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Abstract
Although the axis-symmetric heteroclinic orbits of Lorenz-like systems have been
intensively studied in the past decades, scholars seem to pay scant attention to the
centro-symmetric ones. To achieve this target, the present paper introduces a new
subquadratic centro-symmetric three-dimensional Lorenz-like system: ẋ = a(y – x),
ẏ = cx – 3√x2z, ż = –bz + 3√x2y, and proves the existence of a pair of centro-symmetric
to E0 and E± combining the definitions of α-limit and ω-limit set, Lyapunov functions.
The effectiveness and correctness of the theoretical conclusions are verified via a few
numerical examples. Not only does the study provide new ideas for finding
heteroclinic orbits, but also it poses an interesting question that the existence of
heteroclinic orbits may depend on the degrees of the considered models.
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1 Introduction
Since the introduction of the Lorenz system and attractor, the study of chaos entered a new
era [1]. Utilizing theoretical tools, numerical and circuit simulation, etc., researchers and
engineers performed a systematical analysis for numerous chaotic systems [2–7]. Not only
did they reveal distinctive properties, such as extremely sensitive dependence on initial
conditions, deterministicness, unpredictability, existence of at least one positive Lyapunov
exponent, boundedness, hidden attractors, conservative chaotic flow, multistability, and
so on, but also they explained the forming mechanism of strange attractors to some de-
gree, i.e., the bifurcation of singular orbits (including homoclinic and heteroclinic orbits,
singularly degenerate heteroclinic cycles, etc.) and invariant algebraic surfaces, the loss of
global stability, etc. [2, 4–9].

Recently, Zhang et al. posed the extension of the second part of the celebrated Hilbert’s
16th problem [9, 10], i.e., the degree of polynomials in the studied models determines the
number and mutual disposition of attractors and repellers (if they exist). Inspired by this,
Wang et al. introduced two new subquadratic Lorenz-like systems of degree 4

3 and 6
5 , and

they found a multitude of two-wing hidden attractors in a broader range of parameters
[11, 12]. Moreover, by aid of Lyapunov functions and the definitions of both α-limit set
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and ω-limit set [7, 13–22], Wang et al. proved the existence of a pair of heteroclinic or-
bits when b

a ≥ 4
3 and b

a ≥ 6
5 , respectively. Another two Lorenz-like analogues of degree

4
3 also exhibit two pairs of heteroclinic orbits when b

a ≥ 4
3 [13, 14]. Likewise, there exist

heteroclinic orbits in the cubic and quadratic Lorenz-like systems when b
a ≥ 3 and b

a ≥ 2
[15–21]. On these grounds, the degree of some Lorenz-like systems may have some relativ-
ity with heteroclinic orbits. In addition, all of the aforementioned heteroclinic orbits are
axis-symmetric or single ones. However, the scenario of centro-symmetric heteroclinic
orbits of it is not considered at all to the best of our knowledge. Therefore, it is an urgent
task to conduct the study.

The newly introduced Lorenz-like system has to satisfy at least three principles:
(1) This model has to be a centro-symmetric analogue.
(2) The degree of it should guarantee the generation of a pair of nontrivial centro-

symmetric equilibria w.r.t. the origin.
(3) The method of combination of Lyapunov functions, the definitions of both α-limit

set and ω-limit set should be applicable to it when proving the existence of heteroclinic
orbits.

Based on the above three tips and trial-and-error, we try to search for a new subquadratic
centro-symmetric Lorenz-like system with the targeted heteroclinic orbits.

To our knowledge, little seems to be known about the Lorenz-like system yet with cross
products 3√x2z and 3√x2y. Innovations of this paper are:

(1) Proposing a new three-dimensional subquadratic centro-symmetric Lorenz-like sys-
tem.

(2) Proving the existence of a pair of centro-symmetric heteroclinic orbits.
(3) Confirming the correlation between the degree and heteroclinic orbits to some ex-

tent.
As a result, it is theoretically and practically important to analyze such a Lorenz-like

system, motivating the follow-up research of this work.

2 New subquadratic centro-symmetric Lorenz-like system and basic dynamics
Combining the axis-symmetric quadratic/subquadratic Lorenz system family [11–14] and
trial-and-error, we firstly introduce the new subquadratic centro-symmetric analogue as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = a(y – x),

ẏ = cx – 3√x2z, a �= 0, (c, b) ∈ R
2,

ż = –bz + 3√x2y,

(2.1)

which is invariant under transformation (x, y, z) → (–x, –y, –z). Next, aiming at revealing
the heteroclinic orbits, we present some basic dynamics of system (2.1) in the following
theorems, i.e., the distribution of equilibrium points, stability, Hopf bifurcation, inequality,
etc.

