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1 Introduction
The purpose of this article (and the one to follow) is to define a generalized kinetic the-
ory of classical thermodynamic systems at a coarse-grained level (see Sect. 2 for defi-
nitions). The microscopic evolution of the system induces an evolution on the coarse-
grained states, which is generally non-Markovian.

In the same context, it has been shown recently [1] that coarse-grained deterministic
dynamical systems can be approximated by generalized Markov systems, which may ex-
plain why Markov processes are so popular in modeling actual phenomena. These con-
clusions were obtained by applying and extending some pioneering results of Kolmogorov
[2–4]. The formalism used in our previous works was relatively intuitive, even if some-
times lengthy, but it was sufficient for our first aim. However, we had to adopt some hy-
potheses that could seem reasonable but were difficult to justify precisely.

In the present work, we adopt a more abstract and rigorous formalism and show that the
previous results can be generalized to a much broader framework, as mentioned above.
This formalism is the one used in communication theory by Shannon-Weaver [5] and by
Khinchin [6] to define optimal coding, by Kolmogorov [2, 3] (and also [4] for a pedagogical
exposition) to define entropic invariants of dynamical systems. It was also introduced in
[7] in the Markovian situation only.
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The system evolution is specified by a stationary distribution on the path space XZ ,
where X is the finite set of coarse-grained states, and Z represents the discrete time (see
Sect. 2). At the coarse-grained level, the stationary evolution is not Markovian, but the
advantage is that the evolution takes place on the finite state space X and that we avoid all
controversial discussions concerning ergodicity and time scales for reaching equilibrium
[8, 9].

Sections 2 and 3 fix notations and definitions and give basic examples. Section 4 intro-
duces nonstationary processes: the initial condition is not the stationary state on X, but
the evolution is given by the stationary process. It corresponds to the notion of partial
equilibrium of Landau-Lifschitz [10]. We define the entropy production of both processes
and show that they are equal, assuming a mixing property in Sect. 5. Although this result
seems obvious, its proof is quite lengthy.

In Sect. 6, we address the main question of kinetic theory, namely why the evolution can
be approximated by a Markovian evolution, as in the theory of Brownian motion, Fokker-
Planck equation, etc. Obviously, one also has to use a coarse-grained time scale. We define
various Markovian evolutions and prove that they approximate the exact evolution on the
coarse-grained time scale using the production of relative entropy.

We want to dedicate this article to the memory of Prof. Mark Kac, who introduced one
of us to the problems of justification of the Markov processes in statistical mechanics.

2 Notations and definitions
In this article, X denotes a finite set. Elements of X are denoted as x ∈ X. Z is the set of
positive, 0, or negative integers.

2.1 The spaces XZ , X
XZ is the space of sequences (x(n)), n ∈ Z, x(n) ∈ X.

We define the shift τ : XZ → XZ by

τ
(
x(.)

)
(n) = x(n – 1) (2.1)

Let I = {i1, . . . , il} be a finite subset of Z ordered by i1 < i2 < · · · < il . We define for k ∈ Z

I + k = {i1+k , . . . , il + k} (2.2)

XI denotes the set of maps x(I) ∈ XI .
In expanded notations, we write

x(I) ≡ (x1, i1; x2, i2; . . . ; xl, il) (2.3)

with

xk=s(I)(ik )

The shift is also defined as τ : XI → XI+1 by

τ
(
x(I)

) ≡ (x1, i1 + 1 : x2, i2 + 1 :; . . . ; xl, il + 1) (2.4)

for x(I) given by (2.3).
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If J ⊂ I is a subset of I , x(I)|J is the restriction of the map x(I) to the subset J .
Finally, if m ≤ n, and I = {m, m + 1, . . . , n} is the interval of integers between m and n, we

denote

x(I) ≡ x[m, n] (2.5)

2.2 Probabilities on XZ

A stochastic process on X is the data of a system of probabilities pI on XI or all finite set
I ⊂ Z with the compatibility conditions:

if J ⊂ I and x(J) ∈ XJ , then

pJ
(
x(J)

)
=

∑

{x(I)∈XI |x(I)|J =x(J)}
pI

(
x(I)

)
(2.6)

Obviously, the pI are known as soon as the p[m,n] are known.
It is known that a system of probabilities pI satisfying the compatibility conditions of

Eq. (2.6) defines a probability p sur XZ , the pI being the marginal laws of p

pI
(
x(I)

)
= p

(
x(Z) ∈ XZ∣

∣x(Z)
∣
∣
I = x(I)

)
(2.7)

This result is the extension Theorem of Kolmogorov [11]. The probability p is defined
on the measurable subsets of XZ . By definition, the subset appearing in p in Eq. (2.7) is
measurable.

The stochastic process p is stationary if for any measurable set A ⊂ XZ

p
(
τ (A)

)
= p(A)

or equivalently, for any x(I) ∈ XI , and any I

pI+1
(
τ
(
x(I)

)
= pI

(
x(I)

))
(2.8)

In particular, if p is stationary, it defines a unique probability distribution p0 on X by

p0(x) = p[n]
(
(x, n)

)

which is independent of n.

