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Abstract
In this paper, by using the residue method of complex analysis, we obtain a
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1 Introduction and main result
Throughout this paper, we always make use of the following notation: N = {1, 2, 3, . . .} de-
notes the set of natural numbers, N0 = {0, 1, 2, 3, . . .} denotes the set of nonnegative inte-
gers, C denotes the set of complex numbers.

For a ∈C, the shifted factorial are defined by

(a)0 = 1 and (a)n = a(a + 1) · · · (a + n – 1) for n = 1, 2, . . .

The q-shifted factorial are defined by

(a; q)0 = 1, (a; q)n = (1 – a)(1 – aq) · · · (1 – aqn–1) =
n–1∏

k=0

(
1 – aqk) (n = 1, 2, . . .),

(a; q)∞ = (1 – a)(1 – aq) · · · (1 – aqn) · · · =
∞∏

k=0

(
1 – aqk) (|q| < 1; a, q ∈ C

)
.

The q-numbers and q-numbers factorial are defined by

[a]q =
1 – qa

1 – q
(q �= 1); [0]q! = 1, [n]q! = [1]q[2]q · · · [n]q (n ∈N, a ∈ C),
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respectively. Clearly,

lim
q→1

[a]q = a, lim
q→1

[n]q! = n!.

The q-shifted factorial of q-numbers defined by

(
[a]q

)
n := [a]q[a + 1]q · · · [a + n – 1]q (n ∈N, a ∈C).

Clearly,

lim
q→1

(
[a]q

)
n = (a)n,

i.e., q-numbers shifted factorial ([a]q)n is an q-analogue of the shifted factorial (a)n.
The q-shifted factorial (a; q)n is not a q-analogue of the shifted factorial (a)n. Let q �→ qa

and then divide (1 – q)n. Therefore (a; q)n becomes ([a]q)n = (qa ;q)n
(1–q)n which is a q-analogue

of the shifted factorial (a)n.
The q-binomial coefficient is defined by

[
n
k

]

q
=

(q; q)n

(q; q)n–k(q; q)k
,

which satisfies the following relationships:

[
n
k

]

q
=

[
n

n – k

]

q
(0 ≤ k ≤ n),

[
n
k

]

q
= 0 (n < k),

[
x
k

]

q
=

[
x – 1
k – 1

]

q
+ qk

[
x – 1

k

]

q
(n, k ∈N; x ∈C).

The above q-standard notation can be found in [1] and [11].
The generalized harmonic numbers are defined by

H (r)
0 = 0 and H (r)

n =
n∑

k=1

1
kr for n, r = 1, 2, . . . ,

when r = 1, they reduce to the classical harmonic numbers as Hn = H (1)
n .

Two q-generalized harmonic numbers are respectively defined by

H (r)
0;q = 0 and H (r)

n;q =
n∑

k=1

1
(1 – qk)r for n, r = 1, 2, . . . ,

and

H̃ (r)
0;q = 0 and H̃ (r)

n;q =
n∑

k=1

qkr

(1 – qk)r for n, r = 1, 2, . . . ,

when r = 1, they reduce to the q-harmonic numbers Hn;q = H (1)
n;q and H̃n;q = H̃ (1)

n;q, respec-
tively.
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The complete Bell polynomials Bn(x1, x2, . . . , xn) are defined by (see [9, p. 133–137] or
[16, p. 173–174])

exp

( ∞∑

k=1

xk
zk

k!

)

=
∞∑

n=0

Bn(x1, x2, . . . , xn)
zn

n!
, B0 := 1, (1)

with an exact expression being

Bn(x1, x2, . . . , xn) =
∑

π (n)

n!
k1!k2! · · ·kn!

(
x1

1!

)k1(x2

2!

)k2

· · ·
(

xn

n!

)kn

, (2)

where π (n) denotes a partition of n, usually denoted 1k1 2k2 · · ·nkn , with k1 +2k2 + · · ·+nkn =
n. The complete Bell polynomials Bn(x1, x2, . . . , xn) for n = 0 to 5 are respectively given by:

B0 = 1,

B1(x1) = x1,

B2(x1, x2) = x2
1 + x2,

B3(x1, x2, x3) = x3
1 + 3x1x2 + x3,

B4(x1, x2, x3, x4) = x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4,

B5(x1, x2, x3, x4, x5) = x5
1 + 10x3

1x2 + 15x1x2
2 + 10x2

1x3 + 10x2x3 + 5x1x4 + x5.

From (2) we easily obtain

Bn
(
–x1, x2, . . . , (–1)nxn

)
= (–1)nBn(x1, x2, . . . , xn). (3)

For convenience, we define the above sum as equal to zero for n < 0, i.e., Bn(x1, x2, . . . ,
xn) = 0 when n < 0.