Theorem 2.1 (1) When b = 0, system (2.1) has nonisolated equilibria Ez = {(0, 0, z)|z ∈R}.
(2) When b �= 0 and bc < 0, system (2.1) has a single equilibrium point E0 = (0, 0, 0).
(3) When bc > 0, system (2.1) has two equilibria E± = ±( 4

√
(bc)3, 4

√
(bc)3, c 4√bc) except

for E0.
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Table 1 Local dynamics of E0

b a c Property of E0

<0 <0 <0 A 1DWs
loc and a 2DWu

loc
>0 A 3DWu

loc

>0 <0 A 2DWs
loc and a 1DWu

loc
>0 A 1DWs

loc and a 2DWu
loc

>0 <0 <0 A 2DWs
loc and a 1DWu

loc
>0 A 1DWs

loc and a 2DWu
loc

>0 <0 A 3DWs
loc

>0 A 2DWs
loc and a 1DWu

loc

Theorem 2.2 When abc �= 0, the local dynamical behaviors of E0 are totally summarized
in Table 1. While a �= 0 and b = 0, all of Ez are unstable.

Set W = {(a, c, b)|a �= 0, bc > 0}, W1 = {(a, c, b) ∈ W : a + b > 0, ab + bc – ac
3 > 0, 4abc

3 > 0},
� = ab(a + b) – c[ (a–b)(3b+a)

3 ], W2 = W\W1, W 1
1 = {(a, c, b) ∈ W1 : � < 0}, W 2

1 = {(a, c, b) ∈
W1 : � = 0}, and W 3

1 = {(a, c, b) ∈ W1 : � > 0}.

Theorem 2.3 (1) When (a, c, b) ∈ W 1
1 (resp. W 3

1 ), E± are unstable (resp. asymptotically
stable).

(2) When (a, c, b) ∈ W 2
1 , Hopf bifurcation happens at E±.

Theorem 2.4 If 5a > 3b > 0 and t → ∞, then the inequality z ≥ 3
5a

3√x5 holds.

The rest content is arranged as follows. The proofs of Theorems 2.2–2.4 are outlined
in Sect. 3. Section 4 studies the existence of centro-symmetric heteroclinic orbits. Lastly,
some conclusions are drawn, and the correlation between power of the polynomials and
dynamics is also discussed.

3 Basic dynamics and proofs of Theorems 2.2–2.4
In this section, proofs of Theorems 2.2–2.4 are sketched as follows.

Proof of Theorem 2.2 Based on linear analysis, Theorem 2.2 easily follows, and the proof
is omitted here. �

Proof of Theorem 2.3 The characteristic equation of matrix associated with the vector
field of system (2.1) at E± is calculated as follows:

λ3 + (a + b)λ2 +
[

ab + bc –
ac
3

]

λ +
4abc

3
= 0. (3.1)

On the basis of Eq. (3.1) and Routh–Hurwitz criterion, E± are unstable (resp. asymptoti-
cally stable) when (a, c, b) ∈ W 1

1 (resp. W 3
1 ).

While (a, c, b) ∈ W 2
1 , Eq. (3.1) has the negative real root λ1 = –(a+b) < 0 and a pair of con-

jugate purely imaginary roots λ2,3 = ±ωi = ±2ab
√

1
(a–b)(3b+a) i. Furthermore, the transversal



Wang et al. Advances in Continuous and Discrete Models         (2024) 2024:14 Page 4 of 11

Figure 1 When (a, c,b) = (5, 2.8125, 1), (a) (x1,20 , y1,20 , z1,20 ) = (3.14, 1.618, 2.718)× 10–6,
(x3,40 , y3,40 , z3,40 ) =±(2.1618, 2.1818, 3.6322), (b) (x30 , y

3
0 , z

3
0) = (2.1618, 2.1818, 3.6322),

(c) (x40 , y
4
0 , z

4
0) = –(2.1618, 2.1818, 3.6322), phase portraits of system (2.1). These figures illustrate that there exist

three limit cycles when undergoing Hopf bifurcation at E±

condition d Re(λ2)
dc |c=c∗ = (a–b)(a+3b)

6[ω2+(a+b)2] �= 0 holds, where c∗ = 3ab(a+b)
(a–b)(3b+a) . Therefore, Hopf bifur-

cation occurs at E±, as shown in Fig. 1. The proof is completed. �

Remark 3.1 When (a, c, b) = (5, 2.8125, 1), the eigenvalues of E± are λ1 = –6, λ2,3 =
±1.7678i.

