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Abstract
We investigate a competitive diffusion–advection Lotka–Volterra model with more
general nonlinear boundary condition. Based on some new ideas, techniques, and
the theory of the principal spectral and monotone dynamical systems, we establish
the influence of the following parameters on the dynamical behavior of system (1.2):
advection rates αu and αv , interspecific competition intensities cu and cv , the
resources functions ru and rv of the two competitive species, and nonlinear boundary
functions g1 and g2. The models of (Tang and Chen in J. Differ. Equ. 269(2):1465–1483,
2020; Zhou and Zhao in J. Differ. Equ. 264:4176–4198, 2018) are particular cases of our
results when gi ≡ const for i = 1, 2, and hence this paper extends some of the
conclusions from (Tang and Chen in J. Differ. Equ. 269(2):1465–1483, 2020; Zhou and
Zhao in J. Differ. Equ. 264:4176–4198, 2018).

Keywords: Diffusive competitive Lotka–Volterra model; Advection term; Principal
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It is well known that the global dynamic properties of biological systems is one of the hot
and difficult issues studied by modern biologists and mathematicians. Especially, in the
competitive species system of rivers, while direct competition among organisms directly
captures our attention, indirect effects such as advection rates in a river, the resources
functions (or the intrinsic growth rates) ru and rv of these two competitors and nonlin-
ear boundary functions gi (i = 1, 2) are more indicative of the intrinsic patterns among
organisms. Therefore in ecological research, it is more realistic and important to study
global dynamical behavior of a competitive diffusion–advection Lotka–Volterra system
under more general nonlinear boundary conditions. This paper is devoted to expanding
some existing and relative results to more general scenarios, where resources are hetero-
geneous, and the downstream end x = D possesses more general boundary conditions,
including the classical boundary conditions such as Neumann, Dirichlet, and so on. Our
main considerations include the existence and stability of nonnegative solutions corre-
sponding to the steady-state system of a single species, as well as spectrum theory analy-
sis by introducing some important definitions and lemmas. Simultaneously, we also take
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the properties of the single-species model into consideration in Sect. 2 and establish suf-
ficient and necessary conditions for the existence of boundary equilibrium points (u∗, 0)
and (0, v∗). Finally, by using some new ideas, techniques, and monotone dynamical system
theory we establish a relatively complete grasping of global dynamical behavior in system
(1.2).

1 Introduction
In various environments, individuals face an advection term, which drives them out of the
system and causes a decrease in population quantity. For example, it contains gut bacteria
and benthic marine species [1–3, 12] and also includes oases in deserts blown away by
wind [6]. However, the aquatic organisms living in rivers are the most significant example,
since they are often affected by water movement. The natural question is why plants or
animal community can still survive in streams when they face to be continuously washed
downstream? To answer and solve it, Speirs and Gurney [26] raised the following mathe-
matical model in an advective environment:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= duuxx – αuux + u(ru – u), x ∈ (0,D), t > 0,

duux(0, t) – αuu(0, t) = 0, t > 0,

duux(D, t) – αuu(D, t) = –buαuu(D, t), t > 0,

u(x, 0) = u0(x) ≥, �≡ 0, x ∈ (0,D).

(1.1)

Here u(x, t) represents the species density at location x and time t. The upstream end
(resp., downstream end) is denoted by x = 0 (resp., x = D), du and αu are the diffusion and
effective advection rates, respectively, and ru is a positive constant indicating the resource
function. In system (1.1) the nonflux boundary condition is the applied upstream, which
suggests that no individual passes through the boundary, whereas for the downstream,
a new function –buαu appears to measure the individual’s loss rate relative to the flow
velocity and is assumed to be nonnegative (detailed derivation can be found in [21]). Note
that here du, ru, αu, bu, and L are all positive constants. Obviously, for bu ≡ 0, this means
that the upstream and downstream are assumed to satisfy the no-flux boundary condition,
which can be used to describe the sinking phytoplankton model with effect (see, e.g., [9, 11,
13]). The case bu = –1 means that a single species satisfies the free flow condition, known
as the Danckwerts condition, which can be used to describe the situation of flowing into
the lake and can be referred to [29]. Especially, in the case where bu becomes small enough,
i.e., bu → –∞, which implies that a single species would undergo the hostile conditions,
i.e., the zero Dirichlet boundary condition, which can be used in the situation of flowing
into the ocean, we can refer to [26].

On the other hand, in the past few decades, many researchers propose various mathe-
matical models to reveal the relationship among different species [17, 31]. It is well known
that due to environmental heterogeneity [23, 27] and their survival instincts, species will
exhibit random diffusion behavior. Therefore, motivated by the above research, we study
a class of competitive diffusion–advection systems for two logistically growing with more
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general nonlinear boundary condition

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= duuxx – αuux + u(ru(x) – u – cuv), x ∈ (0,D), t > 0,

∂v
∂t

= dvvxx – αvvx + v(rv(x) – cvu – v), x ∈ (0,D), t > 0,

duux(0, t) – αuu(0, t) = dvvx(0, t) – αvv(0, t) = 0, t > 0,

duux(D, t) – αuu(D, t) = αuu(D, t)g1(u(D, t)), t > 0,

dvvx(D, t) – αvv(D, t) = αvv(D, t)g2(v(D, t)), t > 0,

u(x, 0) = u0(x) ≥, �≡ 0, v(x, 0) = v0(x) ≥, �≡ 0.

(1.2)

Here u(x, t) and v(x, t) denote the species densities of the two competing species at location
x and time t, D is the length of the river, du and dv represent the diffusion rates, αu and
αv are the advective intensity rates, and the functions ru and rv stand for the resources
functions of these two competitive species. In our model, we assume that the upstream
has no-flux boundary conditions, whereas for the downstream, new functions –gi (i = 1, 2)
appear to measure the individuals’ loss rates relative to the flow velocities.