Chu [3] established the partial fraction decompositions of two rational functions 1
(z)λn+1

and zM

(z)λn+1
based on the induction principle and famous Faà di Bruno formula and obtained

several striking harmonic number identities from two partial fraction decompositions,
therefore resolved completely the open problem of Driver et al. [10]. It is not difficult, by
using (2), to reformulate two main results of Chu as follows:

Theorem 1 ([3, Theorem 2]) Suppose that λ and n are positive integers, z ∈ C \
{0, –1, . . . , –n}. Then the following partial fraction decomposition holds:

(n!)λ

(z)λn+1
=

n∑

k=0

(–1)kλ

(
n
k

)λ λ–1∑

j=0

Bj(x1, x2, . . . , xj)
j!(z + k)λ–j , (4)

where

xi = λ(i – 1)!
(
H (i)

k + (–1)iH (i)
n–k

)
, i = 1, 2, . . . ,λ – 1.
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Theorem 2 ([3, Theorem 5]) Suppose that n, M, and λ are three natural numbers with
λ ≤ M < λ(n + 1), z ∈C \ {0, –1, . . . , –n}. Then the following partial fraction decomposition
holds:

zM

(z)λn+1
=

n∑

k=0

(–1)λk+M kM

(n!)λ

(
n
k

)λ λ–1∑

j=0

Bj(x1, x2, . . . , xj)
j!(z + k)λ–j , (5)

where

xi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

M
ki

]
, i = 1, 2, . . . ,λ – 1.

The partial fraction decomposition plays an important role in the study of the combi-
natorial identities and related questions (for example, see [2–8, 12, 15, 17–23] and the
references therein). But if a rational fraction is improper, the method of the partial frac-
tion decomposition is invalid. So how do we decompose an improper rational fraction
into partial fractions? Zhu and Luo answered this question using the contour integral and
Cauchy’s residue theorem and gave an explicit decomposition for the general rational func-
tion xM

(x+1)λn
. We rewrite the main result of Zhu and Luo as follows:

Theorem 3 ([24, Theorem 1]) Suppose that M is any nonnegative integer, λ and n are
any positive integers such that N = λn, and z is a complex number such that z ∈ C \
{–1, –2, . . . , –n}. Then the following partial fraction decomposition holds:

zM

(z + 1)λn
=

M–N∑

j=0

Bj(x1, . . . , xj)
j!

zM–N–j

+
n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ+M
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(z + k)λ–j , (6)

where

xi = λ(–1)i(i – 1)!
n∑

j=1

ji, i = 1, 2, . . . , M – N ,

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki

]
, i = 1, 2, . . . ,λ – 1.

When M – N ≥ 0 in Theorem 3, i.e., the rational function xM

(x+1)λn
is improper, putting

aj = Bj(x1,...,xj)
j! and ak,j = (–1)λk

j!(n!)λ
(n

k
)λ(–k)λ+MBj(y1, y2, . . . , yj), (6) becomes the following explicit

form:

xM

(x + 1)λn
=

M–N∑

j=0

aM–N–jxj +
n∑

k=1

λ–1∑

j=0

ak,j(x + k)j

(x + k)λ
,

which is an explicit result of the polynomial xM divided by the polynomial (x + 1)λn. There-
fore we say that Theorem 3 provides a new idea and method for the division of two general
polynomials.
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When M – N < 0, i.e., the degree of the numerator polynomial M is smaller than the de-
gree of the denominator polynomial N = λn, we deduce Chu’s results (4) and (5). Therefore
we say that Theorem 3 is an interesting extension of Chu’s results.

In the present paper, we will provide a q-analogue of Theorem 3 using the contour in-
tegral and Cauchy’s residue theorem. As some applications, we obtain the corresponding
q-algebraic and q-combinatorial identities.

We state our main result in the following theorem.

Theorem 4 If z is a complex variable, M is a nonnegative integer, n and λ are two positive
integers such that N = nλ, then the following q-algebraic identity holds:

zM

((z + 1)q; q)λn

= (–1)N q–λ(n+1
2 )

M–N∑

j=0

BM–N–j(x1, . . . , xM–N–j)
(M – N – j)!

zj

+
n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ+M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – (z + 1)qk)λ–j , (7)

where

xi = λ(i – 1)!(1 – q)i
n∑

j=1

(
q–j[j]

)i, i = 1, 2, . . . , M – N , (8)

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ + M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (9)

Remark 5 Formula (7) is a q-analogue of formula (6).

