1 is stable.

2.2 The existence and stability of the equilibria of subsystem S2

Next, we will analyze the equilibria of subsystem S2. If x > ET , subsystem S2 is given by

⎧
⎨

⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – βx(t)y(t) – px(t),
dy(t)

dt = μx(t)y(t)
a+x2(t) – δy(t) – ηx(t)y(t) + τ ,

(9)

the two isoclines of model (8) are:

y =
1
β

[

r
(

1 –
x
K

)

– p
]

(10)

and

y =
τ

δ + ηx – μx
a+x2

=
(a + x2)τ

ηx3 + δx2 – (μ – aη)x + aδ
.
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Obviously, there exists a boundary equilibrium (i.e., pest-extinction equilibrium) (0, τ
δ

) in
subsystem S2.

Let us now analyze the internal equilibria of subsystem S2 by solving the equation

1
β

[

r
(

1 –
x
K

)

– p
]

=
(a + x2)τ

ηx3 + δx2 – (μ – aη)x + aδ
. (11)

Equation (11) can be transformed into a fourth-degree equation, indicating that it can
have up to four solutions. To discuss the number of internal equilibria in model (9), let us
modify equation (11) to:

r
βKτ

[
ηx3 + δx2 – (μ – aη)x + aδ

]
+ x = –

(K – pK
r )x + a

x + pK
r – K

,

letting

g1(x) =
r

βKτ

[
ηx3 + δx2 – (μ – aη)x + aδ

]
+ x

and

g2(x) = –
(K – pK

r )x + a
x + pK

r – K
.

Taking the derivative of g(x) with respect to x yields

g ′
1(x) =

r
βKτ

[
3ηx2 + 2δx – (μ – aη)

]
+ 1,

g ′
1(x) is a quadratic equation with the concave downward opening shape, and its axis of

symmetry is located at x = – δ
3η

. When g ′
1(– δ

3η
) ≥ 0, g1(x) is monotonically increasing in

the interval (–∞, 0), when g ′
1(– δ

3η
) < 0, there exists xp < – δ

3η
such that g1(x) is mono-

tonically increasing in the interval (–∞, xp). At the same time, we have g1(0) = raδ
βKτ

and
limx→–∞ g1(x) = –∞. Therefore, g2(x) has at least one negative root.

g2(x) is an inverse proportion function with a center of symmetry at (K – Kp/r, (K –
Kp/r)). When K – Kp

r > 0, the graph of the function is located in the first, second, and
fourth quadrants. When K – Kp

r < 0, the graph of the function is located in the second,
third, and fourth quadrants.

To investigate the number of equilibria of the model, we plot g1(x) and g2(x) on the same
coordinate axis to find the number of intersections, as shown in Fig. 1.

(i) When – r
βKτ

(μ – aη) + 1 > 0, g1(x) is monotonically increasing in the interval (0, +∞).
In this case, g1(x) has no positive roots. As shown in Fig. 1[A], when K – Kp

r < 0, g1(x) and
g2(x) have no intersections in the interval (0, +∞). As shown in Fig. 1[B], when K – Kp

r > 0,
g1(x) and g2(x) have at most one intersection in the interval (0, +∞).

(ii) When – r
βKτ

(μ– aη) + 1 < 0, g1(x) may have two positive roots. As shown in Fig. 1[C],
when K – Kp

r < 0, g1(x) and g2(x) have at most two intersections on the interval (0, +∞).
As shown in Fig. 1[D], when K – Kp

r > 0, g1(x) and g2(x) have at most three intersections
on the interval (0, +∞).
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Figure 1 Existence of equilibria in subsystem S2

In conclusion, subsystem (8) can have a maximum of three positive equilibria. To exam-
ine the stability of equilibria E2i(x2i, y2i) of subsystem S2, we calculate the Jacobian matrix
as follows

J(x, y) =

(
r(1 – x

K ) – rx
K – βy – p –βx

μy
a+x2 – 2μx2y

(a+x2)2 – ηy μx
a+x2 – δ – ηx

)

,

substituting E2i into the equation, we obtain

J(x2i, y2i) =

⎛

⎝
– rx2i

K –βx2i
μy2i

a+x2
2i

– 2μx2
2iy2i

(a+x2
2i)

2 – ηy2i –τ

⎞

⎠ =

(
A B
C D

)

.