Note that many researchers have studied system (1.2). For example, if αu = αv = 0 (i =
1, 2) or gi = const (i = 1, 2), we can refer to [16, 27, 28, 32]. If αu,αv �≡ 0, Lou and Zhou
[20] studied (1.2) when the two competitive species admit the same advection rate αu =
αv = α ≥ 0 but different diffusion rates du, dv > 0, ru = rv = r ≡ const, and g1 = 0, and g2 =
–b ≡ const. They obtained the impact of b on the global dynamics of system (1.2). Later,
Lou et al. [19] reconsidered (1.2) when the two competitive species possess the equivalent
diffusion rate du = dv = d > 0 but different advection rates αu,αv ≥ 0, ru = rv = r ≡ const,
and g1 = g2 ≡ 0 in order that they can find out whether stronger or weaker advection is
more advantageous in the competition. In biology, they [19] found that the weaker species
will win the competition in the closed homogeneous advective environment. Considering
the effects of environmental heterogeneity and the nonlinear boundary condition, Zhou
and Zhao [32] focused on the dynamics of a advective competition–diffusion population
model with gi = –b ≡ const. By analyzing the properties of the single species model they
described the global dynamical behavior. Due to influence of time delay on the nature
of population dynamics, Ma and Feng [22] explored the dynamical behavior of a delayed
and advective competition–diffusion models and explored the effect of advection on Hopf
bifurcation; we can refer to other similar references such as [5, 30].

The main objective of this paper is to extend some existing and related results to more
general scenarios, where resource functions may be highly dependent on spatial variables
(spatially nonuniform environments), and the downstream boundary condition x = D be-
comes very flexible, including the classical boundary conditions such as Neumann, Dirich-
let, and so on. Since system (1.2) promotes similar models before, the dynamics of such
systems with general nonlinear boundary conditions, to a large extent, will be more com-
plex and determined by the eigenvalue theory and some analysis skills and their steady
states. Previously, research methods similar to system (1.2) could not be directly used and
required the use of new definitions, techniques, and methods.

Throughout this paper, for convenience, we need to provide the following two assump-
tions: for i = 1, 2,
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(H1) gi(0) < 0 and (gi)x < 0 in [0,∞];
(H2) ru, rv ∈ C(0,D), and {x ∈ (0,D)|ru(x) > 0, rv > 0} is not empty.
We organize the rest of the paper as follows. In Sect. 2, we introduce some important

results, which are used to describe the existence and linear stability of a single species.
Section 3 is devoted to studying the linear stability of two boundary equilibrium points of
system (1.2) and establishing the global dynamics of system (1.2) under some conditions
and revealing the influence of the parameters: advection rates αu and αv, interspecific com-
petition intensities cu and cv, the resources functions ru and rv of these two competitive
species and more general nonlinear boundary functions gi, i = 1, 2, on the global dynamical
behavior of system (1.2).

2 Persistence of a single species
In this part, we focus on the existence, nonexistence, and attractiveness of positive solu-
tions for single-species model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = duuxx – αuux + u(ru(x) – u), x ∈ (0,D), t > 0,

duux(0, t) – αuu(0, t) = 0, t > 0,

duux(D, t) – αuu(D, t) = αuu(D, t)g(u(D, t)), t > 0,

u(x, 0) = u0(x) ≥, �≡ 0, x ∈ (0,D),

(2.1)

where du > 0, αu > 0, and D > 0, g(0) < 0 and gx(x) < 0 in (0,∞), r ∈ C(0,D), and {x ∈
(0,D)|ru(x) > 0} is not empty.

Definition 2.1 A function u ∈ C2,1(� × (0,∞)) is called a upper-solution (resp., lower-
solution) of system (2.1) if u satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut ≥ (resp. ≤)duuxx – αuux + u(ru(x) – u), x ∈ (0,D), t > 0,

duux(0, t) – αuu(0, t) ≤ (resp. ≥)0, t > 0,

duux(D, t) – αuu(D, t) ≥ (resp. ≤)αuu(D, t)g(u(D, t)), t > 0,

u(x, 0) ≥ u0(x) ≥ (resp. ≤), �≡ 0, 0 < x < D.

(2.2)

Firstly, we study the steady states of system (2.1)

⎧
⎨

⎩

duθxx – αuθx + θ (ru(x) – θ ) = 0,

duθx(0) – αuθ (0) = 0, duθx(D) – αuθ (D) = αuθ (D)g(θ (D)),
(2.3)

where 0 < x < D. Assume that θ is a nonnegative solution of system (2.3). Next, we will be
interested in the local stability of θ . To achieve this aim, by linearizing system (2.1) at θ we
describe the eigenvalue problem

{
duφxx – αuφx + (ru(x) – 2θ )φ = λφ, x ∈ (0,D),
duφx(0) – αuφ(0) = 0, duφx(D) – αuφ(D) = αuφ(D)

(
g(θ (D)) + θ (D)g ′(θ (D))

)
.

(2.4)
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We use λ1(du,αu, ru – 2θ , g) and φ1(du,αu, ru – 2θ , g) to denote the principal eigenvalue
and the eigenfunction of (2.4), respectively [14]. The following lemma shows the relation
between the sign of λ1(du,αu, ru – 2θ , g) of system (2.4) and the stability of steady state θ

to system (2.1).

Lemma 2.2
(i) Let θ be a nonnegative steady-state solution of system (2.1). If

λ1(du,αu, ru – 2θ , g) < 0, then θ is locally asymptotically stable, that is, there exist
constants δ > 0 and 	 > 0 such that for any t > 0 and x ∈ [0,D], there is a unique
global solution u of system (2.1) satisfying

|u(x, t) – θ (x)| < 	e–δtφ1(du,αu, ru – 2θ , g)

with a not identically zero and nonnegative initial data u0 ∈ C2([0,D]) satisfying

|u0 – θ (x)| < 	φ1(du,αu, ru – 2θ , g)

for all x ∈ [0,D], where φ1(du,αu, ru – 2θ , g) is the principal eigenfunction
corresponding to the principal eigenvalue λ1(du,αu, ru – 2θ , g) of system (2.4).