2 q-Algebraic identities
In this section, we will provide the q-analogues of some algebraic identities.

When M < N , we obtain the following q-algebraic identity:

Corollary 6 If z is a complex variable, M is a nonnegative integer, n and λ are two positive
integers such that N = nλ, then the following q-algebraic identity holds:

zM

((z + 1)q; q)λn

=
n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ+M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – (z + 1)qk)λ–j , (10)

where

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ + M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (11)

When M ≥ N , we give the following new and interesting q-algebraic identities: for M =
N , we have
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Corollary 7 Suppose that z is a complex variable, n and λ are two positive integers. Then
the following q-algebraic identity holds:

znλ

((z + 1)q; q)λn

=
(–1)nλ

qλ(n+1
2 )

+
n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ+nλ

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – (z + 1)qk)λ–j , (12)

where

yi = λ(i – 1)!qki
[
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

n + 1
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1.

For M = N + 1, we have

Corollary 8 Suppose that z is a complex variable, n and λ are two positive integers. Then
the following q-algebraic identity holds:

znλ+1

((z + 1)q; q)λn

=
(–1)nλ

qλ(n+1
2 )

(
z + λ

(
q–n[n] – n

))

+
n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ+nλ+1

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – (z + 1)qk)λ–j , (13)

where

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ(n + 1) + 1
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (14)

For M = N + 2, we have

Corollary 9 Suppose that z is a complex variable, n and λ are two positive integers. Then
the following q-algebraic identity holds:

znλ+2

((z + 1)q; q)λn
=

(–1)nλ

qλ(n+1
2 )

[
z2 + λ

(
q–n[n] – n

)
z +

1
2
(
λ
(
q–n[n] – n

))2

+ λ

(
[2n]

(1 + q)q2n – 2q–n[n] + 3n
)]

+
n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ(n+1)+2

(q; q)λn

[
n
k

]λ

q

×
λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – (z + 1)qk)λ–j , (15)

where

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ(n + 1) + 2
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (16)
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Taking M = 0 in (7), we deduce

Corollary 10 Suppose that z is a complex variable, n and λ are two positive integers. Then
the following q-algebraic identity holds:

(q; q)λn
((z + 1)q; q)λn

=
n∑

k=1

(–1)λ(k–1)qλ(k
2)

(
1 – qk)λ

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – (z + 1)qk)λ–j , (17)

where

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ

(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (18)

Theorem 11 If z is a complex variable, M is a nonnegative integer, n and λ are two positive
integers such that N = nλ. Then the following q-algebraic identity holds:

(qz – 1)M

(qz+1; q)λn
= (–1)N q–λ(n+1

2 )
M–N∑

j=0

BM–N–j(x1, . . . , xM–N–j)
(M – N – j)!

(
qz – 1

)j

+
n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ+M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – qz+k)λ–j , (19)

where

xi = λ(i – 1)!(1 – q)i
n∑

j=1

(
q–j[j]

)i, i = 1, 2, . . . , M – N , (20)

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ + M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (21)

Proof Letting z �→ qz – 1 in Theorem 4, we obtain Theorem 11 immediately. �

Remark 12 Formula (19) is another q-analogue of Luo and Zhu result (6).

Theorem 13 If z is a complex variable, M is a nonnegative integer, n and λ are two positive
integers such that N = λ(n + 1), then the following q-algebraic identity holds:

(1 – qz)M

(qz; q)λn+1
= (–1)M–N–λq–λ(n+1

2 )
M–N–λ∑

j=0

BM–N–λ–j(x1, . . . , xM–N–λ–j)
(M – N – λ – j)!

(
qz – 1

)j

+
n∑

k=0

(–1)λk+Mqλ(k+1
2 )–kM (1 – qk)M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – qz+k)λ–j , (22)

where

xi = λ(i – 1)!(1 – q)i
n∑

j=1

(
q–j[j]

)i, i = 1, 2, . . . , M – N – λ, (23)

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (24)
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Proof Letting z �→ qz – 1 and M �→ M – λ, noting that
∑n

k=1 =
∑n

k=0 in Theorem 4, and
applying the relation

(qz – 1)M

(qz+1; q)λn
≡ (–1)M (1 – qz)M+λ

(qz; q)λn+1
,

we obtain Theorem 13 immediately. �

When M < N , and noting that
∑n

k=1 =
∑n

k=0 in Theorem 13, we have

Corollary 14 If z is a complex variable, n and M are nonnegative integers, λ is a positive
integer such that N = λ(n + 1), then the following q-algebraic identity holds:

(1 – qz)M

(qz; q)λn+1
=

n∑

k=0

(–1)λk+Mqλ(k+1
2 )–kM (1 – qk)M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – qz+k)λ–j , (25)

where

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (26)

Remark 15 The algebraic identity (25) is just a q-analogue of Chu’s result (5).

