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Abstract
We propose a unified stochastic SIR model driven by Lévy noise. The model is
structural enough to allow for time-dependency, nonlinearity, discontinuity,
demography, and environmental disturbances. We present concise results on the
existence and uniqueness of positive global solutions and investigate the extinction
and persistence of the novel model. Examples and simulations are provided to
illustrate the main results.
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1 Introduction
The investigation of infectious diseases has a rich history that gave rise to the field epi-
demiology (cf. [5]). The first known study of infectious disease data relating to causes
of death occurred in the 17th century by John Graunt. The work completed by Graunt
was published in his 1662 book Natural and Political Observations made upon the Bills
of Mortality. Mathematical epidemiology is considered to have begun with the work of
Daniel Bernoulli with his model for smallpox inoculation in the 18th century. Late in the
early 20th century, W.H. Hamer surmised the rate of disease spread was dependent upon
the numbers of those at risk (susceptible) and those currently ill/contagious (infected). He
also recommended the use of a mass action law for the rate of infections. The two previ-
ous ideas cemented the basic building blocks of epidemiological compartmental models.
Compartmental models are the idea that the population can be segmented based on the
status of health as related to a disease. For instance, the subpopulation at risk of becoming
infected by a particular disease is represented by the susceptible compartment where as
the subpopulation which is currently infected is represented by the infected compartment.

Compartmental models have garnered much attention in the past century by researchers
in pursuit of understanding and control of infectious diseases. Mathematical analysis of
such models aids decision-making regarding public health policy changes – especially in
the event of a pandemic (e.g., COVID-19). One such compartmental model introduced by
Kermack and McKendrick [18] in 1927 divides a population into three compartments –
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susceptible, infected, and recovered (SIR). The classical SIR model is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dXt
dt = –βXtYt ,

dYt
dt = (βXt – γ )Yt ,

dZt
dt = γ Yt ,

(1.1)

where β is the transmission coefficient and γ the recovery coefficient. Additionally, de-
mography may be introduced to include birth recruitment coefficient � and mortality
coefficient μ as

⎧
⎪⎪⎨

⎪⎪⎩

dXt
dt = � – μXt – βXtYt ,

dYt
dt = [βXt – (μ + γ )] Yt ,

dZt
dt = γ Yt – μZt .

(1.2)

The basic SIR models (1.1) and (1.2) have many variations including the SIRD, SIRS,
SIRV, SEIR, MSIR, etc. (cf. e.g., [2, 6], and [23]). Further, these deterministic models have
been put into different stochastic frameworks, which make the situation more realistic
(cf. e.g., [3, 8–14, 17, 20, 21], and [24–27]). The existing models are often analyzed with a
focus on specific diseases or parameters. Such studies have been very successful in achiev-
ing new results; however, often it is the case that structural variability is lacking in these
models. To overcome the drawbacks inherent in traditional approaches, we propose and
investigate in this paper the unified stochastic SIR (USSIR) model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = b1(t, Xt , Yt , Zt)dt +
n∑

j=1
σ1j(t, Xt , Yt , Zt)dB(j)

t

+
∫
{|u|<1} h1(t, Xt–, Yt–, Zt–, u)Ñ(dt, du)

+
∫
{|u|≥1} g1(t, Xt–, Yt–, Zt–, u)N(dt, du),

dYt = b2(t, Xt , Yt , Zt)dt +
n∑

j=1
σ2j(t, Xt , Yt , Zt)dB(j)

t

+
∫
{|u|<1} h2(t, Xt–, Yt–, Zt–, u)Ñ(dt, du)

+
∫
{|u|≥1} g2(t, Xt–, Yt–, Zt–, u)N(dt, du),

dZt = b3(t, Xt , Yt , Zt)dt +
n∑

j=1
σ3j(t, Xt , Yt , Zt)dB(j)

t

+
∫
{|u|<1} h3(t, Xt–, Yt–, Zt–, u)Ñ(dt, du)

+
∫
{|u|≥1} g3(t, Xt–, Yt–, Zt–, u)N(dt, du).