(ii) Let θ be a nonnegative steady state of system (2.1). If λ1(du,αu, ru – 2θ , g) > 0, then θ

is unstable, that is, there exist constants 0 < γ < 1, δ̂(γ ,λ1) > 0, and 	̂(λ1) > 0 such
that if 0 < 	 ≤ 	̂0, and the initial data u0 ∈ C2([0,D]) is nonnegative and not
identically zero with

u0(x) ≤ θ (x) – 	(1 – γ )φ1(du,αu, ru – 2θ , g), 0 < x < D,

then for all t > 0 and x ∈ [0,D], any solution u of system (2.1) satisfies

u(x, t) ≤ θ (x) – 	(1 – γ e–δ̂t)φ1(du,αu, ru – 2θ , g). (2.5)

Furthermore, there exist constants δ̃(γ ,λ1) > 0 and 	̃(λ1) > 0 such that if 0 < 	 ≤ 	̃0

and the initial data u0 ∈ C2([0,D]) is nonnegative and not identically zero satisfying

u0(x) ≥ θ (x) + 	(1 – γ )φ1(du,αu, ru – 2θ , g), 0 < x < D,

then for all t > 0 and x ∈ [0,D], any solution u of system (2.1) satisfies

u(x, t) ≥ θ (x) + 	(1 – γ e–δ̃t)φ1(du,αu, ru – 2θ , g). (2.6)

Proof The proof is motivated by [24, Theorem 5.3.3]. To prove (i), we set ṽ(x, t) = θ (x) +
	e–δtφ1(du,αu, ru – 2θ , g) with positive constants 	, δ. By a series of simple computations
we conclude that for any t > 0 and x ∈ [0,D], there is a positive 	1 such that if 	 ∈ (0,	1],
then

ṽt – duṽxx + αuṽx – ṽ(ru(x) – ṽ) ≥ 0. (2.7)
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As for the boundary condition, we have duṽx(0) – αuṽ(0) = 0 and

duṽx(D) – αuṽ(D) – αuṽ(D)g(ṽ(D))

= duθx(D) – αuθ (D) + 	e–δt (du(φ1)x(du,αu, ru – 2θ , g) – αuφ1(du,αu, ru – 2θ , g)
)

– αuṽ(D)g(ṽ(D))

= αuθ (D)g(θ (D)) + αu	e–δtφ1(du,αu, ru – 2θ , g)
(
g(θ (D)) + θ (D)g ′(θ (D))

)

– αuθ (D)
[
g(θ (D)) + 	e–δtφ1(du,αu, ru – 2θ , g)g ′(θ (D)) + o(	e–δt)

]

– αu	e–δtφ1(du,αu, ru – 2θ , g)
[
g(θ (D)) + 	e–δtφ1(du,αu, ru – 2θ , g)g ′(θ (D))

+ o(	e–δt)
]

= –αu	e–δtφ1(du,αu, ru – 2θ , g)
[
	e–δtφ1(du,αu, ru – 2θ , g)g ′(θ (D)) + o(	e–δt)

]
.

(2.8)

From (2.8), there is a positive constant 	2 such that for any 	 ∈ (0,	2] and t > 0, we have

duṽx(D) – αuṽ(D) – αuṽ(D)g(ṽ(D)) ≥ 0 (2.9)

due to g ′ < 0. Combining inequalities (2.7) and (2.9) and the initial data u0 ≤ θ +
	e–δtφ1(du,αu, ru –2θ , g) suggests that ṽ = θ +	e–δtφ1(du,αu, ru –2θ , g) is an upper-solution
of system (2.1) if 0 < 	 ≤ min{	1,	2}.

Similarly, we can show that ṽ = θ – 	e–δtφ1(du,αu, ru – 2θ , g) is a lower-solution of (2.1),
provided that u0 ≥ θ – 	e–δtφ1(du,αu, ru – 2θ , g), where 0 < 	 ≤ 	3 for some positive con-
stant 	3. Therefore we complete the proof of statement (i).

Next, we will show statement (ii). We set v̂(x, t) = θ (x) – 	(1 – γ e–δt)φ1(du,αu, ru – 2θ , g)
with 0 < γ < 1 and positive constants 	 and δ. By a series of simple computations we can
also show that there exist positive constants 	1 and δ1 such that for any t > 0, x ∈ [0,D],
	 ∈ (0,	1], and δ = δ1,

v̂t – duv̂xx + αuv̂x – v̂(ru(x) – v̂) ≥ 0. (2.10)

As for the boundary condition, we have duv̂x(0) – αuv̂(0) = 0, and for all t > 0, we have

duv̂x(D) – αuv̂(D) – αuv̂(D)g(v̂(D)) ≥ 0. (2.11)

Inequalities (2.10) and (2.11) show that v̂(x, t) = θ (x) –	(1 –γ e–δt)φ1(du,αu, ru – 2θ , g) is an
upper-solution of (2.1) given that u0 ≤ θ (x) – 	(1 – γ e–δt)φ1(du,αu, ru – 2θ , g), where 0 <
	 ≤ min{	1,	2} and δ = δ1. Consequently, (2.5) follows by the comparison argument. �

Next, we discuss a key element, the stability of the steady-state solution θ = 0 of (2.1).
We investigate the more general eigenvalue problem

{
dφxx – αφx + m(x)φ = λφ, x ∈ (0,D),
dφx(0) – αφ(0) = 0, dφx(D) – αφ(D) = αφ(D)K ,

(2.12)

where K < 0 and m ∈ C(0,D). By the Krein–Rutman theorem [14], (2.12) has a prin-
cipal eigenvalue, denoted by λ1(d,α, m(x), K), associated with principal eigenfunction
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φ1(d,α, m(x), K) > 0 on [0,D]. In addition, through the variational method, λ1(d,α,
m(x), K) is expressed by

λ1(d,α, m(x), K) = sup
0 �=ψ∈H1(0,D)

∫ D
0 (–dψ2

x + m(x)ψ2)e
α
d xdx + αe

αD
d ψ2(D)K

∫ D
0 e

α
d xψ2dx

.

Lemma 2.3 Let m ∈ C([0,D]) and K < 0. The following statements concerning λ1(d,α,
m(x), K) and φ1(d,α, m(x), K) of system (2.12) hold.

(i) λ1(d,α, m(x), K) and φ1(d,α, m(x), K) of system (2.12) smoothly depend on
d ∈ (0, +∞) and α ∈ [0, +∞).