Taking M = 0 in Corollary 14, we have

Corollary 16 If z is a complex variable, n and λ are two positive integers, then the following
q-algebraic identity holds:

(q; q)λn
(qz; q)λn+1

=
n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – qz+k)λ–j , (27)

where

yi = λ(i – 1)!qki(H (i)
k;q + (–1)iH̃ (i)

n–k;q
)
, i = 1, 2, . . . ,λ – 1. (28)

Remark 17 The algebraic identity (27) is just a q-analogue of Chu’s result (4).

Taking λ = 1 in (27), we have

n∏

k=1

1 – qk

1 – qz+k =
n∑

k=0

(–1)kq(k+1
2 )

[
n
k

]

q

1 – qz

1 – qz+k , (29)

which is a q-analogue of the well-known binomial identity (e.g., see [14]):

n∏

k=1

k
z + k

=
n∑

k=0

(–1)k(
n
k

)
z

z + k
.

Taking M = 0, n �→ n + 1, z �→ z – 1, and then letting z �→ zq–1 in Theorem 4, we obtain
the following corollary.
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Corollary 18 If z is a complex variable, n and λ are two positive integers such that N =
λ(n + 1), then the following q-algebraic identity holds:

(q; q)λn
(z; q)λn+1

=
n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q

λ–1∑

j=0

q–(k+1)j Bj(y1, . . . , yj)
j!(1 – zqk)λ–j , (30)

where

yi = λ(i – 1)!q(k+1)i(H (i)
k;q + (–1)iH̃ (i)

n–k;q
)
, i = 1, 2, . . . ,λ – 1. (31)

Remark 19 The algebraic identity (30) is just another q-analogue of Chu’s result (4).

Taking λ = 1 and letting M �→ m in Theorem 4, we have

Corollary 20 If z is a complex variable, m is a nonnegative integer, and n is a positive
integer, then the following q-algebraic identity holds:

zm

((z + 1)q; q)n
= (–1)nq–(n+1

2 )
m–n∑

j=0

Bm–n–j(x1, . . . , xm–n–j)
(m – n – j)!

zj

+
n∑

k=1

(–1)k–1q(k
2)–km

[
n
k

]

q

(1 – qk)m+1

(q; q)n

1
1 – (z + 1)qk , (32)

where

xi = λ(i – 1)!(1 – q)i
n∑

j=1

(
q–j[j]

)i, i = 1, 2, . . . , m – n. (33)

Taking m = 0 in (32), we obtain the following q-algebraic identity:

(q; q)n

((z + 1)q; q)n
=

n∑

k=1

(–1)k–1q(k
2)

[
n
k

]

q

1 – qk

1 – (z + 1)qk . (34)

3 Further q-combinatorial identities
In this section, we will give the q-analogues of some combinatorial identities of Chu.

Taking z = 0 in (7), we obtain the following q-combinatorial identities involving q-
harmonic numbers.

Corollary 21 If M is a nonnegative integers, n and λ are two positive integers such that
N = nλ, then we have the following q-combinatorial identities:

n∑

k=1

(–1)λkqλ(k
2)

[
n
k

]λ

q

λ–1∑

j=0

q–k(M+j)(1 – qk)M+jBj(y1, y2, . . . , yj)
j!

=

⎧
⎪⎪⎨

⎪⎪⎩

(–1)λ, M = 0,

0, 1 ≤ M < N ,

(–1)N–λ+1q–λ(n+1
2 )(q; q)λn

BM–N (x1,...,xM–N )
(M–N)! , M ≥ N ,

(35)
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where

xi = λ(i – 1)!(1 – q)i
n∑

j=1

(
q–j[j]

)i, i = 1, 2, . . . , M – N , (36)

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ + M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1. (37)

Taking z = 1 in (7), we obtain the following q-combinatorial identities involving q-
harmonic numbers:

n∑

k=1

(–1)λ(k–1)qλ(k
2)–kM (1 – qk)λ+M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – 2qk)λ–j

=
1

(2q; q)λn
+ (–1)N–1q–λ(n+1

2 )
M–N∑

j=0

BM–N–j(x1, . . . , xM–N–j)
(M – N – j)!

. (38)

Taking z = –1 in (7), we obtain the following q-combinatorial identities involving q-
harmonic numbers:

n∑

k=1

(–1)λkqλ(k
2)–kM (1 – qk)λ+M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kjBj(y1, . . . , yj)
j!