(1.3)

Hereafter,R+ denotes the set of all positive real numbers,
(

B(1)
t , . . . , B(n)

t

)

t≥0
is a standard n-

dimensional Brownian motion, N is a Poisson random measure on R+ × (Rd – {0}) with in-
tensity measure ν satisfying

∫

Rd–{0}(1∧|u|2)ν(du) < ∞ and Ñ(dt, du) = N(dt, du)–ν(du)dt,
(

B(1)
t , . . . , B(n)

t

)

t≥0
and N are independent, bi,σij : [0,∞) × R

3
+ �→ R, hi, gi : [0,∞) × R

3
+ ×

(Rd – {0}) �→R, i = 1, 2, 3, j = 1, 2, . . . , n, are measurable functions.
We will show that the USSIR model (1.3) is structural in design that allows variabil-

ity without sacrificing key results on the extinction and persistence of diseases. Namely,
the model allows for time-dependency, nonlinearity (of drift, diffusion, and jump), and
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demography. Environmental disturbances can have profound effects on transmission, re-
covery, mortality, and population growth. Different diseases may have drastically differ-
ent dynamics, thus making perturbations of transmission or recovery natural to consider.
Moreover, exact mixing of susceptible and infected compartments may be difficult to mea-
sure thus the transmission will be prone to disturbances – this can be accounted for by
the inclusion of stochasticity. The above model encapsulates the stochastic perturbations
driven by white noises (B(j)

t ) with intensities σij(t, Xt , Yt , Zt) and Poisson random measure
N(dt, du) with small jumps hi(t, Xt–, Yt–, Zt–, u) and large jumps gi(t, Xt–, Yt–, Zt–, u). An
important structural feature we emphasize is time-dependency. Time-dependency can
capture the progression of a disease insofar as mutations/transmissibility (e.g., Delta and
Omicron variants of COVID-19, vaccination programs).

The remainder of this paper is organized as follows. In Sects. 2 and 3, we establish re-
sults on the existence and uniqueness of global solutions, extinction and persistence of
diseases, and provide illustrative examples. Section 2 is concerned with the USSIR model
(1.3) where compartments take values in R

3
+ and Sect. 3 is concerned with a special case

focusing on proportionality. The examples in Sects. 2 and 3 are intended to show the flex-
ibility of the model while maintaining biological relevance. In Sect. 4, we present simula-
tions which correspond to examples given in the previous sections. In Sect. 5, we make
concluding remarks. At the time of writing this paper, we are unaware of existing work on
the USSIR model and aim to add such a novel model to the existing literature.

2 Model for population numbers
In this section, we let Xt , Yt , and Zt denote respectively the numbers of susceptible, in-
fected, and recovered individuals at time t. For t ∈ [0,∞), (x, y, z) ∈ R

3
+, and u ∈ R

d – {0},
define

k(t, x, y, z, u)

:=
h1(t, x, y, z, u)

x
+

h2(t, x, y, z, u)
y

+
h3(t, x, y, z, u)

z

– ln

{(

1 +
h1(t, x, y, z, u)

x

)(

1 +
h2(t, x, y, z, u)

y

)(

1 +
h3(t, x, y, z, u)

z

)}

.

(2.1)

We make the following assumptions:
(A1) There exists (x0, y0, z0) ∈ R

3
+ such that for any T ∈ (0,∞) and i = 1, 2, 3,

bi(·, x0, y0, z0),
n∑

j=1

|σij(·, x0, y0, z0)| ∈ L2[0, T],

∫

{|u|<1}
|hi(·, x0, y0, z0, u)|2ν(du) ∈ L1[0, T].

(A2) For any T ∈ (0,∞) and N ∈ N, there exists KN ,T ∈ L1
+[0, T] such that

3∑

i=1

|bi(t, x1, y1, z1) – bi(t, x2, y2, z2)|2 +
3∑

i=1

n∑

j=1

|σij(t, x1, y1, z1) – σij(t, x2, y2, z2)|2

+
3∑

i=1

∫

{|u|<1}
|hi(t, x1, y1, z1, u) – hi(t, x2, y2, z2, u)|2ν(du)
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≤ KN ,T (t)[(x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2],

∀t ∈ [0, T], (x1, y1, z1), (x2, y2, z2) ∈
[

1
N

, N
]3

.