(ii) If mi ∈ C([0,D]) (i = 1, 2) and m1 ≥, �≡ m2 in (y1, y2), then

λ1(d,α, m1(x), K) > λ1(d,α, m2(x), K).

(iii) If m(x) ≡ m, then λ1(d, 0, m, g(0)) = m; if m(x) is not a constant function in (0,D),
then λ1(d, 0, m(x), g(0)) is strictly decreasing in d ∈ (0,∞).

(iv) lim
d→+∞

λ1(d, 0, m(x), K) =
∫ D

0 m(x)dx
D and lim

d→0+
λ1(d, 0, m(x), K) = max

x∈[0,D]
m(x).

(v) lim
α→+∞λ1(d,α, m(x), K) = –∞.

(vi) We have that

∂λ1(d,α, m(x), K)
∂α

=
(2K + 1)φ2

1 (D)e– α
d D – φ2

1 (0) – α
d

∫ D
0 φ2

1 e– α
d xdx

2
∫ D

0 φ2
1 e– α

d xdx
, (2.13)

where φ1 = φ1(d,α, m(x), K). In particular, if K ≤ – 1
2 , then ∂λ1(d,α,m(x),K )

∂α
< 0.

Proof The proofs of statements (i)–(iii) can be found in [4, pp. 95 and 162] and [16]. State-
ment (iv) follows from [7, Proposition 2.2]. Following the approach in [20, Proposition 2.1],
it is clear that statement (v) holds. Finally, we prove statement (vi). Similar proofs can be
found in [18, Lemma 4.8] or [32, Proposition]. For the reader’s convenience, we provide
the details. In the following proof, we use ′ to denote ∂

∂α
. For simplicity, we use λ and φ

to denote λ1(d,α, m(x), K) and φ1(d,α, m(x), K), respectively. Differentiating (2.12) with
respect to α yields

⎧
⎪⎨

⎪⎩

dφ′
xx – αφ′

x – φx + m(x)φ′ = λ′φ + λφ′, x ∈ (0,D),
dφ′

x(0) – αφ′(0) – φ(0) = 0,
dφ′

x(D) – αφ′(D) – φ(D) = αφ′(D)K + φ(D)K .
(2.14)

From dφxx – αφx = d((φe– α
d x)xe

α
d x)x it follows that we can rewrite (2.12) and (2.14), respec-

tively, as
{

d(e
α
d x(e– α

d xφ)x)x + m(x)φ = λφ, x ∈ (0,D),
dφx(0) – αφ(0) = 0, dφx(D) – αφ(D) = αφ(D)K ,

(2.15)

and
⎧
⎪⎨

⎪⎩

d(e
α
d x(e– α

d xφ′)x)x – φx + m(x)φ′ = λ′φ + λφ′, x ∈ (0,D),
dφ′

x(0) – αφ′(0) = φ(0),
dφ′

x(D) – αφ′(D) = φ(D) + αφ′(D)K + φ(D)K .
(2.16)
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Multiplying the first equation of (2.15) by φ′e– α
d x and then integrating on (0,D), we obtain

∫ D

0
d((φe– α

d x)xe
α
d x)x(φ′e– α

d x)dx +
∫ D

0
m(x)φφ′e– α

d xdx =
∫ D

0
λφφ′e– α

d xdx. (2.17)

Multiplying the first equation of (2.16) by φe– α
d x and then integrating on (0,D) yield

∫ D

0
d((φ′e– α

d x)xe
α
d x)x(φe– α

d x)dx –
∫ D

0
φφxe– α

d xdx +
∫ D

0
m(x)φφ′e– α

d xdx

=
∫ D

0
λφφ′e– α

d xdx +
∫ D

0
λ′φ2e– α

d xdx.

(2.18)

Subtracting (2.17) from (2.18) and integrating by parts, we have

λ′
∫ D

0
φ2e– α

d xdx = –
∫ D

0
φφxe– α

d xdx + d(e– α
d xφ′)xφ|D0 – d(e– α

d xφ)xφ
′|D0

= –
1
2

∫ D

0
(φ2)xe– α

d xdx + [αφ′(D)K + φ(D)K + φ(D)]φ(D)e– α
d D

– φ2(0) – αKφ′(D)φ(D)e– α
d D

=
(2K + 1)φ2(D)e– α

d D – φ2(0) – α
d

∫ D
0 φ2e– α

d xdx
2

,

which immediately gives (2.13).
Therefore we complete the proof. �

Based on the above analysis, it is clear that if λ1(du,αu, ru(x), g(0)) > 0 (resp., λ1(du,
αu, ru(x), g(0)) < 0), then the zero solution is linearly unstable (resp., stable).

Lemma 2.4 Let K ≤ – 1
2 , let {x ∈ (0,D)|ru(x) > 0} be nonempty, and let r ∈ C(0,D).

(i) If
∫ D

0 ru(x)dx < 0, then there exists d∗ > 0 satisfying λ1(d∗, 0, ru(x), g(0)) = 0 such that
(i.1) If du ≥ d∗, then λ1(du,αu, ru(x), g(0)) < 0 for any αu > 0;
(i.2) If du < d∗, then there exists α∗ > 0 satisfying λ1(du,α∗, ru(x), g(0)) = 0 such that

λ1(du,αu, ru(x), g(0))

⎧
⎨

⎩

< 0 for αu > α∗,

> 0 for 0 < αu < α∗;

(ii) If
∫ D

0 ru(x)dx ≥ 0, then for any given du > 0, there exists α∗ > 0 satisfying

λ1(du,α∗, ru(x), g(0)) = 0

such that

λ1(du,αu, ru(x), g(0))

⎧
⎨

⎩

< 0 for αu > α∗,

> 0 for 0 < αu < α∗.
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Proof We only show statement (i), since since statement (ii) can be proved similarly. Firstly,
by statement (iii) of Lemma 2.3 we have

lim
du→+∞

λ1(du, 0, ru(x), g(0)) =
∫ D

0 ru(x)dx
D < 0

and

lim
du→0

λ1(du, 0, ru(x), K) = max
x∈[0,D]

ru(x) > 0,

which, together with statements (i) and (iv) of Lemma 2.3, implies that there exists d∗ > 0
satisfying λ1(d∗, 0, ru(x), g(0)) = 0 such that

if du

⎧
⎨

⎩

∈ (0, d∗),

∈ (d∗,∞),
then λ1(du, 0, ru(x), g(0))

⎧
⎨

⎩

> 0,

< 0.
(2.19)

From statements (v) and (vi) of Lemma 2.3 it follows that

lim
αu→+∞λ1(du,αu, ru(x), g(0)) = –∞,

∂λ1(du,αu, ru(x), g(0))
∂αu

< 0,

which, combined with statement (i) of Lemma 2.3 and (2.19), finishes the proof. �

We will show that the global dynamical behavior of system (2.1) is the linear stability of
zero solution.