= (–1)M+λ + (–1)N+λ–1q–λ(n+1
2 )

M–N∑

j=0

BM–N–j(x1, . . . , xM–N–j)
(M – N – j)!

(–1)j. (39)

Taking z = 1 in (22), we obtain the following q-combinatorial identities involving q-
harmonic numbers:

n∑

k=1

(–1)λk+Mqλ(k
2)–kM (1 – qk)M

(q; q)λn

[
n
k

]λ

q

λ–1∑

j=0

q–kj Bj(y1, . . . , yj)
j!(1 – q1+k)λ–j

=
(1 – q)M

(q; q)λn+1
– (–1)M–N–λq–λ(n+1

2 )
M–N–λ∑

j=0

BM–N–λ–j(x1, . . . , xM–N–λ–j)
(M – N – λ – j)!

(q – 1)j. (40)

Multiplying both sides of (10) by z and then letting z → ∞, we immediately establish
the following combinatorial identities:

Corollary 22 If M is a nonnegative integer, n and λ are two positive integers such that
N = nλ, then we have the following q-combinatorial identities:

n∑

k=1

(–1)λkqλ(k
2)–kM–k(1 – qk)λ+M

[
n
k

]λ

q

Bλ–1(y1, y2, . . . , yλ–1)
(λ – 1)!

=

⎧
⎨

⎩

0, 0 ≤ M < N – 1,

(–1)λ+M (q;q)λn
qλ(n+1

2 )
, M = N – 1,

(41)
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where

yi = (i – 1)!qki
[
λ
(
H (i)

k;q + (–1)iH̃ (i)
n–k;q

)
–

λ + M
(1 – qk)i

]
, i = 1, 2, . . . ,λ – 1.

Noting that
∑n

k=1 =
∑n

k=0 in (41), we say that the above q-combinatorial identities are
the corresponding q-analogues of Chu’s result [3, Corollary 7]:

n∑

k=0

(–1)λkkλ+M
(

n
k

)λ Bλ–1(y1, y2, . . . , yλ–1)
(λ – 1)!

=

⎧
⎨

⎩
0, 0 ≤ M < N – 1,

(–1)λ+M(n!)λ, M = N – 1,
(42)

where

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki

]
, i = 1, 2, . . . ,λ – 1.

Taking λ = 1, 2, 3, 4 in (41), respectively, we obtain the following q-combinatorial iden-
tities involving q-harmonic numbers:

n∑

k=0

(–1)kq
(k2–3k)

2 –kM(
1 – qk)1+M

[
n
k

]

q
=

⎧
⎨

⎩

0, 0 ≤ M < n – 1,

(–1)n (q;q)n

q(
n+1

2 )
, M = n – 1,

(43)

n∑

k=0

qk(k–2–M)(1 – qk)M+2
[

n
k

]2

q

[
2(Hk;q – H̃n–k;q) –

M + 2
1 – qk

]

=

⎧
⎨

⎩

0, 0 ≤ M < 2n – 1,
(q;q)2

n

q2(n+1
2 )

, M = 2n – 1,
(44)

n∑

k=0

(–1)kq
3(k2–3k)

2 –kM (1 – qk)M+3

2!

[
n
k

]3

q

{[
3(Hk;q – H̃n–k;q) –

M + 3
(1 – qk)

]2

+
[

3
(
H (2)

k;q + H̃ (2)
n–k;q

)
–

M + 3
(1 – qk)2

]}

=

⎧
⎨

⎩

0, 0 ≤ M < N – 1,

(–1)n (q;q)3
n

q3(n+1
2 )

, M = N – 1,
(45)

n∑

k=1

qk(2k–3–M) (1 – qk)M+4

3!

[
n
k

]4

q

[[
4(Hk;q – H̃n–k;q) –

M + 4
(1 – qk)

]3

+ 3
[

4(Hk;q – H̃n–k;q) –
M + 4

(1 – qk)

]

×
[

4
(
H (2)

k;q + H̃ (2)
n–k;q

)
–

M + 4
(1 – qk)2

]
+ 2!

[
4
(
H (3)

k;q – H̃ (3)
n–k;q

)
–

M + 4
(1 – qk)3

]]

=

⎧
⎨

⎩

0, 0 ≤ M < N – 1,
(q;q)4

n

q4(n+1
2 )

, M = N – 1.
(46)
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Taking z = 0 in (30), we obtain the following q-combinatorial identity:

n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q

λ–1∑

j=0

q–(k+1)j Bj(y1, . . . , yj)
j!