(A3) For any (x, y, z) ∈ R
3
+, t ∈ (0,∞) and u ∈R

d – {0},

(

1 +
h1(t, x, y, z, u)

x

)

,
(

1 +
h2(t, x, y, z, u)

y

)

,
(

1 +
h3(t, x, y, z, u)

z

)

> 0,

and
(

1 +
g1(t, x, y, z, u)

x

)

,
(

1 +
g2(t, x, y, z, u)

y

)

,
(

1 +
g3(t, x, y, z, u)

z

)

> 0.

(A4) For any T ∈ (0,∞),

sup
t∈[0,T], (x,y,z)∈R3

+

{
(x – 1)b1(t, x, y, z)

x
+

(y – 1)b2(t, x, y, z)
y

+
(z – 1)b3(t, x, y, z)

z

}

< ∞,
n∑

j=1

sup
t∈[0,T], (x,y,z)∈R3

+

{ |σ1j(t, x, y, z)|
x

+
|σ2j(t, x, y, z)|

y
+

|σ3j(t, x, y, z)|
z

}

< ∞,

and there exists ηT ∈ B(Rd) such that

ηT > 0,
∫

{|u|<1}
ηT (u)ν(du) < ∞, (2.2)

and

sup
t∈[0,T], (x,y,z)∈R3

+,u∈Rd–{0}

k(t, x, y, z, u)
ηT (u)

< ∞.

Let C1,2(R+ ×R
3
+;R) be the set of all functions V (t, w) onR+ ×R

3
+ which are continuously

differentiable with respect to t and twice continuously differentiable with respect to w =
(w1, w2, w2). For V ∈ C1,2(R+ ×R

3
+;R), we define

LV (t, w) = 〈Vw(w), b(t, w)〉 +
1
2

trace(σ T (t, w)Vww(w)σ (t, w))

+
∫

{|u|<1}
[V (w + h(t, w, u)) – V (w) – 〈Vw(w), h(t, w, u)〉]ν(du),

with Vw = ( ∂V
∂w1

, ∂V
∂w2

, ∂V
∂w3

), Vww = ( ∂2V
∂wi∂wj

)1≤i,j≤3, b = (b1, b2, b3), σ = (σij)1≤i,j≤3, and h =
(h1, h2, h3).

Now we present the result on the existence and uniqueness of solutions to the system
(1.3).

Theorem 2.1 Suppose that Assumptions (A1)–(A4) hold. Then, for any given initial value
(X0, Y0, Z0) ∈ R

3
+, the system (1.3) has a unique strong solution taking values in R

3
+.
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Proof By (A3) and the interlacing technique (cf. [1]), to complete the proof, we need only
consider the case that gi ≡ 0, i = 1, 2, 3. Then, equation (1.3) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = b1(t, Xt , Yt , Zt) +
n∑

j=1
σ1j(t, Xt , Yt , Zt)dB(j)

t

+
∫
{|u|<1} h1(t, Xt–, Yt–, Zt–, u)Ñ(dt, du),

dYt = b2(t, Xt , Yt , Zt) +
n∑

j=1
σ2j(t, Xt , Yt , Zt)dB(j)

t

+
∫
{|u|<1} h2(t, Xt–, Yt–, Zt–, u)Ñ(dt, du),

dZt = b3(t, Xt , Yt , Zt) +
n∑

j=1
σ3j(t, Xt , Yt , Zt)dB(j)

t

+
∫
{|u|<1} h3(t, Xt–, Yt–, Zt–, u)Ñ(dt, du).