Proposition 2.5 For system (2.1), if the zero solution is linearly stable, then the zero solu-
tion is globally asymptotically stable (g.a.s); if the zero solution is linearly unstable, then
there exists a unique positive steady-state solution θd,α,m,g of system (2.1) that is g.a.s.

Proof We first assume that the zero solution is linearly stable (λ1(du,αu, ru(x), g(0)) < 0).
For simplicity, we denote λ1(du,αu, ru(x), g(0)) and φ1(du,αu, ru(x), g(0)) by λ1 and φ1, re-
spectively. Choose sufficiently large C > 0 such that Cφ1 ≥ θ0 in [0,D]. Let θ̃ (x, t) =
Cφ1(x)eλ1t . Then for x ∈ [0,D] and t ≥ 0, θ̃ satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ̃t ≥ duθ̃xx – αuθ̃x + θ̃ (ru(x) – θ̃ ),

duθ̃x(0, t) – αuθ̃ (0, t) = 0,

duθ̃x(D, t) – αuθ̃ (D, t) ≥ αuθ̃ (D, t)g(θ̃ (D, t)),

θ̃ (x, 0) ≥ θ0(x).

By comparison principle, for x ∈ [0,D] and t ≥ 0, we get

0 ≤ u(x, t) ≤ θ̃ (x, t),

which further yields that

lim
t→∞ u(x, t) ≡ 0

due to λ1 < 0.
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Next, we suppose that the zero solution is linearly unstable (λ1(du,αu, ru(x), g(0)) > 0).
Claim 1: There is a unique positive solution θdu ,αu ,ru ,g of system (2.3). For small ε, we have

⎧
⎪⎪⎨

⎪⎪⎩

duε(φ1)xx – αuε(φ1)x + εφ1(ru(x) – εφ1) = εφ1(1 – εφ1) > 0, x ∈ (0,D),

duε(φ1)x(0) – αuεφ1(0) = 0,

duε(φ1)x(D) – αuεφ1(D) = αuεφ1(D)g(εφ1(D)).

Hence, for any small ε > 0, εφ1 is a lower-solution for system (2.3). On the other hand, for
large C, we observe that Ce

αu
du x for any x ∈ (0,D) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

du(Ce
αu
du x)xx – αu(Cφ1)x + Ce

αu
du x(ru(x) – Ce

αu
du x) < 0,

du(Ce
αu
du x)x(0) – αuCe

αu
du x|x=0 = 0,

du(Ce
αu
du x)x(D) – αuCe

αu
du x|x=D = 0 > αuCe

αu
du Dg(Ce

αu
du D),

and Ce
αu
du x > εφ1 for small ε. Hence, by the method of lower-upper solutions, (2.3) has

at least one positive solution. Next, for system (2.3), we will show the positive solution
is unique. If not, then we assume that there are at least two positive solutions θ1 and θ2

of system (2.3). Since we can choose large C and small ε such that Ce
α
d x and εφ1 are the

upper- and lower-solutions of system (2.3), respectively. We may assume that

θ2 ≥, �≡ θ1. (2.20)

Multiplying the equations by θ2e– αu
du x and θ1e– αu

du x, respectively, subtracting the resulting
equations, and then integrating on (0,D), we have

∫ D

0
θ1θ2(θ1 – θ2)e– αu

du xdx =
∫ D

0
du

((
e– αu

du x
θ1

)

x
e

αu
du x

)

x

(
θ2e– αu

du x
)

dx

–
∫ D

0
du

((
e– αu

du x
θ2

)

x
e

αu
du x

)

x

(
θ1e– αu

du x
)

dx

= du

(
e– αu

du x
θ1

)

x
θ2

∣
∣
∣
D

0
– du

(
e– αu

du x
θ2

)

x
θ1

∣
∣
∣
D

0

= αuθ1(D)θ2(D)(g(θ1(D)) – g(θ2(D)))e– αu
du D

≥ 0,

which contradicts (2.20). Thus Claim 1 holds.
Finally, we prove that lim

t→∞ u(x, t) = θdu ,αu ,ru ,g . Indeed, for any t0 > 0, by the maximum
principle we obtain u(x, t0) > 0 for x ∈ [0,D]. Choose small ε and large C such that

εφ1 < u(x, t0) and Ce
αu
du x > u(x, t0).

Let u∗(x, t) and u∗(x, t) be the solutions of (2.1) with u∗(x, 0) = εφ1 and u∗(x, 0) = Ce
αu
du x.

Then ∂u∗
∂t (x, 0) > 0 and ∂u∗

∂t (x, 0) < 0 in (0,D), which further yields that u∗(x, t) is increasing
in t ∈ (0,∞) and u∗(x, t) is decreasing in t ∈ (0,∞). So we obtain

εφ1 ≤ u∗(x, t) ≤ u∗(x, t) ≤ Ce
αu
du x.
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Moreover, u∗(x, t) (resp., u∗(x, t)) will converge to some positive steady state. By Claim 1
we have that

lim
t→∞ u∗(x, t) = θdu ,αu ,ru ,g = lim

t→∞ u∗(x, t). (2.21)

Using the comparison principle, we have

u∗(x, t) ≥ u(x, t + t0) ≥ u∗(x, t) for all x ∈ [0,D], t ≥ 0,

which, combined with (2.21), yields that u(x, t) → θdu ,αu ,ru ,g as t → ∞. �

Based on Proposition 2.5, we establish the existence/nonexistence of semitrivial steady-
state solution of system (1.2).