= (q; q)λn, (47)

where yi is given by (31).
Taking z = –1 in (30), we have

n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q

λ–1∑

j=0

q–(k+1)j Bj(y1, . . . , yj)
j!(1 + qk)λ–j =

(q; q)λn
[2(1 + q)(1 + q2) · · · (1 + qn)]λ

. (48)

Taking z = q in (30), we have

n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q

λ–1∑

j=0

q–(k+1)j Bj(y1, . . . , yj)
j!(1 – qk+1)λ–j =

1
(1 – qn+1)λ

. (49)

Taking z = –q in (30), we have

n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q

λ–1∑

j=0

q–(k+1)j Bj(y1, . . . , yj)
j!(1 + qk+1)λ–j =

(q; q)λn
(–q; q)λn+1

. (50)

Multiplying both sides of (30) by z and then letting z → ∞, we establish the following
q-combinatorial identities:

Corollary 23 Suppose that λ and n are positive integers. We have the following q-
combinatorial identity:

n∑

k=0

(–1)λkqλ(k+1
2 )

[
n
k

]λ

q
Bλ–1(y1, y2, . . . , yλ–1) = 0, (51)

where yi are given by (31).

Remark 24 The combinatorial identity (51) is a q-analogue of Chu’s result [3, Corollary 3]:

n∑

k=0

(–1)λk
(

n
k

)λ

Bλ–1(y1, y2, . . . , yλ–1) = 0, (52)

where

yi = λ(i – 1)!
(
H (i)

k + (–1)iH (i)
n–k

)
, i = 1, 2, . . . ,λ – 1.

Taking λ = 1 in (51), we have

n∑

k=0

(–1)kq–k
[

n
k

]

q
= 0,
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which is a q-analogue of the well-known identity

n∑

k=0

(–1)k
(

n
k

)
= 0.

4 Proof of Theorem 4
Lemma 25 If z is a complex variable, M is a nonnegative integer, n and λ are two positive
integers such that N = nλ, then the following q-algebraic identity holds:

zM

((z + 1)q; q)λn

= (–1)N q–λ(n+1
2 ) BM–N (z1, z2, . . . , zM–N )

(M – N)!

+
n∑

k=1

(–1)λ(k–1)–1q
λ(k2–3k)

2 –kM (1 – qk)λ+M

(q; q)λn

[
n
k

]λ

q

Bλ–1(y1, y2, . . . , yλ–1)
(λ – 1)!(z – q–k + 1)

, (53)

where

ys =(s – 1)!

( n∑

j=1,j �=k

λ

(q–k – q–j)s –
M

(q–k – 1)s +
(–1)s

(z – q–k + 1)s

)

, s = 1, 2, . . . ,λ – 1, (54)

zs =(s – 1)!

( n∑

j=1

λ
(
q–j – 1

)s + zs

)

, s = 1, 2, . . . , M – N . (55)

Proof We first construct two polynomials P(z) and Q(z) of degree M and N + 1, respec-
tively, which are given by

P(z) = zM and Q(z) = (z – α)
n∏

j=1

(
z – q–j + 1

)λ,

such that α �= q–1 – 1, q–2 – 1, . . . , q–n – 1.
We next construct three contour integrals for the rational functions P(z)/Q(z):
•

∮
�

P(z)
Q(z) dz, where � is a simple closed contour which only surrounds the single pole α

of P(z)/Q(z);
•

∮
�′

P(z)
Q(z) dz, where �′ is a simple closed contour which only surrounds the poles

q–1 – 1, q–2 – 1, . . . , q–n – 1 of P(z)/Q(z);
•

∮
�′′

P(z)
Q(z) dz, where �′′ is a simple closed contour which only surrounds the pole ∞ of

P(z)/Q(z).
In the extended complex plane, since the total sum of residues of a rational function at all
finite poles and that at infinity is equal to zero [13, Theorem 2], we have

∮

�+�′+�′′

P(z)
Q(z)

dz = 0,

or equivalently,

∮

�

P(z)
Q(z)

dz = –
∮

�′′

P(z)
Q(z)

dz –
∮

�′

P(z)
Q(z)

dz. (56)
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Below we compute the contour integrals
∮
�

P(z)
Q(z) dz,

∮
�′

P(z)
Q(z) dz, and

∮
�′′

P(z)
Q(z) dz, respec-

tively.
We compute the contour integral

∮
�

P(z)
Q(z) dz as follows:

∮

�

P(z)
Q(z)

dz = 2π i Res
z=α

P(z)
Q(z)

= 2π i Res
z=α

zM

(z – α)
∏n

j=1(z – q–j + 1)λ

= 2π i
αM

∏n
j=1(α – q–j + 1)λ

= 2π i(–1)N qλ(n+1
2 ) αM

((α + 1)q; q)λn
. (57)

We calculate the contour integral
∮
�′′

P(z)
Q(z) dz as follows:

∮

�′′

P(z)
Q(z)

dz = 2π i Res
z=∞

P(z)
Q(z)

= –2π i Res
t=0

1
t2

P( 1
t )

Q( 1
t )

= –2π i Res
t=0

tN–M–1

(1 – tα)
∏n

j=1(1 – t(q–j – 1))λ
.