Proof of Theorem 2.4 Set Q(x, z) = z – 3
5a

3√x5 and compute the derivative of it along any
one orbit of system (2.1): dQ(x,z)

dt |(2.1) = –bz + 5a
3

3√x5, i.e., Q̇ + bQ = –(b – 5a
3 ) 3√x5.

Based on the comparison principle, if b – 5a
3 < 0, then Q̇ + bQ ≥ 0 leads to

Q(t) ≥ Q0e–b(t–t0) → 0, (t → ∞),∀Q(t0) = Q0.

Namely, for b – 5a
3 < 0, we arrive at the inequality limt→∞ Q(t) = limt→∞[z – 3

5a
3√x5] ≥ 0.

The proof is finished. �

For discussion purposes, the following denotations have to be introduced:
(1) p(t; q0) = (x(t; x0), y(t; y0), z(t; z0)): each solution of system (2.1) through the initial

value q0 = (x0, y0, z0).
(2) γ ± = {p±(t; q0)|p±(t; q0) = ±(x+(t; x0), y+(t; y0), z+(t; z0)) ∈ W u±, t ∈ R}: the branch of

the unstable manifold W u(E0) corresponding to x+ > 0 and –x+ < 0 when t → –∞.

4 Existence of heteroclinic orbit
Combining the concepts of both α-limit and ω-limit set and Lyapunov functions, we prove
the existence of centro-symmetric heteroclinic orbits of system (2.1) and arrive at the fol-
lowing result.

Theorem 4.1 If c > 0 and 3b ≥ 5a > 0, then there exist no homoclinic orbits but a pair of
centro-symmetric heteroclinic orbits: γ ± to E0 and E±.

Next, we prove Theorem 4.1 in two steps: (1) 3b – 5a > 0, (2) 3b – 5a = 0.
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4.1 The case 3b – 5a > 0
In this subsection, we first construct the following Lyapunov function:

V1
(
p(t; q0)

)
=

1
2

[

b(3b – 5a)(y – x)2

+ 3
(
–bz + 3√x5

)2 +
4
√

bc(3b – 5a)
5a

(
–
√

bc 3√x2 + 3√x4
)2

+
2
√

bc(3b – 5a)
5a

(
–bc + 3√x4

)2 +
3(3b – 5a)

5a
(
–
√

bcx + 3√x5
)2

]

and derive the following statements.

Lemma 4.2 When c > 0 and 3b – 5a > 0, we arrive at the following statements:
1. If ∃t1,2, t1 < t2 and V1(p(t1; q0)) = V1(p(t2; q0)), then q0 is one of the equilibrium

points.
2. If limt→–∞ p(t; q0) = E0 and x(t3; q0) > 0, ∃t3 ∈R, then V1(E0) > V1(p(t; q0)) and

x(t; x0) > 0, ∀t ∈R. As a result, q0 ∈ γ +.

Proof (1) Taking the derivative of V1 along p(t; q0) results in

dV1(p(t; q0))
dt

∣
∣
∣
∣
(2.1)

= –ab(3b – 5a)(y – x)2 – 3b
(
–bz + 3√x5

)2, (4.1)

and thus leads to

y(t; y0) – x(t; x0) ≡ 0, –bz(t; z0) + 3
√

x5(t; x0) ≡ 0, (4.2)

under the condition of (1), ∀t ∈ (t1, t2).
On the basis of Eq. (4.2) and system (2.1), we obtain the identities ẋ(t; x0) ≡ ẏ(t; y0) ≡

ż(t; z0) ≡ 0, ∀t ∈ (t1, t2). Therefore, system (2.1) has the stationary point q0.
(2) Let us first show V1(E0) > V1(p(t; q0)), ∀t ∈ R. Otherwise, V1(E0) ≤ V1(p(t; q0)), ∃t ∈

R. Then, the first assertion yields that q0 is just one of the equilibria of system (2.1), which
contradicts the assumed condition limt→–∞ p(t; q0) = E0 and x(t3; x0) > 0. Namely, V1(E0) >
V1(p(t; q0)), ∀t ∈R.