The characteristic equation of E2i is as follows:

λ2 – (A + D)λ + (AC – BD) = 0,

the trace of J(x2i, y2i) is trJ(x2i, y2i) = (A + D) = – rx1
K – τ < 0, thus, if AD – BC > 0, E2i is

stable, if AD – BC < 0, E2i is a saddle.
Furthermore, the existence and stability of the equilibria of subsystem S2 are investi-

gated through numerical simulations, as shown in Fig. 2. In Fig. 2[A], subsystem S2 has a
single positive equilibrium E21, which is a stable focus. In Fig. 2[B], we can observe that
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Figure 2 Subsystem S2 has one, two, and three positive equilibria. Parameters are [A]
r = 1,K = 5,β = 0.5,μ = 0.4,a = 1,δ = 0.2,η = 0.1,p = 0.2,τ = 0.21; [B]
r = 1,K = 5,β = 0.5,μ = 0.2,a = .6,δ = 0.05,η = 0.2,p = 0.2,τ = 0.12; [C]
r = 1,K = 5,β = 0.5,μ = 0.4,a = 0.4,δ = 0.3,η = 0.1,p = 0.2,τ = 0.12

subsystem S2 has two positive equilibria, E21 (a stable node) and E22 (a stable node). Fig-
ure 2[C] demonstrates that subsystem S2 has three positive equilibria, E21, E22, and E23,
with E21 being a stable focus, E22 being a saddle, and E23 being a stable node.



Huang et al. Advances in Continuous and Discrete Models         (2024) 2024:13 Page 9 of 24

3 Sliding dynamics
3.1 Sliding domain
In accordance with the Filippov system definition, the sliding domain is denoted as

� =
{

Z ∈ �|σ (Z) ≤ 0
}

,

where σ = {Z ∈ R2
+|H(Z) = 0}, while σ (Z) < 0 is equivalent to

ET2
[

r
(

1 –
ET
K

)

– βy
]

·
[

r
(

1 –
ET
K

)

– βy – p
]

≤ 0,

that is
[

r
(

1 –
ET
K

)

– βy
]

≥ 0

and
[

r
(

1 –
ET
K

)

– βy – p
]

≤ 0.

Solving the above two inequalities we obtain

r(K – ET) – pK
βK

≤ y ≤ r(K – ET)
βK

.

For convenience, let ymin = r(K–ET)–pK
βK and ymax = r(K–ET)

βK . Therefore, the sliding segment of
Filippov (5) can be defined as

�S =
{

(x, t)T ∈ R2
+|ymin < y < ymax

}
.

Note. Due to the fact that the two inequalities FG1 H(Z) ≤ 0 and FG2 H(Z) ≥ 0 cannot be
simultaneously satisfied, the Filippov system (5) lacks an escaping region.

3.2 Equilibria of Filippov system (5)
There are five types of equilibria in Filippov systems, boundary equilibrium (Eb), pseu-
doequilibrium (Ep), real equilibrium (ER), virtual equilibrium (EV ), and tangency point
(Et).