(2.3)

By (A1) and (A2), similar to [15, Lemma 2.1], we can show that there exists a unique
local strong solution to equation (2.3) on [0, τ ), where τ is the explosion time. We will
show below that τ = ∞ almost surely (a.s.). Define

τN = inf

{

t ∈ [0, τ ) : (Xt , Yt , Zt) /∈
[

1
N

, N
]3

}

, N ∈N,

and

τ∞ = lim
N→∞ τN .

We have that τ∞ ≤ τ , so it suffices to show τ∞ = ∞ a.s.. Hence assume the contrary that
there exist ε > 0 and T > 0 such that

P(τ∞ < T) > ε,

which implies that

P(τN < T) > ε, ∀N ∈N. (2.4)

Define

V (x, y, z) = (x – 1 – ln x) + (y – 1 – ln y) + (z – 1 – ln z), (x, y, z) ∈ (0,∞)3,

and

Wt = (Xt , Yt , Zt).

By Itô’s formula, we obtain that for t ≤ τN ,

V (Wt) = V (W0) +
∫ t

0
LV (s, Ws)ds +

∫ t

0
〈Vx(Ws),σ (s, Xs)〉dBs

+
∫ t

0

∫

{|u|<1}
[V (Ws– + h(s, Ws–, u)) – V (Ws–)] Ñ(ds, du).
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Then, by (A4), there exist CT > 0 and ηT ∈ B(Rd) such that (2.2) holds and

E
[
V (XT∧τN , YT∧τN , ZT∧τN )

]
– V (X0, Y0, Z0)

= E

[∫ T∧τN

0

{
(Xs – 1)b1(s, Xs, Ys, Zs)

Xs
+

(Ys – 1)b2(s, Xs, Ys, Zs)
Ys

+
(Zs – 1)b3(s, Xs, Ys, Zs)

Zs

}

ds
]

+
1
2

n∑

j=1

E

[∫ T∧τN

0

{
σ 2

1j(s, Xs, Ys, Zs)
X2

s
+

σ 2
2j(s, Xs, Ys, Zs)

Y 2
s

+
σ 2

3j(s, Xs, Ys, Zs)
Z2

s

}

ds

]

+ E

[∫ T∧τN

0

∫

{|u|<1}
k(s, Xs, Ys, Zs, u)ν(du)ds

]

≤ CT T +
C2

T T
2

+ CT T
∫

{|u|<1}
ηT (u)ν(du).

However, by (2.4), we get

E[V (XT∧τN , YT∧τN , ZT∧τN )] > ε

[(
1
N

– 1 + ln N
)

∧ (N – 1 – ln N)
]

→ ∞ as N → ∞.

We have arrived at a contradiction. Therefore, τ = ∞ a.s. and the proof is complete. �

Next, we consider the extinction and persistence of diseases. Namely, we investigate
whether a disease will extinct with an exponential rate or will be persistent in mean. The
system (1.3) is called persistent in mean if

lim inf
t→∞

1
t

∫ t

0
Ysds > 0 a.s..

Theorem 2.2 Suppose that Assumptions (A1)–(A4) hold. Let (Xt , Yt , Zt) be a solution to
equation (1.3) with (X0, Y0, Z0) ∈ R

3
+. We assume that

∫ ∞

0

ϕ(t)
(1 + t)2 dt < ∞, (2.5)

where

ϕ(t) := sup
(x,y,z)∈R3

+

{∑n
j=1 σ 2

2j(t, x, y, z)
y2 +

∫

{|u|<1}

[

ln

(

1 +
h2(t, x, y, z, u)

y

)]2

ν(du)

+
∫

{|u|≥1}

[

ln

(

1 +
g2(t, x, y, z, u)

y

)]2

ν(du)

}

.
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(i) If

α := lim sup
t→∞

{

sup
(x,y,z)∈R3

+

[
b2(t, x, y, z)

y
–

∑n
j=1 σ 2

2j(t, x, y, z)
2y2

]

+
∫

{|u|<1}
sup

(x,y,z)∈R3
+

[

ln

(

1 +
h2(t, x, y, z, u)

y

)

–
h2(t, x, y, z, u)

y

]