Remark (Conventions and definition)
(i) In order to simplify the notations, we shall skip the index I of pI whenever it is clear

that we refer to pI . For instance, we write p(x(I)) instead of pI(x(I)).
(ii) When we use conditional probabilities, the condition is always in the past: for in-

stance, if m < n

p
(
x(n)

)|x[m, n – 1]) ≡ p[m,n]
(
x(n)

)|x[m, n – 1]) ≡ p[m,n](x[m, n])
p[m,n–1](x[m, n – 1])

(iii) According to the usual definition [4], the stochastic process p is ergodic if any mea-
surable set B ⊂ XZ is invariant by τ having probability p(B) = 0 or 1.
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2.3 Coarse-graining
Let A be a partition of X: the elements of a ∈ A are subsets of a ⊂ X such that

X =
⋃

a∈A

a (2.9)

a ∩ a′ = φ if a′ 	= a (2.10)

A probability q on X generates a probability q(A) on A by

q(A)(a) =
∑

x∈A

q(x) (2.11)

The partition A on X induces the partitions AZ of XZ and AI of XI . The stochastic process
p induces a stochastic process p(A) defined by

p(A)
I

(
a(I)

)
=

∑

x(I)∈a(I)

pI
(
x(I)

)
(2.12)

where the notation x(I) ∈ a(I) means

(
x(I) ∈ a(I)

)
) ⇔ (

x(I)(i) ∈ a(I)(i) for all i ∈ I
)

(2.13)

p(A) is a coarse-grained process of p. If p is stationary, p(A) is stationary. If p is ergodic, p(A)

is ergodic.
Such coarse-grained processes are extensively used in physics and applied sciences when

inaccurate observations cannot allow one to distinguish two different elements x belong-
ing to the same subset a of A [1, 12].

3 Examples
We only cite a few well-known processes that are of interest to us.

(a) Bernoulli processes
Let μ be a probability on X. The Bernoulli process defined by μ is

pI
(
x(I)

)
=

∏

i∈I

μ
(
x(I)(i)

)
(3.1)

It is stationary. It is ergodic if and only if μ(x) > 0 for any x ∈ X.
(b) Markov processes
Let R = (Ryx), y, x ∈ X be a stochastic matrix, so

∑

y
Ryx = 1, 0 ≤ Ryx ≤ 1 (3.2)

Let μ be a stationary probability for R:

μ(y) =
∑

x
Ryxμ(x) (3.3)
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Then, we define a stochastic process by

p[m,n]
(
x[m, n]

)
= Rxnxn–1 · · ·Rxk xk–1 · · ·Rxm+1xmμ(xm) (3.4)

where

x([m, n] = (xm, m; xm+1, m + 1 : · · ·xn, n) (3.5)

This process is stationary. It is ergodic if and only if R is irreducible. The Bernoulli process
(a) is a particular case when Ryx = μ(x).

(c) Dynamical systems
These systems are of special interest to physics (see [1] and Remark 2 below). Let

(M,M,μ) be a probability space so that M is a measurable space with a σ -algebra M
of measurable subsets and μ a probability defined on M.

Let f : M → M be a measurable bijection, which is measure-preserving, namely

μ(f –1(B) = μ(B), B ∈M (3.6)

Let X be a finite partition of M in measurable subsets. We define a coarse-grained, stochas-
tic process on X by the formula

p[m,n]
(
x[m, n]

)
= μ

(
xm ∩ f –1(xm+1) ∩ · · · f –k(xm+k) ∩ · · · f m–n(xn)

)
(3.7)

where x[m, n] ∈ X[m,n] is given by Eq. (3.5).
Then p[m,n](x[m, n]) is the measure of the subset of elements z ∈ M with

z ∈ xm, f (z) ∈ xm+1, . . . , f n–m(z) ∈ xn.

This process is stationary. It is ergodic if f is ergodic (i.e., if the only measurable subset
B of M invariant by f is of measure μ(B) = 0 or 1).

Remark 1 This definition, due to Kolmogorov, was introduced to define nonspatial invari-
ants of dynamical systems [4].

Remark 2 A particularly interesting example [4] is the case when M is a phase space, and
f is a Hamiltonian map (i.e., the map given by the solution of the Hamilton equation at a
given time) and μ is the volume on M, which is preserved by f because of the Liouville
theorem.

4 Changing initial conditions: definition of the nonstationary process p.
Production of entropy

4.1 Definition of a particular nonstationary process p
Let A be a partition of X. The elements of A are subsets a ⊂ X satisfying Eqs. (2.5)–(2.10).

Let p be a stationary process on X, and q be a probability on A. These two data determine
a process on X that is a probability p on XN given by the formulas

p[0,n](x
(
[0, n]

)
=

q(a(x0)
p0(a(x0)

p
(
x[0, n]

)
(n ≥ 0) (4.1)
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p[m,n](x
(
[0, n]

)
=

∑

x[0,m–1]

q(a(x0)
p0(a(x0)

p
(
x[0, n]

)
(m < 0 ≤ n) (4.2)

Here

x[0, n] ∈ X[0,n]

a(x0) ∈ A is the unique a such that x0 ∈ a

p0(a) =
∑

x∈a
p0(x), p0 being p[0].

Definitions (4.1)–(4.2) show that the distributions p[0,n] and p[m,n] satisfy the compatibility
conditions and define a probability on XN , and a stochastic process (induced by the inte-
gers ≥ 0) on X. This stochastic process is nonstationary (indeed, being indexed by the ≥0
integers, the stationarity is meaningless).

The initial distribution is

p0(x0) =
q(a(x0))
p(a(x0))

p0(x0) (4.3)

and the distribution at time n is

pn(xn) =
∑

x[0,n–1]

q(a(x0))
p(a(x0))

p
(
x[0, n – 1], xn

)
(4.4)

where (x[0, n – 1], xn) denotes the path (x(0), 0; x(1), 1; . . . ; x(n – 1), n – 1; xn, n).

Convention As previously mentioned, we skip the indices I for pI when there is no pos-
sible confusion.