Pseudoequilibrium: We employ Utkin’s equivalent control method to study the dynam-
ical behavior of the Filippov system (5) in the sliding region �S . By considering H(Z) = 0
and the first equation of Filippov system (5), we obtain

∂H
∂t

= rx(t)
(

1 –
x(t)

k

)

– βx(t)y(t) – εpx(t) = 0, x(t) = ET ,

solving the above equation yields

ε =
r(K – ET) – Kβy(t)

Kp
.
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Substituting ε into the second equation of system (5) yields the dynamical equation of the
Filippov system on the sliding domain �S as follows:

dy
dt

=
μpET – (δp + ηpET + τβ)(a + ET2)

(a + ET2)p
y +

rτ (K – ET)
KP

.= φ(y), (12)

which has a unique pseudoequilibrium state Ep(ET , yp), where

yp =
rτ (K – ET)(a + ET2)

K[(δp + ηpET + τβ)(a + ET2) – μpET]
, (13)

and yp ∈ �S, ymin ≤ yp ≤ ymax. Next, we will discuss the stability of Ep(ET , yp). Taking the
derivative of the scalar equation (11) with respect to y yields

φ′(y) =
μpET – (δp + ηpET + τβ)(a + ET2)

(a + ET2)p
.

Therefore, if the condition

μpET < (δp + ηpET + τβ)
(
a + ET2)

holds, then, φ′(y) < 0, and the pseudoequilibrium Ep is locally asymptotically stable on the
sliding domain �S .

Boundary equilibrium: The two boundary equilibria of Filippov system (5) satisfy the
following equations

⎧
⎪⎪⎨

⎪⎪⎩

rx(t)(1 – x(t)
k ) – βx(t)y(t) = 0,

μx(t)y(t)
a+x2(t) – δy(t) – ηx(t)y(t) = 0,

x(t) = ET

(14)

and

⎧
⎪⎪⎨

⎪⎪⎩

rx(t)(1 – x(t)
k ) – βx(t)y(t) – px(t) = 0,

μx(t)y(t)
a+x2(t) – δy(t) – ηx(t)y(t) + τ = 0,

x(t) = ET .

(15)

It can be deduced by solving equation (14), if δ = μET
a+ET(t) – ηET holds, then Filippov system

(5) has a boundary equilibrium E2
b(ET , ymax). It can be deduced by solving equation (15), if

ymin = τ

δ+ηET– μx
a+ET2

holds, then Filippov system (5) has a boundary equilibrium E1
b(ET , ymin).

At the same time, to ensure biological significance, it must hold that ymin > 0, that is,

δ >
μx

a + ET2 – ηET .

Under this condition, the Filippov system (5) exhibits two boundary equilibria, namely,
E1

b(ET , ymin) and E2
b(ET , ymax).
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Tangent point: According to the definition of the Filippov system’s tangent point, it
should satisfy

⎧
⎨

⎩

rx(t)(1 – x(t)
k ) – βx(t)y(t) = 0,

x(t) = ET

and
⎧
⎨

⎩

rx(t)(1 – x(t)
k ) – βx(t)y(t) – px(t) = 0,

x(t) = ET .

Therefore, the tangent points of the Filippov system (5) are E1
t (ET , ymin) and E2

t (ET , ymax),
and they are the two endpoints of the sliding segment.

Regular equilibrium: To investigate the real and virtual equilibria of the Filippov system
(5), it is necessary to conduct a relevant discussion on the equilibria of subsystems S1 and
S2.

For subsystem S1, it has two internal equilibria E11(x11, y11) and E12(x12, y12), where x11 <
x12. According to the definitions of real and virtual equilibria, we can classify them as
follows:

(i) If x12 < ET , then both internal equilibria of subsystem S1 are real equilibria, denoted
as E11

r and E12
r .

(ii) If x11 > ET , then both internal equilibria of subsystem S1 are virtual equilibria, de-
noted as E11

v and E12
v .

(iii) If x11 < ET < x12, then both internal equilibria of subsystem S1 have a real equilib-
rium and a virtual equilibrium, denoted as E11

r and E12
v .

For subsystem S2, as shown in Fig. 2, it contains three internal equilibria E21(x21, y21),
E22(x22, y22), and E23(x23, y23). According to the definitions of real and virtual equilibria,
we can classify them as follows:

(i) If x23 < ET , then three internal equilibria of subsystem S2 are virtual equilibria, de-
noted as E21

v , E22
v , and E23

v .
(ii) If x21 > ET , then three internal equilibria of subsystem S2 are real equilibria, denoted

as E21
r , E22

r , and E23
r .