ν(du)

+
∫

{|u|≥1}
sup

(x,y,z)∈R3
+

[

ln

(

1 +
g2(t, x, y, z, u)

y

)]

ν(du)

}

< 0,

(2.6)

then

lim sup
t→∞

ln Yt

t
≤ α a.s.. (2.7)

(ii) If there exist positive constants λ0 and λ such that

lim inf
t→∞

1
t

∫ t

0

{

λ0Ys +
b2(s, Xs, Ys, Zs)

Ys
–

∑n
j=1 σ 2

2j(s, Xs, Ys, Zs)
2Y 2

s

+
∫

{|u|<1}

[

ln

(

1 +
h2(s, Xs–, Ys–, Zs–, u)

Ys–

)

–
h2(s, Xs–, Ys–, Zs–, u)

Ys–

]

ν(du)

+
∫

{|u|≥1}
ln

(

1 +
g2(s, Xs–, Ys–, Zs–, u)

Ys–

)

ν(du)
}

ds ≥ λ,

(2.8)

then

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ λ

λ0
a.s.. (2.9)

(iii) If there exist positive constants λ0 and λ such that

lim inf
t→∞ inf

(x,y,z)∈R3
+

{

λ0y +
b2(t, x, y, z)

y
–

∑n
j=1 σ 2

2j(t, x, y, z)
2y2

+
∫

{|u|<1}

[

ln

(

1 +
h2(t, x, y, z, u)

y

)

–
h2(t, x, y, z, u)

y

]

ν(du)

+
∫

{|u|≥1}
ln

(

1 +
g2(t, x, y, z, u)

y

)

ν(du)
}

≥ λ,

(2.10)

then

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ λ

λ0
a.s..
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Proof (i) By Itô’s formula, we get

ln Yt = ln Y0 +
∫ t

0

[
b2(s, Xs, Ys, Zs)

Ys
–

∑n
j=1 σ 2

2j(s, Xs, Ys, Zs)
2Y 2

s

]

ds

+
∫ t

0

∫

{|u|<1}

[

ln

(

1 +
h2(s, Xs–, Ys–, Zs–, u)

Ys–

)

–
h2(s, Xs–, Ys–, Zs–, u)

Ys–

]

ν(du)ds

+
∫ t

0

∫

{|u|≥1}
ln

(

1 +
g2(s, Xs–, Ys–, Zs–, u)

Ys–

)

ν(du)ds

+
∫ t

0

∑n
j=1 σ2j(s, Xs, Ys, Zs)

Ys
dB(j)

s

+
∫ t

0

∫

{|u|<1}
ln

(

1 +
h2(s, Xs–, Ys–, Zs–, u)

Ys–

)

Ñ(ds, du)

+
∫ t

0

∫

{|u|≥1}
ln

(

1 +
g2(s, Xs–, Ys–, Zs–, u)

Ys–

)

Ñ(ds, du).

(2.11)

Denote the martingale part of ln Yt by Mt . Then, by (2.11), we get

〈M〉t =
∫ t

0

∑n
j=1 σ 2

2j(s, Xs, Ys, Zs)
Y 2

s
ds

+
∫ t

0

∫

{|u|<1}

[

ln

(

1 +
h2(s, Xs–, Ys–, Zs–, u)

Ys–

)]2

ν(du)ds

+
∫ t

0

∫

{|u|≥1}

[

ln

(

1 +
g2(s, Xs–, Ys–, Zs–, u)

Ys–

)]2

ν(du)ds.