Lemma 4.1 The conditional probabilities of the process p with the condition starting at
time 0 are identical to the corresponding conditional probabilities of the process p, so, for
0 < k ≤ n

p
(
x[k, n]|x[0, k – 1]

)
= p

(
x[k, n]|x[0, k – 1]

)
(4.5)

The proof is obvious using (4.1).

4.2 Entropy and relative entropy
If Z is a finite set, if |Z| is the number of its elements, and if p, q are probabilities on Z, we
define the entropy of p and the relative entropy of p and q by the usual formulas [7]

S(p) = –
∑

z∈Z

p(z) ln p(z) ≥ 0 (4.6)

S(p|q) =
∑

z∈Z

p(z) ln
p(z)
q(z)

≥ 0 (4.7)

One has

0 ≤ S(p) ≤ ln |Z|
S(p|q) ≥ 0 and S(p|q) = 0 if and only if p = q.
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4.3 Path entropy
For the stationary process, the nonstationary process, and any positive integer n, we define
the path entropy Sn

Sn(p) = S(p[0,n]) = –
∑

x[0,n]

p
(
x[0, n]

)
ln p

(
x[0, n]

)
(4.8)

Sn(p) = S(p[0,n]) = –
∑

x[0,n]

p
(
x[0, n]

)
ln p

(
x[0, n]

)
(4.9)

Lemma 4.2 (a) One has the following identities:

Sn(p) = S(p0) +
n∑

k=1

dkSk(p) (4.10)

where

dkSk(p) = Sk(p) – Sk–1(p) (4.11)

and the same identities with p instead of p.
(b) One has

dkSk(p) =
∑

x[0,k–1]

p
(
x[0, k – 1]

)
S
((

.|x[0, k – 1]
)) ≥ 0 (4.12)

dkSk(p) =
∑

x[0,k–1]

p
(
x[0, k – 1]

)
S
((

.|x[0, k – 1]
)) ≥ 0 (4.13)

Proof (a) is trivial. On the other hand, one has

dkSk(p) = –
∑

p
(
x[0, k]

)
ln p(x[0, k] +

∑
p
(
x[0, k – 1]

)
ln p(x[0, k – 1]

= –
∑

p
(
x[0, k]

)
ln

p(x[0, k]
p(x[0, k – 1]

= –
∑

x[0,k–1]

p
(
x[0, k – 1]

)∑

x(k)

p(x[0, k])
p(x[0, k – 1])

ln
p(x[0, k]

p(x[0, k – 1]

which is (4.12). Similarly, we derive (4.13) using Lemma 4.1. �

Lemma 4.3 (a) For the stationary process p, one has the identity

dkSk(p[0,k]) – dk–1Sk–1(p[0,k–1])

= –
∑

x[–k,–1]

p
(
x[–k, –1]

)
S
(
p
(
.|x[–k, –1]

)|p(
.|x[–k + 1, –1]

)) ≤ 0

(b) dkSk(p(p[0,k]) is a decreasing sequence with a limit s(p).

Proof Using the definition of dkS (Eq. (4.12), one has by stationarity of p

dkSk(p(p[0,k]) – dk–1Sk–1(p(p[0,k–1])
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= –
[∑

p
(
x[0, k]

)
ln p

(
x(k)|x[0, k – 1]

)

–
∑

p
(
x[0, k – 1]

)
ln p

(
x(k – 1)|x[0, k – 2]

)]

= –
[∑

p
(
x[–k, 0]

)
ln p

(
x(0)|x[–k, –1]

)

–
∑

p
(
x[–k + 1, 0]

)
ln p

(
x(0)|x[–k + 1, –1]

)]

= –
∑

p(x
(
[–k, 0]

)
ln

p(x(0)|x[–k, –1])
p(x(0)|x[–k + 1, –1])

≡ –
∑

p
(
x[–k, –1]

)
S(p

(
.
∣∣x[–k, –1]

∣∣p
(
.|x[–k + 1, –1

)) ≤ 0 �

4.4 The case of a stationary probability p
In this case, we will use a theorem that was first presented in Ref. [1], using the concept of
martingale (see, for instance, [13, 14], or [12] for a simplified definition).

Theorem 4.4 For x = x(0) ∈ X, the sequence of random variables p(x|x[–k, –1]) is a mar-
tingale with respect to the sequence Fk of σ -algebras generated by x([–k, –1]). Moreover,
these random variables are positively bounded by 1.

Using this theorem, Lemma 4.3(b), and the identity (4.10), one obtains the result of
Kolmogorov-Shannon [4, 6]:

Theorem 4.5 For the stationary process p, one has
(a) dkSk(p) has a limit s(p) for k → ∞
(b) One has

lim
n→∞

1
n

Sn(p) = s(p) (4.14)

Definition s(p) is the (asymptotic) production of entropy per unit time of the process p.

For completeness, the proofs of Theorems 4.4 and 4.5 are given in Appendix A.

Remark 3 In the special case where p comes from a dynamical system (Eq. (3.7)), it is
proved in [3] that dkSk(p) is a decreasing sequence, and there is no need to use martingale
theory.

4.5 Non-stationary probability p
In the nonstationary case, the production of entropy at time k is dkSk(p). The asymptotic
entropy production of p is well defined if dkSk(p) tends to a limit when k → ∞. As shown
later, further hypotheses are necessary for such a limit to exist. In the general case, we can
only prove that

C′s(p) ≤ lim inf dkSk(p) ≤ lim sup dkSk(p) ≤ C′′s(p) (4.15)

where C′ (resp. C′′) is the lower (resp. upper) bound of q(x)/p(x) (0 ≤ C′ ≤ 1 ≤ C′′).