(iii) If x21 < ET < x22, then three internal equilibria of subsystem S2 have two real equi-
libria and a virtual equilibrium, denoted as E22

r , E23
r , and E21

v .
(iiii) If x22 < ET < x23, then three internal equilibria of subsystem S2 have two virtual

equilibria and a real equilibrium, denoted as E21
v , E22

v , and E23
r .

4 Sliding bifurcation analysis
4.1 Sliding mode bifurcation
According to the sliding region and sliding segments of the Filippov system (5), it can
be determined whether or not there may be sliding segments. Under the control of the
IPM strategy, the concentration of insecticide spraying and the release quantity of enemies
have a significant impact on pest control. The parameters p and τ are selected below, and
numerical simulations are employed for the study.

When the lethality of insecticides to pests is low, with the continuous variation of the
control threshold ET , the length of the sliding segment remains constant, and the pseu-
doequilibrium changes from nonexistence to existence, as shown in Fig. 3[A] for p = 0.4.
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Figure 3 Sliding mode bifurcation of Filippov system (5). Parameters are
r = 1,K = 5,β = 0.4,μ = 0.6,a = 1,δ = 0.6,η = 0.3

(i) With an increase in p, the length of the sliding segment grows, and when p reaches
a certain threshold, the pseudoequilibrium persists and tends to stabilize, as shown in
Fig. 3[B] for p = 0.8. (ii) With an increase in τ , the length of the sliding segment remains
unchanged, and the pseudoequilibrium enlarges, as shown in Fig. 3[C], when τ increases
to 1, the pseudoequilibrium consistently stays on the sliding segment. From the perspec-
tive of pest control, the presence of a stable pseudoequilibrium on the sliding segment in
the Filippov system (5) is advantageous for pest control.

4.2 Boundary equilibrium bifurcation
Boundary equilibrium bifurcation in the Filippov system occurs due to the collision of real
equilibrium and tangent point (or pseudoequilibrium) at the discontinuity surface when
one parameter passes through a threshold. When the corresponding equilibrium is a node,
focus, or saddle, the resulting boundary bifurcation is referred to as the boundary node,
focus, or saddle bifurcation.

Next, we will systematically study the bifurcation of boundary equilibria of the Filippov
system (5) through numerical simulation.

Boundary-node bifurcation: As shown in Fig. 4[A], when ET = 5, the subsystem S2 of
the Filippov system exhibits a real equilibrium E22

r , with E22
r being a stable node; mean-
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Figure 4 Boundary-node bifurcation for Filippov system (5). Parameters are
r = 0.8,K = 10,β = 0.5,μ = 0.2,a = 5,δ = 0.8,η = 0.02,p = 0.25,τ = 0.16, and [A] ET = 5; [B] ET = 5.74; [C]
ET = 6.2

while, the system has a sliding segment �S , but no pseudoequilibrium. At this point, the
trajectory tends towards the stable node E22

r . As shown in Fig. 4[B], when ET increases
to the critical value ET = 5.74, the stable node E22

r collides with tangent point Et to form
a point Eb, and boundary-node bifurcation occurs at the boundary point Eb of the sys-
tem. At this point, the trajectory approaches the boundary equilibrium Eb. As shown in
Fig. 4[C], when ET continues to increase to ET = 6.2, the boundary equilibrium of system
(5) is separated into pseudoequilibrium Ep, tangent point Et , and virtual equilibrium E22

v .
At this point, the trajectory tends to the pseudoequilibrium Ep.