If M – N < 0, then t = 0 is not a pole, and so we have

∮

�′′

P(z)
Q(z)

dz = –2π i Res
t=0

tN–M–1

(1 – tα)
∏n

j=1(1 – t(q–j – 1))λ
= 0.

If M – N = 0, then t = 0 is a single pole of order 1, so we have

∮

�′′

P(z)
Q(z)

dz = = –2π i Res
t=0

1
t

1
(1 – tα)

∏n
j=1(1 – t(q–j – 1))λ

= –2π i lim
t→0

1
(1 – tα)

∏n
j=1(1 – t(q–j – 1))λ

= –2π i.

If M – N > 0, then t = 0 is a single pole of order M – N . By utilizing Cauchy’s residue
theorem, noting that the power series expansion of the logarithmic function is

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
(|z| < 1

)

and using the definition of complete Bell polynomials, we obtain

∮

�′′

P(z)
Q(z)

dz = –2π i Res
t=0

tN–M–1

(1 – tα)
∏n

j=1(1 – t(q–j – 1))λ

= –2π i
[
tM–N] 1

(1 – tα)
∏n

j=1(1 – t(q–j – 1))λ
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= –2π i
[
tM–N]

exp

{ ∞∑

k=1

[

(k – 1)!

(

αk +
n∑

j=1

λ
(
q–j – 1

)k
)

tk

k!

]}

= –2π i
[
tM–N] ∞∑

k=0

Bk(z1, z2, . . . , zk)
tk

k!

= –
2π i

(M – N)!
BM–N (z1, z2, . . . , zM–N ).

We get

∮

�′′

P(z)
Q(z)

dz = –
2π i

(M – N)!
BM–N (z1, z2, . . . , zM–N ). (58)

We now calculate the contour integral
∮
�′

P(z)
Q(z) dz. By utilizing Cauchy’s residue theorem,

noting that the power series expansion of the logarithmic function is

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
(|z| < 1

)

and using the definition of complete Bell polynomials, we obtain

∮

�′

P(z)
Q(z)

dz = 2π i
n∑

k=1

Res
z=q–k –1

P(z)
Q(z)

= 2π i
n∑

k=1

Res
z=q–k –1

zM

(z – α)
∏n

j=1(z – q–j + 1)λ

= 2π i
n∑

k=1

[(
z – q–k – 1

)λ–1] zM

(z – α)
∏n

j=1
j �=k

(z – q–j + 1)λ

= 2π i
n∑

k=1

[
zλ–1] (z + q–k – 1)M

(z + q–k – 1 – α)
∏n

j=1
j �=k

(z + q–k – q–j)λ

= 2π i
n∑

k=1

[
(q–k – 1)M

(q–k – 1 – α)
∏n

j=1
j �=k

(q–k – q–j)λ

× [
zλ–1] exp

(

M log

(
1 +

z
q–k – 1

)
– log

(
1 +

z
q–k – q–j

)

–
n∑

j=1,j �=k

λ log

(
1 +

z
q–k – q–j

))]

= 2π i
n∑

k=1

{
(q–k – 1)M

(q–k – 1 – α)
∏n

j=1
j �=k

(q–k – q–j)λ

× [
zλ–1] exp

[ ∞∑

s=1

(–1)s(s – 1)!

×
( n∑

j=1,j �=k

λ

(q–k – q–j)s –
M

(q–k – 1)s +
(–1)s

(α – q–k + 1)s

)]
zs

s!

}

.
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Noting that

Bn
(
–x1, (–1)2x2, . . . , (–1)nxn

)
= (–1)nBn(x1, x2, . . . , xn),

it follows that

∮

�′

P(z)
Q(z)

dz = 2π i
n∑

k=1

(–1)λ(q–k – 1)MBλ–1(y1, y2, . . . , yλ–1)
(λ – 1)!(α – q–k + 1)

∏n
j=1
j �=k

(q–k – q–j)λ
. (59)

Therefore, by substituting (57)–(59) into (56), and then changing α �→ z, we obtain
Lemma 25. This proof is complete. �

Lemma 26 The following recursion formula of complete Bell polynomial holds true:

Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

=
λ–1∑

j=0

(–1)λ–j–1 Bj(w1, . . . , wj)
j!(z – q–k + 1)λ–j–1 , (60)

where

ws = (s – 1)!