Proof These inequalities straightforwardly result from Eqs. (4.1)–(4.2) and Theo-
rem 4.4. �
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5 Production of entropy for a nonstationary distribution p
5.1 Mixing process
We say that the stationary process p is a mixing process if for 0 < n < n + k

lim
n→∞ p[0,n+k)

(
x(0), x[n, n + k]

)
= p0

(
x(0)

)
p[0,k)

(
τ–n(x[n, n + k]

))
(5.1)

In expanded notations, this means that for n → ∞

p
(
x(0), 0 : xn, n; xn+1, n + 1; . . . ; xn+k , n + k

)

→ p
(
x(0), 0

)
p(xn, 0; xn+1, 1; . . . ; xn+k , k) (5.2)

for any sequence x(0), 0 : xn, n; xn+1, n + 1; . . . ; xn+k , n + k of k + 1 elements.
The mixing property implies ergodicity [4].

Theorem 5.1 If p is mixing, the nonstationary process p defined in Sect. 4 has an asymp-
totic distribution in X, which is p(x).

Proof The asymptotic distribution of p (if it exists) is

p∞(x) = lim
n→∞

∑

x[0,n–1]

p
(
x[0, n]

)
with x(n) = x fixed

= lim
n→∞

∑

x(0)

p(x
(
x(0), 0; x(n), n

)

= lim
n→∞

∑

a∈A

q(a)
p(a)

∑

x(0)∈a

p
(
x(0), 0; x(n), n

)

(5.3)

But p(x(0), 0; x(n), n) → p(x(0))p(x) by the mixing property. As the sum over a ∈ A is finite,
the limit in Eq. (5.3) exists, and it is p(x). �

5.2 Production of entropy for p when p is mixing. The main theorem
Theorem 5.2 Assume that p is a mixing process. Then

(a) dnSn(p) has the limit s(p)
(b) limn

1
n Sn(p) = s(p)

Then p has a well-defined production of entropy, which is the same as the entropy produc-
tion of p.

The proof of this basic theorem is the consequence of successive partial results, which
are postponed to Section 5.4 and completed in Appendix B.

5.3 Production of entropy for a mixing process p
Theorem 5.3 If p is a mixing process, one has

dkSk(p) = lim
n→∞

∑
p
(
x(0), x[n, n + k – 1]

)
S
(
p
(
.|x(0), x[n, n + k – 1]

))
(5.4)

the sum being taken over x(0) ∈ X and over x[n, n + k – 1] ∈ X[n,n+k–1].
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Proof The mixing property (5.1) implies that the conditional probability p[0,n+k](x(n +
k)|x(0), x[n, n + k – 1]) has a limit:

lim
n→∞ p[0,n+k]

(
x(n + k)|x(0), x[n, n + k – 1]

)

= p[0,k](x(n + k)|τ–n(x[n, n + k – 1]
)
1 (5.5)

where the limit is taken with a fixed k and fixed x(0), x(n), . . . , x(n + k – 1), x(n + k). Then

–p
(
.|x(0), x[n, n + k – 1]

)
ln

(
p
(
.|x(0), x[n, n + k – 1]

))

→ –p
(
.|τ–n(x[n, n + k – 1]

))
ln p

(
.|τ–n(x[n, n + k – 1]

)) (5.6)

and all these quantities are uniformly bounded by max0≤α≤1 |α lnα|. As X is finite, we can
sum (5.6) on x(n + k) and obtain

S
(
p
(
.|x(0), x[n, n + k – 1]

)) → S
(
p
(
.|τ–nx[n, n + k – 1]

))
(5.7)

while staying uniformly bounded. By the Lebesgue theorem of dominated convergence in
L1(Z, p), we have [15]

Ep
{

S
(
p
(
.|x(0), x[n, n + k – 1]

))} → Ep
{

S
(
p
(
.|τ–nx[n, n + k – 1]

))}
(5.8)

where Ep{} is the mathematical expectation for the measure p. Now, the first term in
Eq. (5.8) is

∑

x(0),x[n,n+k–1]

p
(
x(0), x[n, n + k – 1]

)
S
(
p
(
.|x(0), x[n, n + k – 1]

))

and the last member in Eq. (5.8) js, using (4.12)

∑

x[0,k–1]

p(x[0, k – 1]S
(
p
(
.|x[0, k – 1]

)) ≡ dkSk(p)

which proves Eq. (5.4). �

Theorem 5.4 If p is a mixing process, for any probability q in X and for the associated
process p defined in Sect. 4, one has

dkSk(p) = lim
n→∞

∑
p
(
x(0), x[n, n + k – 1]

)
S(p

(
.|x(0), x[n, n + k – 1]

)
(5.9)

where k is fixed and the sum is over x(0), x[n, n + k].

Proof Using the definition of p and Lemma 4.1, one has

∑
p
(
x(0), x[n, n + k – 1]

)
S
(
p
(
.{x(0), x[n, n + k – 1]

))

≡ Ep

{
q(a(x(0)))
p(a(x(0)))

S(p
(
.|x(0), x[n, n + k – 1]

)}

=
∑

a∈A

q(a)
p(a)

Ep
{

1a
(
x(a)

)
S(p

(
.|x(0), x[n, n + k – 1]

)}

(5.10)
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where 1a is the characteristic function of the subset a of X. By the mixing property Eq. (5.1)
and Lebesgue theorem of dominated convergence, we have

lim
n→∞ Ep

{
1a

(
x(a)

)
S(p

(
.|x(0), x[n, n + k – 1]

)}

= p(a)Ep
{

S(p
(
.|τ–nx[n, n + k – 1]

)}

≡ p(a)
∑

p(x
(
[0, k – 1]

)
S(p

(
.|x[0, k – 1]

) ≡ p(a)dkSk(p)

(5.11)

where we have used (4.12). So, by Eq. (5.10), we have proved Eq. (5.9). �

5.4 Proof of Theorem 5.2
We first derive several successive lemmas.

Lemma 5.5 Let
q(x, y, z) be a probability distribution on three variables x, y, z taking discrete values,
q(x) and q(x, y) the corresponding marginal laws,
q(z|x) and q(z|x, y) the corresponding conditional laws of z.