Boundary-focus bifurcation: As shown in Fig. 5[A], when ET = 1, the subsystem S2 of
the Filippov system has real equilibrium E21

r and tangent point Et , with E21
r being a stable

focus. At this time, the trajectory tends the stable focus E2
r . When ET increases to ET =

1.13, the boundary-node bifurcation occurs at the boundary point Eb. At this point, the
trajectory approaches Eb, as shown in Fig. 5[B]. When ET continues to increase to ET =
1.4, the boundary equilibrium of system 5 is separated into pseudoequilibrium Ep, tangent
point Et , and virtual equilibrium E21

v . At this point, the trajectory tends to Ep, as shown in
Fig. 5[C].
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Figure 5 Boundary-focus bifurcation for Filippov system (5). Parameters are
r = 0.8,K = 10,β = 0.5,μ = 0.2,a = 5,δ = 0.8,η = 0.02,p = 0.2,τ = 0.1, and [A] ET = 1; [B] ET = 1.13; [C] ET = 1.4

Boundary-saddle bifurcation: The condition for the occurrence of a boundary-saddle
bifurcation in the Filippov system is as follows: when the parameter ET reaches a criti-
cal value, the system’s real equilibrium (saddle), boundary equilibrium, and tangent point
collide on a discontinuity surface, merging into a single point EB. As shown in Fig. 6[A],
when ET = 0.6, the system has a virtual equilibrium E21

v , two real equilibria E22
r and E22

r ,
a pseudoequilibrium Ep, and a tangent point Et , where E22

r is a saddle. As ET increases to
the threshold ET = 1.1, the pseudoequilibrium Ep, real equilibrium E22

r , and tangent point
Et collide and merge into a single point Eb, leading to a boundary-saddle bifurcation, as
shown in Fig. 6[B]. As ET continues to increase, Eb separates into a virtual equilibria E22

v

and a tangent point Et , as depicted in Fig. 6[C], where ET = 1.5.
From the perspective of pest control, the occurrence of boundary-node bifurcation and

boundary-focus bifurcation is advantageous for pest control. As shown in Fig. 4[A] and
Fig. 5[A], when the threshold ET is small, pests tend to stabilize at the real equilibria (node
E22

r or focus E21
r ). This indicates that despite the implementation of IPM strategies, the

pest population is not effectively controlled. However, as the threshold ET increases, the
Filippov system (5) undergoes boundary-node (or -focus) bifurcation, causing the system
to stabilize at pseudoequilibrium, thereby preventing a large-scale outbreak of the pest
population. With the increase of ET , the occurrence of boundary-saddle bifurcation is
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Figure 6 Boundary-saddle bifurcation for Filippov system (5). Parameters are
r = 1,K = 4,β = 0.5,μ = 0.4,a = 0.35,δ = 0.3,η = 0.1,τ = 0.12, and [A] p = 0.25, ET = 0.6; [B]
p = 0.25, ET = 1.09065; [C] p = 0.25, ET = 1.5; [D] p = 0.15, ET = 1.09065; [E] p = 0.3, ET = 1.09065; [F]
p = 0.4, ET = 1.09065

unfavorable for the control of the pest population. As shown in Fig. 6, the occurrence of
boundary-saddle bifurcation leads to the trajectories of the Filippov system (5) to eventu-
ally approach the real equilibrium E23

r , resulting in a pest outbreak.
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However, we can also choose p as the bifurcation parameter, as shown in Figs. 6[D]-[B]-
[E]. When p is small (p = 0.15), the trajectories tend toward the real equilibrium E23

r , as
shown in Fig. 6[D]. As p increases to p = 0.25, the system’s virtual equilibrium E22

v and
tangent point Et collide and merge into a single point Eb, leading to a boundary-saddle
bifurcation in the Filippov system (5), as shown in Fig. 6[B]. When p continues to increase
to p = 0.3, Eb separates into a pseudoequilibrium Ep, a real equilibrium E22

r , and a tangent
point Et , as shown in Fig. 6[E]. At this point, the trajectories of the system tend toward
either the pseudoequilibrium Ep or the real equilibrium E23

r . In this scenario, even with a
low predator density, it can still result in a pest outbreak. As p continues to increase, the
real equilibria E22

r and E23
r disappear, and the trajectories of the system eventually tend

toward the pseudoequilibrium, avoiding a pest outbreak, as shown in Fig. 6[F].