[ n∑

j=1,j �=k

λ

(q–k – q–j)s –
M

(q–k – 1)s

]

.

Proof Write ys = ws + (–1)s (s–1)!
(z–q–k +1)s in (54). From the definition of a complete Bell poly-

nomial, we obtain

Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

=
[
tλ–1]

∞∑

n=0

Bn(y1, y2, . . . , yn)
tn

n!
=

[
tλ–1] exp

( ∞∑

n=1

yn
tn

n!

)

=
[
tλ–1] exp

{ ∞∑

n=1

(
wn + (–1)n (n – 1)!

(z – q–k + 1)n

)
tn

n!

}

=
[
tλ–1] exp

{ ∞∑

n=1

wn
tn

n!

}

exp

{ ∞∑

n=1

(–1)n(n – 1)!
(z – q–k + 1)n

tn

n!

}

=
λ–1∑

j=0

[
tj] exp

{ ∞∑

n=1

wn
tn

n!

}
[
tλ–1–j] exp

{ ∞∑

n=1

(–1)n

n

(
t

z – q–k + 1

)n
}

=
λ–1∑

j=0

Bj(w1, . . . , wj)
j!

[
tλ–1–j] exp

{
– log

(
1 +

t
z – q–k + 1

)}

=
λ–1∑

j=0

Bj(w1, . . . , wj)
j!

[
tλ–1–j]

∞∑

n=0

(–1)n
(

t
z – q–k + 1

)n

=
λ–1∑

j=0

(–1)λ–j–1 Bj(w1, . . . , wj)
j!(z – q–k + 1)λ–j–1 .
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In the above process, we apply the binomial theorem:

(1 – z)–r =
∞∑

n=0

(
r + n – 1

r – 1

)
zn (|z| < 1

)
. �

Lemma 27 The following recursion formula of complete Bell polynomial holds true:

BM–N (z1, z2, . . . , zM–N )
(M – N)!

=
M–N∑

j=0

BM–N–j(v1, . . . , vM–N–j)
(M – N – j)!

zj, (61)

where

vs = (s – 1)!
n∑

j=1

λ
(
q–j – 1

)s.

Proof Write zs = vs + (s – 1)!zs in (55). Using the definition of a complete Bell polynomial,
we obtain

BM–N (z1, z2, . . . , zM–N )
(M – N)!

=
[
tM–N] ∞∑

n=0

Bn(z1, z2, . . . , zn)
tn

n!
=

[
tM–N]

exp

( ∞∑

n=1

zn
tn

n!

)

=
[
tM–N]

exp

{ ∞∑

n=1

(
vn + (n – 1)!zn) tn

n!

}

=
M–N∑

j=0

[
tM–N–j] exp

{ ∞∑

n=1

vn
tn

n!

}
[
tj] exp

{ ∞∑

n=1

zn tn

n

}

=
M–N∑

j=0

BM–N–j(v1, . . . , vM–N–j)
(M – N – j)!

[
tj] exp

{
– log(1 – zt)

}

=
M–N∑

j=0

BM–N–j(v1, . . . , vM–N–j)
(M – N – j)!

[
tj]

∞∑

n=0

(zt)n

=
M–N∑

j=0

BM–N–j(v1, . . . , vM–N–j)
(M – N – j)!

zj.

In the above process, we apply the binomial theorem:

(1 – z)–r =
∞∑

n=0

(
r + n – 1

r – 1

)
zn (|z| < 1

)
. �

Proof Proof of Theorem 4 Substituting (60) and (61) into (53), and then changing wj �→ yj

and vj �→ xj, we obtain Theorem 4. This proof is complete. �

5 Conclusions
As it is well known, the basic (or q-) series and basic (or q-) polynomials, especially the
basic (or q-) hypergeometric functions and basic (or q-)hypergeometric polynomials, have
widespread applications, particularly in several areas of number theory and combinato-
rial analysis such as the theory of partitions. In [19, p. 340], professor Srivastava points
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out an important demonstrated observation that any (p, q)-variations of the proposed q-
results would be trivially inconsequential because the additional parameter p is obviously
redundant.

In the last section (see [24, Conclusions]), Zhu and Luo suggested an open problem
which would yield the corresponding basic (or q-) extensions of Theorem 3 (see [24, The-
orem 1]). In the present paper, we here have answered this question applying the contour
integral and Cauchy’s residue theorem and given a q-explicit analogue by decomposing
the general rational function xM

(x+1)λn
.
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