Next, we prove x(t; x0) > 0, ∀t ∈ R. If not, x(t4; x0) ≤ 0, ∃t4 ∈R. Due to x(t3; x0) > 0, t3 ∈R,
we obtain x(t5; x0) = 0, ∃t5 ∈R. Since V1(E0) > V1(p(t; q0)), ∀t ∈R, we arrive at

p(t5; q0) ∈ {
(x, y, z)|V1(x, y, z) < V1(E0)

} ∩ {
(x, y, z)|x = 0

}
.

In addition, the fact holds:

{
(x, y, z)|V1(x, y, z) < V1(E0)

} ∩ {
(x, y, z)|x = 0

}

=
{

(0, y, z)
∣
∣1
2

[

b(3b – 5a)y2 + 3b2z2 +
2
√

bcb2c2(3b – 5a)
5a

]

<
√

bcb2c2(3b – 5a)
5a

}

= ∅.
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A contradiction happens. Consequently, the fact x(t; x0) > 0, ∀t ∈R holds, and the proof
is completed. �

Lemma 4.3 When c > 0, 3b > 5a > 0, and t → ∞, each solution of system (2.1) approaches
one of its equilibrium points. In a word, closed orbits are nonexistent in system (2.1).

Proof From Eq. (4.1), we deduce limt→+∞ V1(p(t; q0)) = �(q0) and 0 ≤ V1(p(t; q0)) ≤
V1(p(0; q0)) = V1(q0), ∀t ≥ 0, implying the boundedness of x(t; x0), y(t; y0) and z(t; z0),
t ∈ [0, +∞). Namely, the set {p(t; q0)|t ≥ 0} is bounded.

Let �(q0) �= ∅ be the ω-limit set of p(t; q0). For ∀q ∈ �(q0), i.e., ∃{tn}, such that

lim
n→+∞ tn = +∞, lim

n→+∞ p(tn, q0) = q.

Next, ∀t ∈ R, p(t; q) = limn→+∞ p(t; p(tn; q0)) = limn→+∞ p(t + tn; q0) yields V1(p(t; q)) =
V1[limn→+∞ p(t; p(tn; q0))] = limn→+∞ V1(p(t + tn; q0)) = �(q0). Therefore, q ∈ {E–, E0, E+}.
Since �(q0) is connected, we only obtain �(q0) = {E–} or �(q0) = {E0}, or �(q0) = {E+},
which suggests that p(t; q0) converges to one of the equilibria when t → +∞. Therefore,
the proof is finished. �

From Lemmas 4.2–4.3, we prove the existence of heteroclinic orbits.

Theorem 4.4 If c > 0 and 3b > 5a > 0, then
1. Homoclinic orbits are nonexistent in system (2.1);
2. System (2.1) has a pair of centro-symmetric heteroclinic orbits: γ + joining E+ and E0,

and γ – joining and E– and E0.

Proof Let us prove that both homoclinic orbits and heteroclinic orbits to E± are nonex-
istent in system (2.1) when c > 0 and 3b > 5a > 0. Otherwise, let p(t) = (x(t), y(t), z(t)) be a
homoclinic (resp. heteroclinic) orbit to E0 or E+, or E– (resp. E+ and E–), i.e., limt→–∞ p(t) =
e–, limt→+∞ p(t) = e+, where e– = e+ ∈ {E–, E0, E+} or {e–, e+} = {E–, E+}.

It follows from Eq. (4.1) that

V1
(
e–) ≥ V1

(
p(t)

) ≥ V1
(
e+)

(4.3)

holds. In either case, we only obtain the relation V1(e–) = V1(e+), which thus results in
V1(p(t)) ≡ V1(e+). In virtue of the first assertion of Lemma 4.2, p(t) is just one of the fixed
points. As a result, there exist neither homoclinic orbits to E0 or E+, or E–, nor heteroclinic
orbits to E– and E+.

Next, we show that γ + is a heteroclinic orbit to E0 and E+, i.e., limt→+∞ p(t) = E+. On the
basis of the definition of γ + and the second assertion of Lemma 4.2, we arrive at x+(t) >
0, ∀t ∈ R, which also yields limt→+∞ p(t) �= E–. Meanwhile, the definition of γ + leads to
limt→+∞ p(t) �= E0. Thus, limt→+∞ p+(t) = E+ holds.