By (2.5) and the strong law of large numbers for martingales (see [19, Theorem 10,
Chap. 2]), we get

lim
t→∞

Mt

t
= 0 a.s.. (2.12)

Then, (2.7) holds by (2.6), (2.11), and (2.12).
(ii) By (2.8) and (2.11), if we take η ∈ (0,λ) then there exists Tη > 0 such that for t ≥ Tη ,

ln Yt ≥ ln Y0 + (λ – η)t – λ0

∫ t

0
Ysds +

∫ t

0

∑n
j=1 σ2j(s, Xs, Ys, Zs)

Ys
dB(j)

t

+
∫ t

0

∑n
j=1 σ2j(s, Xs, Ys, Zs)

Ys
dB(j)

s

+
∫ t

0

∫

{|u|<1}
ln

(

1 +
h2(s, Xs–, Ys–, Zs–, u)

Ys–

)

Ñ(ds, du)

+
∫ t

0

∫

{|u|≥1}
ln

(

1 +
g2(s, Xs–, Ys–, Zs–, u)

Ys–

)

Ñ(ds, du).

Thus, by following the argument of the proof of [16, Lemma 5.1], we can show that (2.9)
holds by (2.12).
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(iii) Obviously, condition (2.10) implies condition (2.8). Hence, the assertion is a direct
consequence of assertion (ii). �

Remark 2.3 If we take the following assumption of our model:

b2(t, x, y, z) = b2,1(t, x, y, z) – b2,2(t, x, y, z),

where b2,i(t, x, y, z) ≥ 0 for any (t, x, y, z) ∈ [0,∞) ×R
3
+, i = 1, 2, then condition (2.6) can be

strengthened to

α∗ := lim sup
t→∞

{

sup
(x,y,z)∈R3

+

[
b2

2,1(t, x, y, z)
2
∑n

j=1 σ 2
2j(t, x, y, z)

–
b2,2(t, x, y, z)

y

]

+
∫

{|u|<1}
sup

(x,y,z)∈R3
+

[

ln

(

1 +
h2(t, x, y, z, u)

y

)

–
h2(t, x, y, z, u)

y

]

ν(du)

+
∫

{|u|≥1}
sup

(x,y,z)∈R3
+

[

ln

(

1 +
g2(t, x, y, z, u)

y

)]

ν(du)

}

< 0, (2.13)

In fact, we have α ≤ α∗ and hence condition (2.13) implies that

lim sup
t→∞

ln Yt

t
≤ α∗ a.s..

Denote by L∞
+ [0,∞) the set of all bounded, nonnegative, measurable functions on [0,∞).

For f ∈ L∞
+ [0,∞), define

f := sup
t∈[0,∞)

f (t), f := inf
t∈[0,∞)

f (t).

Example 2.4 Let �,μ,β ,γ , ε,σ ∈ L∞
+ [0,∞). We consider the system

⎧
⎪⎪⎨

⎪⎪⎩

dXt = [�(t) – μ(t)Xt – β(t)XtYt]dt – σ (t)XtYtdBt ,

dYt = [β(t)XtYt – (μ(t) + γ (t) + ε(t))Yt]dt + σ (t)XtYtdBt ,

dZt = [γ (t)Yt – μ(t)Zt]dt.

(2.14)

Suppose that

μ > 0.

By (2.14), we get

d(Xt + Yt + Zt) ≤ [
� – μ(Xt + Yt + Zt)

]
dt,

which implies that

� :=

{

(x, y, z) ∈ R
3
+ : x + y + z ≤ �

μ

}
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is an invariant set of the system (2.14). Hence, the system (2.14) has a unique strong solu-
tion taking values in � by Theorem 2.1.

Define

α∗ := sup
x∈

(
0, �μ

)

[

βx – (μ + γ + ε) –
σ 2x2

2

]

.

Then, we have that

Condition (2.6)

⇔ α = lim sup
t→∞

sup
x∈

(
0, �μ

)

[

β(t)x – (μ(t) + γ (t) + ε(t)) –
σ 2(t)x2

2

]

< 0

⇐ α ≤ α∗ < 0

⇔ α∗ = max

{
β �

μ
– (μ + γ + ε) –

σ 2�
2

2μ2 ,
β

2

2σ 2 – (μ + γ + ε)

}

< 0

⇔
⎧
⎨

⎩

α∗ = β �

μ
– (μ + γ + ε) – σ 2�

2

2μ2 < 0, if σ 2 ≤ μβ

�
,

α∗ = β
2

2σ2 – (μ + γ + ε) < 0, if σ 2 > μβ

�
.