Proposition 2.6 Assume that g1(0) ≤ – 1
2 and g2(0) ≤ – 1

2 .
(i) If

∫ D
0 ru(x)dx < 0 (resp.,

∫ D
0 rv(x)dx < 0), then there exists d∗

u > 0 (resp., d∗
v > 0)

satisfying λ1(d∗
u, 0, ru(x), g1(0)) = 0 (resp., λ1(d∗

v , 0, rv(x), g2(0)) = 0) such that:
(i.1) If du ≥ d∗

u (resp., dv ≥ d∗
v ), then system (1.2) does not admit a semitrivial

steady-state solution (u∗, 0) (reps., (0, v∗)) for any αu > 0 (resp., αv > 0).
(i.2) If du < d∗

u (resp., dv < d∗
v ), then there exists α∗

u > 0 (resp., α∗
v > 0) satisfying

λ1(du,α∗
u, ru(x), g1(0)) = 0 (resp., λ1(dv,α∗

v , rv(x), g2(0)) = 0) such that if αu > α∗
u

(resp., αv > α∗
v ), then there is no semitrivial steady-state solution (u∗, 0) (reps.,

(0, v∗)) of system (1.2); if αu < α∗
u (resp., αv < α∗

v ), then system (1.2) admits a
semitrivial steady-state solution (u∗, 0) (resp., (0, v∗)).

(ii) If
∫ D

0 ru(x)dx ≥ 0 (resp.,
∫ D

0 rv(x)dx ≥ 0), then there exists α∗
u > 0 (resp., α∗

v > 0)
satisfying λ1(du,α∗

u, ru(x), g1(0)) = 0 (resp., λ1(dv,α∗
v , rv(x), g2(0)) = 0) such that if

αu > α∗
u (resp., αv > α∗

v ), then there is no semitrivial steady-state solution (u∗, 0) (resp.,
(0, v∗)) of system (1.2); if αu < α∗

u (resp., αv < α∗
v ), then there exists a semitrivial

steady-state solution (u∗, 0) (resp., (0, v∗)) of system (1.2).

Remark 2.7 Note that u∗ = θdu ,αu ,ru ,g1 and v∗ = θdv ,αv ,rv ,g2 .

3 Two-species competition model
In this section, we focus on the global dynamical behavior of system (1.2).

3.1 Monotone dynamical system
Lemma 3.1 Let (ui(x, t), vi(x, t)) be the solutions of model (1.2) with initial value (u0

i , v0
i )

for i = 1, 2. Suppose that u0
1(x) ≥ u0

2(x) ≥ 0 for x ∈ (0,D), 0 ≤ v0
1(x) ≤ v0

2(x) for x ∈ (0,D),
(u0

1, v0
1) �≡ (u0

2, v0
2), and u0

2 +v0
1 �≡ 0. Then for all x ∈ (0,D) and t > 0, we have u1(x, t) > u2(x, t)

and v1(x, t) < v2(x, t).
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Proof Let w(x, t) = u1(x, t) – u2(x, t), w0(x) = u0
1(x) – u0

2(x), z(x, t) = v2(x, t) – v1(x, t), and
z0(x) = v0

2(x) – v0
1(x). Then for all t > 0, (w, z) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w
∂t

= duwxx – αuwx + w(r1 – u1 – u2 – cuv1) + cuu2z, 0 < x < D,

∂z
∂t

= dvzxx – αvzx + z(r2 – v1 – v2 – cvu2) + cvv1w, 0 < x < D,

duwx(0, ·) – αuw(0, ·) = dvzx(0, ·) – αvz(D, ·) = 0,

duwx(D, ·) – αuw(D, ·) = αuu1(D, t)g1(u1(D, ·)) – αuu2(D, t)g1(u2(D, ·)),
dvzx(D, ·) – αvz(D, ·) = αvv2(D, t)g2(v2(D, ·)) – αvv1(D, t)g2(v1(D, ·)),
w(x, 0) = w0(x), z(x, 0) = z0(x), 0 < x < D.

For any t > 0, observe that

duwx(D, ·) – αuw(D, ·)
= αu

[
u1(D, ·)g1(u1(D, ·)) – u2(D, ·)g1(u1(D, ·))]

+ αu
[
u2(D, ·)g1(u1(D, ·)) – u2(D, ·)g1(u2(D, ·))]

= αu
[
w(D, ·)g1(u1(D, ·)) + u2

(
g1(u1(D, ·)) – g1(u2(D, ·)))]

= αuw(D, ·) [g1(u1(D, ·)) + u2g ′
1(u1(D, ·) + σ1w(D, ·))] , σ1 ∈ (0, 1),

and

dvzx(D, ·) – αvz(D, ·) = αvz(D, ·) [g2(v2(D, ·)) + v1g ′
2(v1(D, ·) + σ2z(D, ·))] , σ2 ∈ (0, 1).

Let w̃ = e– αu
du xw and z̃ = e– αv

dv xz. Then for all t > 0, (w̃, z̃) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̃
∂t

= duw̃xx + αuw̃x + w̃(ru – u1 – u2 – cuv1) + cuu2z̃e( αv
dv – αu

du )x, 0 < x < D,

∂ z̃
∂t

= dvz̃xx + αvz̃x + z̃(rv – v1 – v2 – cvu2) + cvv1w̃e( αu
du – αv

dv )x, 0 < x < D,

w̃x(0, ·) = z̃x(0, ·) = 0,

duw̃x(D, ·) – αuw̃(D, ·) [g1(u1(D, ·)) + u2g ′
1(u1(D, ·) + σ1w(D, ·))] = 0,

dvz̃x(D, ·) – αvz̃(D, ·) [g2(v2(D, ·)) + v1g ′
2(v1(D, ·) + σ2z(D, ·))] = 0,

w̃(x, 0) = w0(x), z̃(x, 0) = z0(x), 0 < x < D.

Since g1(u1(D, ·))+u2g ′
1(u1(D, ·)+σ1w(D, ·)) < 0 and g2(v2(D, ·))+v1g ′

2(v1(D, ·)+σ2z(D, ·)) <
0 for all t > 0, from [15, Theorem 3.1.2 or Lemma 7.1.3] it follows that the theorem holds.