At last, we prove that, if there exists a heteroclinic orbit to E0 and E+ in system (2.1),
then it is nothing but γ +.

Define the p1(t) = (x1(t), y1(t), z1(t)) to be any one solution of system (2.1) such that

lim
t→–∞ p1(t) = e–

1 , lim
t→+∞ p1(t) = e+

1 ,
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where {e–
1 , e+

1 } = {E0, E+}. Similar to Eq. (4.3), we arrive at V1(e–
1 ) ≥ V1(p1(t)) ≥ V1(e+

1 ), ∀t ∈
R, based on Eq. (4.2). Since V1(E0) > V1(E+), we deduce that e–

1 = E0 and e+
1 = E+, i.e.,

lim
t→–∞ p1(t) = E0, lim

t→+∞ p1(t) = E+,

which results in p1(t) ∈ γ + from the second assertion of Lemma 4.2. Since system (2.1)
is centro-symmetrical w.r.t. the origin E0, there is a unique heteroclinic orbit γ – centro-
symmetrical to γ +. The proof is completed. �

4.2 The case 3b – 5a = 0
This subsection first introduces the second Lyapunov function

V2
(
p(t; q0)

)
=

1
2

[
25a2

9
(y – x)2 +

4
3

√
5ac

3

(

–
√

5ac
3

3√x2 + 3√x4
)2

+
2
3

√
5ac

3

(

–
5ac

3
+ 3√x4

)2

+
(

–
5ac

3
x + 3√x5

)2]

and the following statements.

Lemma 4.5 For c > 0 and 3b = 5a > 0, the following assertions hold:
(i) If limt→–∞ p(t; q0) is bounded, then z(t; z0) = 3

5a
3
√

x5(t; x0);
(ii) If z(t; z0) = 3

5a
3
√

x5(t; x0), then dV2(p(t;q0))
dt |(2.1) = – 25a3

9 (y – x)2 ≤ 0;
(iii) If z(t; z0) = 3

5a
3
√

x5(t; x0) and V2(p(t1; q0)) = V2(p(t2; q0)), ∃t1,2, t1 < t2, then q0 is one of
the equilibrium points;

(iv) If limt→–∞ p(t; q0) = E0 and x(t3; q0) > 0, ∃t3 ∈ R, then V2(E0) > V2(p(t; q0)) and
x(t; q0) > 0, ∀t ∈R. In a word, q0 ∈ γ +.

Proof (i) From Proof of Theorem 2.4, we arrive at dQ(p(t;q0))
dt |(2.1) = – 5a

3 Q(p(t; q0)), i.e.,

Q
(
p(t; q0)

)
= Q

(
p(τ ; q0)

)
e– 5a

3 (t–τ ), ∀τ , t ∈R. (4.4)

Because limτ→–∞ p(τ ; q0) is bounded, Eq. (4.4) suggests Q(p(t; q0)) ≡ 0, i.e., z(t; z0) ≡
3

5a
3
√

x5(t; x0).
(ii) The result easily follows from the first assertion z(t; z0) ≡ 3

5a
3
√

x5(t; x0) and sys-
tem (2.1).

(iii) The second assertion yields dV2(p(t,q0))
dt |(2.1) = 0, ∀t ∈ (t1, t2), i.e.,

y(t; y0) – x(t; x0) ≡ 0. (4.5)

Combining ẋ = a(y – x), Eq. (4.5), and z(t; z0) ≡ 3
5a

3
√

x5(t; x0), we derive

ẋ(t; x0) ≡ ẏ(t; y0) ≡ ż(t; z0) ≡ 0, ∀t ∈ (t1, t2).

Hence, q0 is just one of the equilibria.
(iv) Let us prove V2(E0) > V2(p(t; q0)), ∀t ∈R. Otherwise, V2(E0) ≤ V2(p(t0; q0)), ∃t0 ∈R.

On the other hand, assertions (i)–(iii) yield that q0 is one of the equilibria, which contra-
dicts limt→–∞ p(t; q0) = 0 and x(t3; x0) > 0. Thus, we arrive at V2(E0) > V2(p(t; q0)), ∀t ∈R.
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Next, one shows x(t; x0) > 0, ∀t ∈ R. Otherwise, ∃t4 ∈ R such that x(t4; x0) ≤ 0. Because
of x(t3; x0) > 0, ∃t5 ∈ R such that x(t5; x0) = 0. Since V2(E0) > V2(p(t; q0)), ∀t ∈ R, we arrive
at

p(t5; q0) ∈ {
(x, y, z)|V2(x, y, z) < V2(E0)

} ∩ {
(x, y, z)|x = 0

}
.