Denote by SZ the entropy of the probability distribution of z. Then, we have the identity

∑

x
q(x)SZ(q(.|x) –

∑

x,y
q(x, y)SZ

(
q(.|x, y) =

∑

x,y
q(x, y)SZ

(
q(.|x, y)

)|q(.|x)
)

≥ 0 (5.12)

Proof We apply the definitions to the first member to obtain identity (5.12). �

Lemma 5.6 One has the identity

∑
p(x0), x[n, n + k – 1])S

(
p(.|x0), x[n, n + k – 1]

)

–
∑

p
(
x[0, n + k – 1]

)
S(p

(
.|x[0, n + k – 1]

)
(5.13)

=
∑

p
(
x[0, n + k – 1]

)
S
(
p
(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n; n + k – 1]

))

where each summation is over the variables appearing in the concerned probabilities. For
instance, the first sum on the left is over x(0), x(n), . . . , x(n + k – 1).

Proof of Lemma 5.6 We apply Lemma 5.5 to q = p with the substitutions

x → (
x(0), x[n, n + k – 1]

)
, y → x[1, n – 1, z → x[n + k]

so that (x, y) → x[0, n + k – 1]. �

Lemma 5.7 We have

lim
k→∞

lim
n→∞

∑
p
(
x[0, n + k – 1]

)

× S(p
(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n, n + k – 1]

)
= 0 (5.14)
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The proof of this lemma implies that the first member of (5.13) tends to 0 when n and
k tend to be infinite, which may seem intuitive from the definition of mixing. However,
rigorous proof of Lemma 5.7 requires several further steps, as shown in Appendix B. It
allows one to complete the proof of the basic Theorem 5.2.

End of the proof of Theorem 5.2 We start with the identity (5.13) of Lemma 5.6. The second
term of the right member of this identity is just

–
∑

p
(
x[0, n + k – 1]

)
S
(
p
(
.|x[0, n + k – 1]

)) ≡ dn+kSn+k(p) (5.15)

We see that the limit when n → ∞ of the first term is, using Theorem 5.4, Eq. (5.9)

lim
n→∞

∑
p
(
x(0), x[n, n + k – 1]

)
S(p

(
.|x(

x(0), x[n, n + k – 1]
)) ≡ dkSk(p) (5.16)

Now, in the identity (5.13), taking the limits when n → ∞ and then k → ∞, the first mem-
ber tends to 0 by Lemma 5.7. Taking the same limits in Eq. (5.16), its first term tends to
s(p). So, the second term of Eq. (5.13) dn+kSn+k(p), has a limit, which is s(p). Thus, we have
proved that the nonstationary process p has a production of entropy s(p) = s(p). �

6 Markov approximations
6.1 The process p(T) of memory T associated to p
In general, the process p has an infinite memory. Let T be a positive integer. We define a
process p(T) on X of memory T associated to the process p by the formulas

p(T)(x[0, k]
)

= p
(
x[0, k]

)
if 0 ≤ k ≤ T – 1

p(T)(x[0, k]
)

= p
(
x[0, T – 1]

) k∏

j=T

p
(
x(j)|x[j – T , j – 1]

)
if k ≥ T

(6.1)

Distance between p and p(T) An asymmetric “distance” between p and p(T) for n-step
trajectories can be evaluated from the relative entropy of these two processes (see Sect. 6.4.
below):

S
(
p[0,n]|p(T)

[0,n]
)

This quantity is related to the total variation distance between p[0,n] and p(T)
[0,n], as shown in

Sect. 6.4.

Theorem 6.1 For every ε > 0, there exists a time Tε such that for n ≥ T ≥ Tε , one has

0 ≤ 1
n

S
(
p[0,n]|p(T)

[0,n]
) ≤ ε (6.2)

So, the distance between p[0,n] and p(T)
[0,n] tends to 0 when n → ∞.

Proof Using the definition of the relative entropy, Eq. (4.7), one has

S
(
p[0,n]|p(T)

[0,n]
)

= –S(p[0,n]) –
∑

x[0,n]

p
(
x[0, n]

)
ln p(T)(x[0, n]

)
(6.3)
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On the other hand, it follows from Eq. (4.9) that

–S(p[0,n]) = –S(p0) –
n∑

k=1

dkSk(p) (6.4)

and by definition (6.1), if n ≥ T

–
∑

x[0,n]

p
(
x[0, n]

)
ln p(T)(x[0, n]

)

= S
(
p[0, T – 1]

)
–

n∑

j=T

∑

x[j–T ,j]

p
(
x[j – T , j]

)
ln p

(
x(j)|x[j – T , j – 1]

)
(6.5)

By the stationarity of p, this is

S(p[0,T–1]) –
n∑

j=T

∑

x[0,T]

p
(
x[0, T]

)
ln p

(
x(T)|x[0, T – 1]

)

= S(p[0,T–1]) + (n – T + 1)dT ST (p)

(6.6)