4.3 Nonexistence of limit cycle
In Filippov systems, the following three types of limit cycles may exist:

(i) The limit cycle is entirely contained within the vector field FGi (Z), i = 1, 2, as shown
in Fig. 7[A].

(ii) A limit cycle that contains only a tangency point (see Fig. 7[B]) or includes a part of
the sliding segment �SL (see Fig. 7[C]).

(iii) The limit cycle desieges the whole sliding segment �SL, as shown in Fig. 7[D].
Next, the existence of the above three types of limit cycles will be excluded. First, to

exclude the existence of the first type of limit cycle, for the purpose of the proof, let the
right-hand function of subsystem Si be denoted as fGi (Z) = (f 1

Gi
(Z)), f 2

Gi
(Z)), where i = 1, 2.

Lemma 1 There is no limit cycle totally in the vector field FGi (Z), i = 1, 2.

Proof Let the Dulac function be D(x, y) = 1/xy for subsystem S1, we have

∂(Df 1
G1

(Z))
∂x

+
∂(Df 2

G1
(Z))

∂y
= –

r
yK

< 0,

similarly, let D(x, y) = 1/xy for subsystem S2, we have

∂(Df 1
G2

(Z))
∂x

+
∂(Df 2

G2
(Z))

∂y
= –

r
yK

–
τ

x2y
< 0.

Therefore, the Filippov system does not have limit cycles that are entirely contained within
the vector field FGi (Z), i = 1, 2.

Next, we will exclude the existence of the second type of limit cycle. �

Lemma 2 There is no limit cycle that contains only a tangency point or includes a part of
the sliding segment.

Proof To prove Lemma 2, we consider the following two cases:
Case 1.

μpET < (δp + ηpET + τβ)
(
a + ET2).
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Figure 7 Possible limit-cycle types in the invariant domain 
 of the Filippov system

(i) When ymin ≤ yp ≤ ymax, the Filippov system has a unique pseudoequilibrium, and this
pseudoequilibrium is stable. In this case, Lemma 2 holds.

(ii) When ymax ≥ yp or yp ≤ ymin, there is no pseudoequilibrium in the Filippov system. In
this case, because the real equilibria E21

r and E23
r are locally stable, the trajectories starting

at the tangency point Et either spiral towards the focus E21
r (as shown in Fig. 8) or directly

approach the node E23
r . Therefore, trajectories starting from Et will not form a limit cycle.

Case 2.

μpET > (δp + ηpET + τβ)
(
a + ET2),

that is

μET
a + ET2 – δ – ηET –

τβ

p
> 0,

for this case, we have

μET
a + ET2 – δ – ηET > 0.
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Figure 8 Phase plane x – y of Filippov system (5) to show the invariance region 
, the sliding domain � , the
equilibrium E21r , and the null isoclines L2, The orbit � is plotted to show the asymptotical stability of the focus
E21r

According to isocline (10), we have

μyET
a + ET2 – δy – ηyET + τ –

rτ
p

(

1 –
ET
K

)

> 0,

thus,

μyET
a + ET2 – δy – ηyET + τ > 0,

therefore, in the sliding domain �S , we have the direction on the sliding line segment is
from bottom to top.

At the same time, it can also be obtained from equation (13) that

yp =
rτ (K – ET)

K[(δp + ηpET + τβ) – μpET
a+ET2 ]

< 0,

therefore, there is no pseudoequilibrium in the Filippov system. In this case, because the
real equilibrium E11

r is locally stable, the trajectories starting at the tangency point E2
t ei-

ther spiral towards the focus E11
r , as shown in Fig. 9, or directly approach the node E11

r .
Therefore, trajectories starting from E2

t will not form a limit cycle.
Finally, the existence of the third type of limit cycle is ruled out. �

Lemma 3 There are no admit limit cycles that include an entire sliding segment for the
Filippov system (2).