�

3.2 Spectral analysis
In this subsection, we first investigate the linear stability of two boundary equilibrium
points of system (1.2).
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Lemma 3.2 Fix all the parameters except cu and cv and assume that system (1.2) has two
boundary equilibrium points (u∗, 0) and (0, v∗).

(i) There exists c∗
v > 0 satisfying λ1(dv,αv, rv – c∗

v u∗, g2(0)) = 0 such that (u∗, 0) is linearly
stable for cv > c∗

v and (u∗, 0) is linearly unstable for cv < c∗
v .

(ii) There exists c∗
u > 0 satisfying λ1(du,αu, ru – c∗

uv∗, g1(0)) = 0 such that (0, v∗) is linearly
stable for cu > c∗

u and (0, v∗) is linearly unstable for cu < c∗
u.

Next, we will show that every coexistence steady state (if it exists) of system (1.2) is
linearly stable under the following assumption:

(H3) cucv ≤ e–| αu
du – αv

dv |D .
Assume that (u, v) is a positive steady state of system (1.2). Then for any x ∈ (0,D), (u, v)

satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

duuxx – αuux + u(ru(x) – u – cuv) = 0,

dvvxx – αvvx + v(rv(x) – cvu – v) = 0,

duux(0) – αuu(0) = dvvx(0) – αvv(0) = 0,

duux(D) – αuu(D) = αuu(D)g1(u(D)),

dvvx(D) – αvv(D) = αvv(D)g2(v(D)).

(3.1)

Linearizing system (1.2) at (u, v), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

duφxx – αuφx + φ(ru(x) – u – cuv) – u(φ + cuψ) = τφ, x ∈ (0,D),

dvψxx – αvψx + ψ(rv(x) – cvu – v) – v(cvφ + ψ) = τψ , x ∈ (0,D),

duφx(0) – αuφ(0) = dvψx(0) – αvψ(0) = 0,

duφx(D) – αuφ(D) = αuφ(D)(g1(u(D)) + u(D)g ′
1(u(D))),

dvψx(D) – αvψ(D) = αvψ(D)(g2(v(D)) + v(D)g ′
2(v(D))).

(3.2)

Based on the Krein–Rutman theorem [14], we obtain that system (3.2) has a principal
eigenvalue τ1 and its corresponding eigenfunction (φ1,ψ1) can be chosen to satisfy φ1 >
0 > ψ1 in [0,D].

Lemma 3.3 Assume that (H3) holds. If system (1.2) admits a positive steady-state solution
(u, v), then it is linearly stable, that is, τ1 < 0.

Proof For simplicity, we use τ and (φ,ψ) to denote the principal eigenvalue τ1 and prin-
cipal eigenfunction (φ1,ψ1), respectively. Multiplying the first equations in (3.2) and (3.1)
by ue– αu

du x and e– αu
du x, respectively, and subtracting the resulting equations, we obtain

τφue– αu
du x = [duφxx – αuφx]ue– αu

du x – [duuxx – αuux]φe– αu
du x – u2(φ + cuψ)e– αu

du x. (3.3)
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Multiplying (3.3) by φ2

u2 and integrating over (0,D), we have

τ

∫ D

0

φ3

u
e– αu

du xdx

=
∫ D

0

[

[duφx – αuφ]xue– αu
du x

(
φ

u

)2

– [duux – αuu]xφe– αu
du x

(
φ

u

)2

dx

]

–
∫ D

0
(φ3 + cuφ

2ψ)e– αu
du xdx

= [duφx – αuφ]ue– αu
du x

(
φ

u

)2 ∣
∣
∣
D

0
– [duux – αuu]φe– αu

du x
(

φ

u

)2 ∣
∣
∣
D

0

– 2
∫ D

0

[

[duφx – αuφ]φ
(

φ

u

)

x
e– αu

du x – [duux – αuu]
φ2

u

(
φ

u

)

x
e– αu

du x
]

dx

–
∫ D

0
(φ3 + cuφ

2ψ)e– αu
du xdx

= αuφ
3(D)g ′

1(u(D))e– αu
du D –

∫ D

0
(φ3 + cuφ

2ψ)e– αu
du xdx

– 2du

∫ D

0
uφ

φxu – uxφ

u2

(
φ

u

)

x
e– αu

du xdx

= αuφ
3(D)g ′

1(u(D))e– αu
du D –

∫ D

0
(φ3 + cuφ

2ψ)e– αu
du xdx

– 2du

∫ D

0
uφ

[(
φ

u

)

x

]2

e– αu
du xdx

< –
∫ D

0
(φ3 + cuφ

2ψ)e– αu
du xdx,

(3.4)

where we have used (H1) and φ > 0 in [0,D]. Similarly, multiplying the second equations in
(3.2) and (3.1) by ve– α2

d2
x and ψe– α2

d2
x respectively, and subtracting the resulting equations,

we arrive at

τψve– αv
dv x = [dvψxx – αvψx]ve– αv

dv x – [dvvxx – αvvx]ψe– αv
dv x – v2(cvφ + ψ)e– αv

dv x. (3.5)

Multiplying (3.5) by ψ2

v2 and integrating over (0,D), we have

τ

∫ D

0

ψ3

v
e– αv

dv xdx

=
∫ D

0

[

[dvψx – αvψ]xve– αv
dv x

(
ψ

v

)2

– [dvvx – αvv]xψe– αv
dv x

(
ψ

v

)2

dx

]

–
∫ D

0
(cvφψ2 + ψ3)e– αv

dv xdx

= [dvψx – αvψ]ve– αv
dv x

(
ψ

v

)2 ∣
∣
∣
D

0
– [dvvx – αvv]ψe– αv

dv x
(

ψ

v

)2 ∣
∣
∣
D

0

– 2
∫ D

0

[

[duφx – αuφ]φ
(

φ

u

)

x
e– αu

du x – [duux – αuu]
φ2

u

(
φ

u

)

x
e– αu

du x
]

dx
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–
∫ D

0
(cvφψ2 + ψ3)e– αv

dv xdx (3.6)