From Eqs. (6.4), (6.6), and (6.3), we obtain

S
(
p[0,n]|p(T)

[0,n]
)

=
k=n∑

k=T

(
dT ST (p) – dkSk(p)

)
(6.7)

According to Theorem 4.4, dkSk(p) decreases when k increases, so each term of the sum
in Eq. (6.7) is ≥ 0, and dkSk(p) → s(p). Choose Tε so that or k ≥ T ≥ Tε

s(p) ≤ dkSk(p) ≤ s(p) + ε (6.8)

Then, for n ≥ T ≥ Tε

S
(
p[0,n]|pT

[0,n]
) ≤ (n – Tε)ε (6.9)

which completes the proof of Theorem 6.1. �

6.2 Partial histories of length T
Definitions A partial history of length T is an element of XT . The nth history of length
T is

x(T)(n) =
(
x(nT)

)
, x(nT + 1), . . . , x

(
(n + 1)T – 1

)
) ∈ XT (6.10)

If M and N are positive integers (M < N ), a sequence of partial histories is

x(T)(M, N] =
(
x(T)(M), . . . , x(T)(N)

)
(6.11)

We also denote by τ (T) the translation of time T on histories of length T .
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Theorem 6.2 (a) The process p(T) induces a Markov process p̃(T) on partial histories of
length T by the formulas

p̃(T)(x(T)(0)
)

= p
(
x[0, T – 1]

)

p̃(T)(x(T)[0, N]
)
) = p(T)(x

[
0, (N + 1)T – 1

]) (6.12)

The transition probabilities between histories of length T are

R
(
x(T)(1)|x(T)(0)

)
=

2T–1∏

j=T

p
(
x(j)|x[j – T , j – 1]

)
(6.13)

where, according to Eq. (6.10)

x(T)(0) =
(
x(0), . . . , x(T – 1)

)
, x(T)(1) =

(
x(T), . . . , x(2T – 1)

)
(6.14)

(b) The stationary probability of the Markov process p̃(T) is p̃(T)(x(T)(0)).
(c) The production of entropy of p̃(T) is

s
(
p̃(T)) =

∑

x(T)(0)

p̃(T)(x(T)(0)
)
S(R

(
.|x(T)(0)

)
(6.15)

where S(R(.|x(T)(0)) is the entropy of the probability distribution x(T)(1) → R(x(T)(1)|
x(T)(0)).

Proof Using the definitions of Eqs. (6.13) and (6.1), we have

p̃(T)(x(T)[0, N]
)

= p̃(T)(x(T)(0)
) (N+1)T–1∏

j=T

p
(
x(j)|x[j – T , j – 1]

)

≡ p̃(T)(x(T)(0)
) N∏

k=1

R
(
x(T)(k)|x(T)(k – 1)]

)
(6.16)

We now show that p̃(T)(x(T)(0)) is the stationary probability. It will prove that (6.16) is the
usual formula [16] for a Markov process (Eq. (3.4) in Sect. 3). One has

∑

x(T)(0)

R
(
x(T)(1)|x(T)(0)]p̃(T)(x(T)(0)

))

=
∑

x[0,T–1]

p
(
x[0, T – 1]

)
p
(
x(T)|x[0, T – 1]

)
p
(
x(T + 1)|x[1, T]

) · · ·

· · ·p
(
x(2T – 1)|x[T – 1, 2T – 2]

)

=
∑

x[0,T–1]

p
(
x[0, T]

)p(x[1, T + 1])
p(x[1, T])

p
(
x(T + 2)|x[2, T+]

) · · · (6.17)

=
∑

x[1,T–1]

p
(
x[1, T + 1]

)p(x[2, T + 2])
p(x[1, T + 1])

· · · = · · ·

= p
(
x[T , 2T – 1]

)
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= p
(
τ–T x[T , 2T – 1]

)
= p̃(T)(τ–1x(T) (1)

)

So, p̃(T)(x(T)(0)) is indeed the stationary probability of the Markov process p̃(T).
On the other hand, Eq. (6.15) is just the usual formula for the entropy production of a

Markov process [16]. �

6.3 Comparison of p and p̃(T)

The process p induces a stationary process on the partial histories of length T (denoted
pT ) by

pT
(
x(T)[M, N]

)
= p

(
x
[
MT , (N + 1)T – 1

])
(6.18)

The process pT is exactly the same as p except that it is restricted to an integer number of
time T .

The entropy production of pT is

sT (pT ) = Ts(p) (6.19)

So, one can rewrite Theorem 6.1 as follows.

Theorem 6.3 Denote by ST (. |.) the relative entropy of two processes defined on histories
of length T . Then, for any ε > 0, there exists Tε , independent of N , such that for T ≥ Tε one
has

1
NT

ST
(
pT ,[0,n]]|p̃(T)

[0,N]
) ≤ ε (6.20)

6.4 Distance between pT and p̃(T)

We can interpret this relation as follows. If p, q are probabilities on a finite space Z, the
following Pinsker inequality [17] relates the relative entropy of p and q to the total variation
distance of distribution p and q:

1
2

(∑

z∈Z

∣
∣p(z) – q(z)

∣
∣
)2

≤ S(p|q)

This shows that S(p|q) represents an asymmetrical distance between p and q. Equa-
tion (6.20) implies that the absolute distance between the actual process pT and the
Markov process p̃(T), divided by T , goes to 0 for long times T .