Instead, {(x, y, z)|V2(x, y, z) < V2(E0)} ∩ {(x, y, z)|x = 0} = {(0, y, z)| 1
2 [ 25a2

9 y2 + 50a2c2

27

√
5ac

3 ] <
25a2c2

27

√
5ac

3 } = ∅. A contradiction occurs. Consequently, x(t; x0) > 0 is true, ∀t ∈R. �

Lemma 4.6 Consider c > 0 and 3b = 5a > 0. If any one negative orbit with initial point q0 is
bounded, then limt→–∞ p(t, q0) converges to one of the equilibria of system (2.1). Therefore,
closed orbits are nonexistent in system (2.1).

Proof It follows from assertions (i)–(ii) that limt→–∞ V2(p(t; q0)) = 
(q0) exists. Suppose
q ∈ α(q0), i.e., ∃{tn} such that

lim
n→+∞ tn = –∞ and lim

n→+∞ p(tn; q0) = q.

∀t ∈R, the fact

p(t; q) = lim
n→+∞ p

(
t; p(tn; q0)

)
= lim

n→+∞ p(t + tn; q0)

results in
⎧
⎨

⎩

p(t; q) is bounded on R,

V2(p(t; q)) = limn→+∞ V2(p(t + tn; q0)) = 
(q0).
(4.6)

According to Lemma 4.5, we arrive at q ∈ {E–, E0, E+}. Thus,

α(q0) ⊆ {E–, E0, E+}.

Since α(q0) is connected, we obtain α(q0) = {E–} or α(q0) = {E0}, or α(q0) = {E+}, which
yields that limn→+∞ p(t; q0) converges to one of the equilibria. The proof is over. �

Theorem 4.7 If c > 0 and 3b = 5a > 0, then
(i) system (2.1) has no homoclinic orbits;
(ii) system (2.1) has only a pair of centro-symmetric heteroclinic orbits: γ + joining E0

and E+, and γ – joining E0 and E–.

Proof (i) Let us prove that neither homoclinic orbits nor heteroclinic orbits joining E– and
E+ exist in system (2.1) when c > 0 and 3b = 5a > 0. If not, suppose that p(t) = (x(t), y(t), z(t))
is a homoclinic or heteroclinic orbit to E– and E+, i.e.,

lim
t→–∞ p(t) = e– and lim

t→+∞ p(t) = e+,

where e– and e+ satisfy either

e– = e+ ∈ {E–, E0, E+} or
{

e–, e+}
= {E–, E+}.
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It follows from Lemma 4.5 and V2(e–) = V2(e+) that p(t) is just one of the stationary
points.

As a result, both homoclinic orbits and heteroclinic orbits to E± are nonexistent in sys-
tem (2.1).

(ii) Let us prove that if system (2.1) has a heteroclinic orbit to E0 and E+, then it is just γ +.
Assume p1(t) = (x1(t), y1(t), z1(t)) is any one solution of system (2.1) such that

lim
t→–∞ p1(t) = e–

1 and lim
t→+∞ p1(t) = e+

1 ,

where {e–
1 , e+

1 } = {E0, E+}. For ∀t ∈R, assertions (i)–(ii) of Lemma 4.5 suggest

V2
(
e–

1
) ≥ V2

(
p1(t)

) ≥ V2
(
e+

1
)
.

Since V2(E0) > V2(E+), we arrive at e–
1 = E0 and e+

1 = E+, i.e.,

lim
t→–∞ p1(t) = E0 and lim

t→+∞ p1(t) = E+, (4.7)

yielding p1(t) ∈ γ + based on the fourth assertion of Lemma 4.5.
At last, let us prove that γ + is a heteroclinic orbit to E0 and E+, i.e., limt→+∞ p+(t) = E+.

From Lemma 4.5, we arrive at

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z+(t; z0) ≡ 3
5a

3
√

x5
+(t; x0),

dV2(p+(t))
dt |(2.1) = – 25a3

9 (y+(t; y0) – x+(t; x0))2,

V2(p+(t)) < V2(E0), ∀t ∈ R,

x+(t) > 0, ∀t ∈R.