Proof Suppose there exists a limit cycle � containing an entire sliding segment within an
invariant domain for the Filippov system (2), as shown in Fig. 10. The limit cycle � is di-
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Figure 9 Phase plane x – y of Filippov system (5) to show the invariance region 
, the sliding domain � , the
equilibrium E11r , and the null isoclines L2, The orbit � is plotted to show the asymptotical stability of the focus
E11r

vided by a discontinuous boundary � into left and right parts, and the intersection points
of � and � are denoted as P1 and P2. Let the two parts of � be �1 and �2, respectively.
Construct auxiliary lines A1B1 = ET – ε and C1D1 = ET + ε, with C1D1 intersecting with
line �1 at points C1 and D1, and A1B1 intersecting with line �2 at points A1 and B1, where
ε is a sufficiently small positive number. As shown in Fig. 10, 
1 (
2) represents the region
enclosed by �1 and C1D1 (A1B1), and the direction of � is defined as counterclockwise.
Denote the Dulac function as D(x, y) = 1/xy, using Green’s theorem [29–31], we can obtain

∫∫


1

[
∂(Df (1)

G1
)

∂x
+

∂(Df (2)
G1

)
∂y

]

dx dy

=
∮

L1

D
[
f (1)
G1

dy – f (2)
G1

dx
]

=
∫

�1

D
[
f (1)
G1

dy – f (2)
G1

dx
]

+
∫

−−−→
D1C1

D
[
f (1)
G1

dy – f (2)
G1

dx
]

= D
∫ t2

t1

[
f (1)
G1

f (2)
G1

– f (2)
G1

f (1)
G1

]
dt + D

∫

−−−→
D1C1

[
f (1)
G1

dy – f (2)
G1

dx
]

=
∫

−−−→
D1C1

Df (1)
G1

dy.

(16)

Similarly, we have

∫∫


2

[
∂(Df (1)

G2
)

∂x
+

∂(Df (2)
G2

)
∂y

]

dx dy =
∫

−−−→
B1A1

Df (1)
G2

dy. (17)
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Figure 10 Phase plane x – y of Filippov system (5)

Denote the coordinates of points P1, P2, A1, B1, C1, D1 by y1, y2, y1 + h1(ε), y2 – h2(ε),
y1 – h3(ε), y2 + h4(ε), where hi(ε) > 0 and limε→0 hi(ε) = 0, thus

lim
ε→0

[∫

−−−→
D1C1

Df (1)
G1

dy
]

= lim
ε→0

∫ y2–h4(ε)

y1+h3(ε)

[ r(1 – x
K )

y
– β

]

dy

= r
(

1 –
x
K

)

ln
y2

y1
– β(y2 – y1).

Similarly, we obtain

lim
ε→0

[∫

−−−→
B1A1

Df (1)
G2

dy
]

= –r
(

1 –
x
K

)

ln
y2

y1
+ β(y2 – y1) + p ln

y2

y1
.

Therefore,

lim
ε→0

[∫

−−−→
D1C1

Df (1)
G1

dy
]

+ lim
ε→0

[∫

−−−→
B1A1

Df (1)
G2

dy
]

= p ln
y2

y1
> 0. (18)

According to Lemma 1, we have

ζ
.=
∫∫


1

[
∂(Df 1

G1
(Z))

∂x
+

∂(Df 2
G1

(Z))
∂y

]

< 0

and

ζ
.=
∫∫


2

[
∂(Df 1

G2
(Z))

∂x
+

∂(Df 2
G2

(Z))
∂y

]

< 0,



Huang et al. Advances in Continuous and Discrete Models         (2024) 2024:13 Page 21 of 24

Figure 11 Schematic diagram illustrating the coexistence of real equilibrium, virtual equilibrium, and
pseudoequilibrium in the Filippov system (5). Parameters are
r = 1,K = 4,β = 0.5,μ = 0.8,a = 1.5,δ = 0.2,η = 0.1,τ = 0.06, ET = 1.5. and [A] p = 0.2; [B] p = 0.3

thus,

lim
ε→0

[∫

−−−→
D1C1

Df (1)
G1

dy
]

+ lim
ε→0

[∫

−−−→
B1A1

Df (1)
G2

dy
]

< 0,

which contradicts (18). Therefore, there are no admit limit cycles that include an entire
sliding segment for the Filippov system (5).