= αvψ
3(D)g ′

2(v(D))e– αv
dv D – 2dv

∫ D

0
vψ

ψxv – vxψ

v2

(
ψ

v

)

x
e– αv

dv xdx

–
∫ D

0
(cvφψ2 + ψ3)e– αv

dv xdx

= αvψ
3(D)g ′

2(v(D))e– αv
dv D – 2dv

∫ D

0
vψ

[(
ψ

v

)

x

]2

e– αv
dv xdx

–
∫ D

0
(cvφψ2 + ψ3)e– αv

dv xdx

> –
∫ D

0
(cvφψ2 + ψ3)e– αv

dv xdx,

where we have used (H1) and ψ < 0 in [0,D].
Since the proofs are similar, we may assume that αu

du
≥ αv

dv
. By (3.6) and ψ < 0 we have

τ

∫ D

0

ψ3

v
e– αv

dv xdx > –
∫ D

0
cvφψ2e– αv

dv xdx –
∫ D

0
ψ3e– αu

du xdx. (3.7)

Multiplying (3.7) by c3
u and using assumption (H3), we get

τ

∫ D

0
c3

u
ψ3

v
e– αu

du xdx > –
∫ D

0
cucvφ(cuψ)2e– αv

dv xdx –
∫ D

0
(cuψ)3e– αu

du xdx

> –
∫ D

0
φ(cuψ)2e– αu

du xdx –
∫ D

0
(cuψ)3e– αu

du xdx,

which, combined with (3.4) and φ > 0 > ψ , yields that

τ

[∫ D

0

φ3

u
e– αu

du xdx –
∫ D

0
c3

u
ψ3

v
e– αv

dv xdx
]

< –
∫ D

0
φ3e– αu

du xdx –
∫ D

0
cuφ

2ψe– αu
du xdx

+
∫ D

0
φ(cuψ)2e– αu

du xdx +
∫ D

0
(cuψ)3e– αu

du xdx

=
∫ D

0
(cuψ + φ)2(cuψ – φ)e– αu

du xdx

≤ 0.

This fact implies that τ < 0. �

3.3 Global dynamics of system (1.2)
In this subsection, we establish the global dynamical behavior of system (1.2).

Theorem 3.4 Assume that K ≤ – 1
2 and (H3) holds.

(i) If
∫ D

0 ru(x)dx < 0 and
∫ D

0 rv(x)dx < 0, then:
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(i.1) If du ≥ d∗
u or du < d∗

u and αu > α∗
u and if dv ≥ d∗

v or dv < d∗
v and αv > α∗

v , then
(0, 0) is g.a.s.

(i.2) If either du < d∗
u, αu < α∗

u , and dv > d∗
v or dv < d∗

v and αv > α∗
v , then (u∗, 0) is

g.a.s.
(i.3) If either dv < d∗

v , αv < α∗
v , and du > d∗

u or du < d∗
u and αu > α∗

u , then (0, v∗) is g.a.s.
(i.4) If du < d∗

u, αu < α∗
u , dv < d∗

v , and αv < α∗
v , then (u∗, 0) is g.a.s for cv > c∗

v ; (0, v∗) is
g.a.s for cu > c∗

u; and system (1.2) admits a unique coexistence steady state,
which is g.a.s for cu < c∗

u and cv < c∗
v .

(ii) If
∫ D

0 ru(x)dx ≥ 0 and
∫ D

0 rv(x)dx < 0, then:
(ii.1) If either αu > α∗

u and dv ≥ d∗
v or dv < d∗

v and αv > α∗
v , then (0, 0) is g.a.s.

(ii.2) If either αu < α∗
u and dv > d∗

v or dv < d∗
v and αv > α∗

v , then (u∗, 0) is g.a.s.
(ii.3) If dv < d∗

v , αv < α∗
v , and αu > α∗

u , then (0, v∗) is g.a.s.
(ii.4) If αu < α∗

u , dv < d∗
v , and αv < α∗

v , then (u∗, 0) is g.a.s for cv > c∗
v ; (0, v∗) is g.a.s for

cu > c∗
u; and system (1.2) admits a unique coexistence steady state, which is

g.a.s for cu < c∗
u and cv < c∗

v .
(iii) If

∫ D
0 ru(x)dx < 0 and

∫ D
0 rv(x)dx ≥ 0, then:

(iii.1) If either αv > α∗
v and du ≥ d∗

u or du < d∗
u and αu > α∗

u , then (0, 0) is g.a.s.
(iii.2) If du < d∗

u, αu < α∗
u , and αv > α∗

v , then (u∗, 0) is g.a.s.
(iii.3) If either αv < α∗

v and du ≥ d∗
u or du < d∗

u and αu > α∗
u , then (0, v∗) is g.a.s.

(iii.4) If αv < α∗
v , du < d∗

u, and αu < α∗
u , then (u∗, 0) is g.a.s for cv > c∗

v ; (0, v∗) is g.a.s
for cu > c∗

u; and system (1.2) admits a unique coexistence steady state, which is
g.a.s for cu < c∗

u and cv < c∗
v .

(iv) If
∫ D

0 ru(x)dx ≥ 0 and
∫ D

0 rv(x)dx ≥ 0, then:
(iv.1) If αv > α∗

v and αu > α∗
u , then (0, 0) is g.a.s.

(iv.2) If αu < α∗
u and αv > α∗

v , then (u∗, 0) is g.a.s.
(iv.3) If αv < α∗

v and αu > α∗
u , then (0, v∗) is g.a.s.

(iv.4) If αv < α∗
v and αu < α∗

u , then (u∗, 0) is g.a.s for cv > c∗
v ; (0, v∗) is g.a.s for cu > c∗

u;
and system (1.2) admits a unique coexistence steady state, which is g.a.s for
cu < c∗

u and cv < c∗
v .

Proof Since the proofs are similar, we only prove statement (iv). Statements (iv.1)–(iv.3)
follow directly from Proposition 2.6 and monotone dynamical systems theory [8, 10, 25,
32]. By Lemmas 3.2, 3.3, Proposition 2.6, and monotone dynamical systems theory [8, 10,
25, 32] we have that statement (iv.4) holds, which completes the proof. �
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