(4.8)

The second equation of Eq. (4.8) suggests that limt→∞ V2(p+(t)) = v exists. Again,
Eq. (4.8) indicates the boundedness of x+(t), y+(t) and z+(t), ∀t ∈ [0, +∞), i.e., the set
{p+(t)|t ≥ 0} is bounded. Define � to be the ω-limit set of solution p+(t). Suppose q ∈ �,
i.e., ∃{tn} such that limn→+∞ tn = +∞ and limn→+∞ p+(tn) = q. Therefore, ∀t ∈ R, the rela-
tion

p(t; q) = lim
n→+∞ p

(
t; p+(tn)

)
= lim

n→+∞ p+(t + tn) = q,
⎧
⎨

⎩

p(t; q) is bounded on R,

V2(p(t; q)) = limn→+∞ V2(p+(t + tn)) = v,
(4.9)

and together with assertions (i)–(iii) of Lemma 4.5 results in q ∈ {E–, E0, E+}. Conse-
quently, � ⊆ {E–, E0, E+}. Because � is connected, we obtain � = E– or � = E0, or � = E+.
On the basis of assertion (ii) of Lemma 4.5 and the fourth equality of Eq. (4.8), we arrive
at � �= E0 and � �= E–. Thus, � = E+, i.e., limn→+∞ p+(t) = E+. Due to the central symmetry
of system (2.1), there is a unique heteroclinic orbit γ – to E– and E0, as illustrated in Fig. 2.
The proof is completed. �
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Figure 2 Phase portraits of system (2.1) with (a, c) = (3, 12), (x1,20 , y1,20 , z1,20 ) =±(3.14, 1.618, 2.718)× 10–6, (a)
b = 5, (b) b = 8. Both figures suggest that system (2.1) has a pair of centro-symmetric heteroclinic orbits to E±
and E0 when c > 0 and 3b ≥ 5a > 0

5 Conclusions
As an effective method to study the existence of heteroclinic orbits, the combination of
Lyapunov functions, the definitions of ω-limit set and α-limit set has been widely ap-
plied in many axis-symmetric Lorenz-like systems. Whether or not it is applicable to the
centro-symmetric ones. In this effort, based on the extension of the second part of the
celebrated Hilbert’s 16th problem and a trial and error process, this paper reports another
new subquadratic three-dimensional Lorenz-like system and proves the existence of a pair
of centro-symmetric heteroclinic orbits by aid of the aforementioned method. Moreover,
for (a, c) = (3, 12) and b = 5, 8, Fig. 2 validates the correctness of theoretical results.

In future work, some interesting issues deserve consideration. First, whether or not
strange attractors and pseudo singularly degenerate heteroclinic cycles exist. Second, the
existence of some other global dynamics, i.e., homoclinic orbits, boundedness, and so on.
Finally, the relationship between the degree and heteroclinic orbits, and real world appli-
cations.

Acknowledgements
This work is supported in part by the National Natural Science Foundation of China under Grant 12001489, in part by
Zhejiang Public Welfare Technology Application Research Project of China Grant LGN21F020003, in part by the Natural
Science Foundation of Zhejiang Guangsha Vocational and Technical University of Construction under Grant
2022KYQD-KGY, in part by the Natural Science Foundation of Taizhou University under Grant T20210906033. Meanwhile,
the authors would like to express their sincere thanks to the anonymous editors and reviewers for their conscientious
reading and numerous constructive comments, which improved the manuscript substantially.

Author contributions
Haijun Wang: conceptualization, software, writing—original draft, Investigation. Jun Pan: supervision, visualization,
validation, writing—review & editing. Guiyao Ke: software, methodology, investigation, visualization. Feiyu Hu: software,
validation.
All authors read and approved the final manuscript.

Data availability
There is no data because the results obtained in this paper can be reproduced based on the information given in this
paper.



Wang et al. Advances in Continuous and Discrete Models         (2024) 2024:14 Page 11 of 11

Declarations

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Author details
1School of Electronic and Information Engineering (School of Big Data Science), Taizhou University, Taizhou, 318000, P.R.
China. 2Department of Big Data Science, School of Science, Zhejiang University of Science and Technology, Hangzhou,
310023, P.R. China. 3School of Information, Zhejiang Guangsha Vocational and Technical University of Construction,
Dongyang, Zhejiang 322100, P.R. China. 4College of Sustainability and Tourism, Ritsumeikan Asia Pacific University,
Jumonjibaru, Beppu, Oita 874-8577, Japan.