Thus, by Theorem 2.2(i), we obtain that if

σ 2 ≤ μβ

�
and R̃0 :=

β �

μ(μ + γ + ε)
–

σ 2�
2

2μ2(μ + γ + ε)
< 1,

then the disease gets extinct with an exponential rate

–α ≥ (μ + γ + ε)
(

1 – R̃0

)
;

if

σ 2 > max

{
μβ

�
,

β
2

2(μ + γ + ε)

}

,

then the disease gets extinct with an exponential rate

–α ≥ (μ + γ + ε) –
β

2

2σ 2 .

This result generalizes the result given in [16, Theorem 2.1].
By (2.14), we get

Xt + Yt = X0 + Y0 +
∫ t

0
[�(s) – μ(s)Xs – (μ(s) + γ (s) + ε(s))Ys]ds.

Since

Xt + Yt ≤ �

μ
, ∀t ≥ 0, (2.15)
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we get

lim
t→∞

1
t

∫ t

0
[�(s) – μ(s)Xs – (μ(s) + γ (s) + ε(s))Ys]ds = 0,

which implies that

lim
t→∞

1
t

∫ t

0
Xsds ≥ �

μ
– lim

t→∞
μ + γ + ε

μt

∫ t

0
Ysds. (2.16)

Suppose that

R̃0 :=
β�

μ(μ + γ + ε)
–

σ 2�
2

2μ2(μ + γ + ε)
> 1.

Then, by (2.14)–(2.16), we get

lim inf
t→∞

1
t

∫ t

0

[
β(μ + γ + ε)

μ
· Ys +

b2(s, Xs, Ys, Zs)
Ys

–
σ 2(s)X2

s
2

]

ds

≥ β�

μ
– (μ + γ + ε) –

σ 2�
2

2μ2 .

Therefore, by Theorem 2.2(ii), we obtain that the disease is persistent and

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ μ(R̃0 – 1)

β
a.s..

This result generalizes the result given in [16, Theorem 3.1].

Let M > 0 be a fixed constant. For x ≥ 0, define

x� := x ∧ 1, x† := x ∧ M.

Example 2.5 In the following examples, we let d = 1 and the intensity measure ν of the
Poisson random measure N be given by

dν = 1[–2,2](x)dx,

where dx is the Lebesgue measure.
(a) Let �,μ,β ,γ1,γ2,γ3,γ4, ξ ,σ1,σ2,ϕ1,ϕ2,ϕ3 ∈ L∞

+ [0,∞) and h1, h2, h3, g1, g2 ∈ L∞
+ (–∞,

∞). Define

ϕ(t, x, y) = ϕ1(t)x + ϕ2(t)y + ϕ3(t)xy, (t, x, y) ∈ [0,∞) ×R
2
+.
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We consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt =
[

�(t) – μ(t)X†
t – β(t)X†

t Y †
t

ξ (t)

1+ϕ(t,Xt ,Yt ) + γ1(t)Z†
t

]

dt – σ1(t)X†
t Y †

t
ξ (t)

1+ϕ(t,Xt ,Yt ) dB(1)
t

–
∫

{|u|<1}[h1(u)X�
t–Y �

t– – h3(u)X�
t–Z�

t–]Ñ(dt, du)

–
∫

{|u|≥1} g1(u)X�
t–Y �

t–N(dt, du),

dYt =
[

β(t)X†
t Y †

t
ξ (t)

1+ϕ(t,Xt ,Yt ) + (γ2(t) – μ(t) – γ3(t)Y †
t )Y †

t

]

dt

+ σ1(t)X†
t Y †

t
ξ (t)

1+ϕ(t,Xt ,Yt ) dB(1)
t + σ2(t)Y †

t Z†
t dB(2)

t

+
∫

{|u|<1}[h1(u)X�
t–Y �

t– – h2(u)Y �
t–Z�

t–]Ñ(dt, du)

+
∫

{|u|≥1}[g1(u)X�
t–Y �

t– – g2(u)Y �
t–Z�

t–]N(dt, du),

dZt =
[
γ4(t)Y †

t – (μ(t) + γ1(t))Z†
t

]
dt – σ2(t)Y †

t Z†
t dB(2)

t

+
∫

{|u|<1}[h2(u)Y �
t–Z�

t– – h3(u)X�
t–Z�

t–]Ñ(dt, du)

+
∫

{|u|≥1} g2(u)Y �
t–Z�

t–N(dt, du).