According to the above discussion, if the Filippov system (5) has pseudoequilibrium,
then the pseudoequilibrium must be stable. In the Filippov system, when real equilibrium,
virtual equilibrium, and pseudoequilibrium coexist, any trajectory starting from an initial
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value either converges to the real equilibrium of the Filippov system or tends towards the
pseudoequilibrium, as shown in Fig. 11[A]. In this situation, although the system has pseu-
doequilibrium, when the population density of the pest is low, the trajectory of the system
tends towards the real equilibrium E23

r . At this time, there is a pest outbreak, indicating
poor pest control. Therefore, to address this issue, we increased the concentration of the
insecticide. As the concentration of the insecticide increases, the real equilibrium E22

r and
E23

r of the Filippov system disappear, and the trajectory of the Filippov system (5) even-
tually tends towards the real equilibrium E11

r and the pseudoequilibrium Ep, as shown in
Fig. 11[B]. At this time, effective control of the pest is achieved. Additionally, we found that
increasing the release quantity of natural enemies can also achieve the same pest-control
effect. �

5 Biological conclusions
In comprehensive pest management, considering the application of insecticides and the
release of enemies as an ideal scenario of instantaneous completion is common. However,
in real-life situations, it is crucial to account for the persistence and lag effects of insec-
ticide actions. Therefore, incorporating the intermittency of insecticide application into
the model is highly necessary. To address this, we established a Filippov nonsmooth eco-
logical system with antipredator behavior and conducted an indepth investigation of the
proposed model through the utilization of Filippov system theory knowledge and numer-
ical simulation techniques.

Specifically, we conducted a detailed analysis of the pseudoequilibrium bifurcation and
sliding mode dynamics of the Filippov system (5). The results indicate that increasing the
concentration of pesticides or the release of enemies will lead to the continued existence
of pseudoequilibrium in the model, as shown in Fig. 3. Moreover, as discussed later, if a
pseudoequilibrium exists, it must be stable. Although the existence of pseudoequilibrium
helps control the pest population, when both the real equilibrium and pseudoequilibrium
coexist in the system, different initial concentrations of pests and enemies will result in
pest–enemy densities stabilizing at different attractors, as shown in Fig. 11[A]. This sug-
gests that the implementation of control strategies is closely related to the initial density.

Simultaneously, this paper also investigates and discusses the boundary-node, -focus,
and -saddle bifurcation of the system, as well as the nonexistence of limit cycles. The re-
search results indicate that with the increase of ET , the occurrence of boundary-node
and -focus bifurcation in the system will be beneficial for pest control. However, the oc-
currence of boundary-saddle bifurcation may lead to an outbreak in the pest population.
When selecting p as the bifurcation parameter, the occurrence of boundary-saddle bifur-
cation is advantageous for pest control. It is worth noting that when p increases to a certain
value, the equilibria of subsystem S2 will disappear, resulting in the pest–predator density
stabilizing at the pseudoequilibrium or the real equilibrium E11

r , as shown in Fig. 4[F] and
Fig. 11[B]. This achieves the goal of controlling pests.

One fundamental assumption of this article is that when the pest-population density
reaches the economic threshold, an IPM strategy should be consistently employed for a
period until the pest-population density falls below the economic threshold. However, a
critical issue is overlooked here, namely, pest outbreaks and resurgence often coincide
with shortages of resources such as chemical pesticides, physical insecticides, etc. This
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scarcity will significantly impact the control of pests. Addressing the challenge of lim-
ited resources, determining how to implement optimal control measures to prevent pest-
population outbreaks will be a focal point of our future work.
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