Received: 24 April 2024 Accepted: 2 May 2024

References
1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
2. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. Part II.

World Scientific, Singapore (2001)
3. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.

Perseus Books, New York (2014)
4. Liao, X.: New Research on Some Mathematical Problems of Lorenz Chaotic Family. Huazhong University of Science &

Technology Press, Wuhan (2017). (in Chinese).
5. Belykh, V.N., Barabash, N.V., Belykh, I.V.: A Lorenz-type attractor in a piecewise-smooth system: rigorous results. Chaos

29(10), 103108 (2019)
6. Wang, H., Ke, G., Dong, G., Su, Q., Pan, J.: Singularly degenerate heteroclinic cycles with nearby apple-shape attractors.

Int. J. Bifurc. Chaos 33(1), 2350011 (2023)
7. Wang, H., Ke, G., Hu, F., Pan, J., Dong, G., Chen, G.: Pseudo and true singularly degenerate heteroclinic cycles of a new

3D cubic Lorenz-like system. Results Phys. 56, 107243 (2024)
8. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like

system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)
9. Kuznetsov, N.V., Mokaev, T.N., Kuznetsova, O.A., Kudryashova, E.V.: The Lorenz system: hidden boundary of practical

stability and the Lyapunov dimension. Nonlinear Dyn. 102(2), 713–732 (2020)
10. Zhang, X., Chen, G.: Constructing an autonomous system with infinitely many chaotic attractors. Chaos, Interdiscip. J.

Nonlinear Sci. 27(7), 071101 (2017)
11. Wang, H., Ke, G., Pan, J., Hu, F., Fan, H.: Multitudinous potential hidden Lorenz-like attractors coined. Eur. Phys. J. Spec.

Top. 231(3), 359–368 (2022)
12. Wang, H., Pan, J., Ke, G.: Revealing more hidden attractors from a new sub-quadratic Lorenz-like system of degree 6

5 .
Int. J. Bifurc. Chaos 34(6), 2450071 (2024)

13. Wang, H., Ke, G., Pan, J., Hu, F., Fan, H., Su, Q.: Two pairs of heteroclinic orbits coined in a new sub-quadratic Lorenz-like
system. Eur. Phys. J. B 96(3), 1–9 (2023)

14. Li, Z., Ke, G., Wang, H., Pan, J., Hu, F., Su, Q.: Complex dynamics of a sub-quadratic Lorenz-like system. Open Phys. 21(1),
20220251 (2023)

15. Li, X., Wang, H.: A three-dimensional nonlinear system with a single heteroclinic trajectory. J. Appl. Anal. Comput.
10(1), 249–266 (2020)

16. Wang, H., Ke, G., Pan, J., Su, Q., Dong, G., Fan, H.: Revealing the true and pseudo-singularly degenerate heteroclinic
cycles. Indian J. Phys. 97(12), 3601–3615 (2023)

17. Li, T., Chen, G., Chen, G.: On homoclinic and heteroclinic orbits of the Chen’s system. Int. J. Bifurc. Chaos 16(10),
3035–3041 (2006)

18. Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal., Real World Appl. 11(4), 2563–2572
(2010)

19. Tigan, G., Constantinescu, D.: Heteroclinic orbits in the T and the Lü system. Chaos Solitons Fractals 42(1), 20–23
(2009)

20. Liu, Y., Pang, W.: Dynamics of the general Lorenz family. Nonlinear Dyn. 67(2), 1595–1611 (2012)
21. Chen, Y., Yang, Q.: Dynamics of a hyperchaotic Lorenz-type system. Nonlinear Dyn. 77(3), 569–581 (2014)
22. Wang, H., Pan, J., Ke, G.: Multitudinous potential homoclinic and heteroclinic orbits seized. Electron. Res. Arch. 32(2),

1003–1016 (2024)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	A pair of centro-symmetric heteroclinic orbits coined
	Abstract
	Mathematics Subject Classiﬁcation
	Keywords

	Introduction
	New subquadratic centro-symmetric Lorenz-like system and basic dynamics
	Basic dynamics and proofs of Theorems 2.2-2.4
	Existence of heteroclinic orbit
	The case 3b-5a > 0
	The case 3b-5a = 0

	Conclusions
	Acknowledgements
	Author contributions
	Data availability
	Declarations
	Competing interests
	Author details
	References
	Publisher's Note