Theorem 6.4 One has for the production of entropy

lim
T→∞

1
T

sT
(
p̃(T)) = s(p) (6.21)

Proof We use the expression of the entropy production of a Markov process (Eq. (6.15))

s
(
p̃(T)) = –

∑

x[0,T–1]

p(x[0, T – 1]
2T–1∏

j=T

p
(
x(j)|x[j – T , j – 1]

)
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×
2T–1∑

k=T

ln p
(
x(k)|x[k – T , k – 1]

)

= –
2T–1∑

k=T

∑
p
(
x[0, T – 1]

) k∏

j=T

p
(
x(j)|x[j – T , j – 1]

)
ln p

(
x(k)|x[k – T , k – 1]

)

= –
2T–1∑

k=T

∑
p
(
x[1, T]

) k∏

j=T+1

p
(
x(j)|x[j – T , j – 1]

)
ln p

(
x(k)|x[k – T , k – 1]

)

= · · ·

= –
2T–1∑

k=T

∑

x[k–T ,k]

p
(
x[k – T , k – 1]

)
ln p

(
x(k)|x[k – T , k – 1]

)

and by the stationarity of p and Eq. (4.12)

= –T
∑

x[0,T]

p
(
x[0, T]

)
ln p

(
x(T)|x[0, T – 1]

)
= TdT ST (p)

However, by Theorem 4.5, dT ST (p) → s(p) if T → ∞, which gives Theorem 6.4. �

6.5 Attenuation of the memory
We come back to the process pT on histories of length T . We now prove

Theorem 6.5 For a fixed integer N ≥1, one has

lim
T→∞

1
T

∑

x(T)[0,N–1]

p
(
x(T)[0, N – 1]

)

× ST
(
pT

(
.|x(T)[0, N – 1]

)|pT
(
.|x(T)(N – 1)

))
= 0

(6.22)

Proof We use the definition of relative entropy and decompose the sum of Eq. (6.22) into
two terms:

A1 ≡ –dN ST ,N (pT )

= –
∑

x(T)[0,N–1]

p
(
x(T)[0, N – 1]

) × ST
(
p
(
.|x(T)[0, N – 1]

))

= –(S(p[0,NT–1] – S(p[0,(N–1)T–1]) = –
NT–1∑

k=(N–1)T

dkSk(p)

(6.23)

and

A2 ≡ –
∑

x(T)[0,N–1]

p
(
x(T)[0, N – 1]

)

×
∑

x(T)(N)

pT
(
x(T)(N)|x(T)[0, N – 1]

)
ln pT

(
x(T)(N)|x(T)(N – 1)

)

= –
∑

x(T)[0,1]

p
(
x(T)[0, 1]

)
ln pT

(
x(T)(1)|x(T)(0)

)

= S(p[0,2T–1]) – S(p[0,T–1]) =
2T–1∑

k=T

dkSk(p)

(6.24)
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Both sums (6.23) and (6.24) contain T terms dkSk(p) which tend to s(p). This gives the
result (6.22). �

As a consequence, if T is large enough, within a given accuracy, ε is possible to neglect
the distance between the process at time NT , with complete history from time 0, and the
process with history limited to the last period of length T , between times NT and (N –1)T .
In practice, one can neglect the memory after times larger than T .

7 Conclusion
It has been rigorously proved that coarse-graining dynamical systems induce new sys-
tems that partially approximate the original systems. This conclusion is often anticipated
intuitively in modeling physical or applied phenomena, which most generally needs sim-
plifying and approximating actual observations. Because of its importance, this question
has been, for a long time, the matter of many studies (see, for instance [18], and references
therein), but it is difficult to obtain both a general approach and exact results on dynam-
ical problems. Recently, it has been shown that innovative concepts introduced by Kol-
mogorov somewhat sixty years ago can be combined with the martingale theory to yield
novel results in this domain. At first, this point of view was applied to classical Hamil-
tonian systems [1], and a major result was that under appropriate, realistic conditions,
coarse-graining systems generate an approximate Markov system. Here, we have seen that
the same reasoning applies to much more general, possibly stochastic, processes. Using a
purely mathematical formalism, we obtained new, more general conclusions.

In particular, we have proved that the Kolmogorov entropy, introduced by Kolmogorov
for ergodic stationary processes [4], also exists for a class of nonstationary processes de-
fined for coarse-grained systems: these processes are obtained by imposing a nonstation-
ary coarse-grained initial probability distribution, whereas the initial conditional distribu-
tion remains stationary in each grain. Such nonstationary coarse-grained distributions can
be adopted in realistic mesoscopic systems if they are initially constrained to nonequilib-
rium. In contrast, local equilibrium is almost instantaneously re-established: these approx-
imations are often valid in realistic examples [10, 19], which justifies studying this special
class of nonstationary processes. Moreover, it has been proved that the asymptotic en-
tropy production of these nonstationary processes is identical to the entropy production
of the microscopic stationary process, provided this one is mixing. This is our main result,
which allows one to approximate a large class of coarse-grained dynamical processes by
Markov processes.

Alternatively, within the framework of the previous general theory, a forthcoming arti-
cle [20] will present further exact results concerning the comparison of different coarse-
grainings of dynamical systems that are of interest for modeling Markov and non-Markov
processes.

Appendix A: Proofs of Theorems 4.4 and 4.5
Theorem 4.4 For x = x(0) ∈ X, the sequence of random variables p(x|x[–k, –1]) is a mar-
tingale with respect to the sequence Fk of σ -algebras generated by x([–k, –1]). Moreover,
these random variables are positively bounded by 1.
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Proof Consider the random variables

πk = p
(
x|x[–k, –1]

)
= p(x|Fk).

We have because Fk–1 ⊂Fk

E(πk|Fk–1) = E
(
p(x|Fk)|Fk–1

)
= p(x|Fk–1) = πk–1,

where E{} is the mathematical expectation for the measure p. So, πk is a martingale on the
σ -algebra FN , and by the convergence theorem of martingales [13], it converges almost
surely to a limit π when k → ∞. �

From the previous theorem, one can deduce the theorem of Kolmogorov-Shannon [4–
6].

Theorem 4.5 For the stationary process p, one has
(a) dkSk(p) has a limit s(p) for k → ∞
(b) One has

lim
n→∞

1
n

Sn(p) = s(p) (A.1)

Proof (a) We use Eq. (2.13) and the stationarity of p so that

dkSk(p) =
∑

x[–k,–1]

p
(
x[–k, –1]

)
S(p

((
.|x[–k, –1]

)) ≥ 0 (A.2)

where

S
(
p
(
.|x[–k, –1

))
= –

∑

x(0)

p
(
x(0)|x[–k, –1]

)
ln p

(
x(0)|x[–k, –1]

)
(A.3)

By Theorem 4.4, the sequence of random variables p(x(0)|x[–k, –1]) is a martingale
with respect to the sequence Fk of σ -algebras generated by x([–k, –1]). Moreover, these
random variables are positively bounded by 1. So, by the theorem of convergences of
martingales [4], this sequence converges p-almost surely to a certain random variable
p(x(0)|x[–∞, –1]) (as well as any Lebesgue space Lr(Xr , p) for 1 ≤ r ≤ +∞). Furthermore,
p(x(0)|x[–k, –1]) ln p(x(0)|x[–k, –1]) converges also p-almost surely, as well as the finite
sum S(p(.|x[–k, –1)) over x(0) ∈ X, while staying uniformly bounded. By Lebesgue of dom-
inated convergence [6], the integral over p of these random variables converges, so dkSk(p)
converges.

(b) 1
n Sn(p) is, up to 1

n Sn(p0), the arithmetic sum of the first n differences dkSk(p)
(Eq. (4.10)). �
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Appendix B: Proofs of Lemma 5.7 and Theorem 5.2
Using the definition of p and Lemma 4.1 for the conditional entropy, we have

∑
p
(
x[0, N + k – 1]

)
S(p

(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n, n + k – 1]

)

=
∑ q(a(x0)

p(a(x0)
p
(
x[0, n + k – 1]

)
S(p

(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n, n + k – 1]

)

≤ C
∑

p
(
x[0, n + k – 1]

)
S(p

(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n, n + k – 1]

)

where C = max q(a)/p(a).
To prove Lemma 5.7, we prove

Lemma 5.8 One has

lim
k→∞

lim
n→∞

∑
p
(
x[0, n + k – 1]

)

× S(p
(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n, n + k – 1]

)
= 0

(B.1)

Proof of Lemma 5.8 We split the sum in the first term of (5.16) into two terms

∑
p
(
x[0, n + k – 1]

)
S(p

(
.|x[0, n + k – 1]

)|p(
.|x(0), x[n, n + k – 1]

)

= E1(n + k) + E2(n, k) (B.2)

with

–E1(n + k) = Ep
{

S
(
p
(
.|x[0, n + k – 1]

))}
(B.3)

and

E2(n, k) = –Ep

{∑
p
(
x(n + k)|x[0, n + k – 1]

)
ln p

(
x(n + k)|x(0), x[n, n + k – 1]

)}
(B.4)

Lemma 5.8 is proved from the next two Lemmas. �

Lemma 5.9 We have

lim
n+k→∞

E1(n + k) = –s(p) (B.5)

Proof of Lemma 5.9 By the stationarity of p, we have

E1(n + k) =
∑

x(0)

Ep
{

–p
(
x(0)|x[–n – k, –1]

)
ln p

(
x(0)|x[–n – k, –1]

)}

The martingale p(x(0)|x(–n – k, –1) is uniformly bounded and converges p-almost surely,
and it also integrable, so that, by the convergence theorem of martingales [13]

lim
n+k→∞

E1(n + k) =
∑

x(0)

Ep
{

–p
(
x(0)|x[–∞, –1]

)
ln p

(
x(0)|x – ∞, –1]

)}
= –s(p).

�
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Lemma 5.10 One has

lim
k→∞

lim
n→∞ E2(n, k)

= –
∑

x(0)

Ep
{

p
(
x(0)|x]–∞, –1]

)
ln p

(
x(0)|x]–∞, –1]

)} (B.6)

Proof of Lemma 5.10 We have

E2(n, k) = –
∑

p
(
x[0, n + k – 1]

)
p
(
x(n + k)|x[0, n + k – 1]

)

× ln p
(
x(n + k)|x(0), x[n, n + k – 1]

)

= –
∑

p
(
x[0, n + k]

)
ln p

(
x(n + k)|x(0), x[n, n + k – 1]

)

= –
∑

x(n+k)

Ep
{

p(
(
x(n + k)

)}
ln p

(
x(n + k)|x(0), x[n, n + k – 1]

)

= Ep
{

S(p
(
.|x(0), x[n, n + k – 1]

)}

(B.7)

Now, we have seen in Eq. (5.8) that this converges when n → ∞ to

lim
n→∞ E2(n, k) = Ep

{
S(p

(
.|τ–nx[n, n + k – 1]

)}

= Ep
{

S
(
p
(
.|x[à, k – 1]

))}
= dkSk(p)

(
by Eq. (4.12)

) (B.8)

So,

lim
k→∞

lim
n→∞ E2(n, k) = s(p) (B.9)

Eqs. (B.8) and (B.9) prove Lemma 5.10. �

This concludes the proof of Theorem 5.2.
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