(2.17)

Suppose that

ξ ≥ 1, hi, gj < 1, i = 1, 2, 3, j = 1, 2.

Then, Assumptions (A1)–(A4) hold. Thus, by Theorem 2.1, the system (2.17) has a unique
strong solution in R

3
+. Assume that

μ < γ2, (M ∨ 1)2ξ (σ1
2 + σ2

2) + 4[h1 – ln{(1 – h2)(1 – g2)}] < 2 min{M,γ2 – μ}.

Set

λ0 = γ3 + 1,

λ = min{M,γ2 – μ} –

{
(M ∨ 1)2ξ (σ1

2 + σ2
2)

2
+ 2[h1 – ln{(1 – h2)(1 – g2)}]

}

.

Then, by Theorem 2.2(iii), we obtain that the disease is persistent and

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ λ

λ0
a.s..
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(b) Let �,μ,β ,γ1,γ2,σ ∈ L∞
+ [0,∞) and h1, h2, h3, g1, g2 ∈ L∞

+ (–∞,∞). We consider the
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt =
[
�(t) – μ(t)X†

t – β(t)X†
t Y †

t + γ1(t)Z†
t

]
dt – σ (t)X†

t Y †
t Z†

t dBt

–
∫

{|u|<1}[h1(u) – h3(u)]X�
t–Y �

t–Z�
t–Ñ(dt, du)

–
∫

{|u|≥1}[g1(u) – g3(u)]X�
t–Y �

t–Z�
t–N(dt, du),

dYt =
[
β(t)X†

t Y †
t – (μ(t) + γ2(t))Y †

t

]
dt + 2σ (t)X†

t Y †
t Z†

t dBt

+
∫

{|u|<1}[h1(u) – h2(u)]X�
t–Y �

t–Z�
t–Ñ(dt, du)

+
∫

{|u|≥1}[g1(u) – g2(u)]X�
t–Y �

t–Z�
t–N(dt, du),

dZt = [γ2(t)Y †
t – (μ(t) + γ1(t))Z†

t ]dt – σ (t)X†
t Y †

t Z†
t dBt

+
∫

{|u|<1}[h2(u) – h3(u)]X�
t–Y �

t–Z�
t–Ñ(dt, du)

+
∫

{|u|≥1}[g2(u) – g3(u)]X�
t–Y �

t–Z�
t–N(dt, du).

(2.18)

Suppose that

hi, gj < 1, i = 1, 2, 3, j = 1, 2.

Then, Assumptions (A1)–(A4) hold. Thus, by Theorem 2.1, the system (2.18) has a unique
strong solution in R

3
+. If

β + 2g1 < γ2 + μ,

then by Theorem 2.2(i) and noting that ln(1 + x) – x ≤ 0 for x > –1, we obtain that the
disease gets extinct with an exponential rate

–α > γ2 + μ – β – 2g1.

3 Model for population proportions
In this section, we let Xt , Yt , and Zt denote respectively the proportions of susceptible,
infected, and recovered populations at time t. This is a special case of the USSIR model
(1.3) which has been considered in the literature (cf. [11, 14], and [24]). Define

� := {(x, y, z) ∈R
3
+ : x + y + z = 1}.

We make the following assumptions:
(B1) There exists (x0, y0, z0) ∈ � such that for any T ∈ (0,∞) and i = 1, 2, 3,

bi(·, x0, y0, z0),
n∑

j=1

|σij(·, x0, y0, z0)| ∈ L2[0, T],

∫

{|u|<1}
|hi(·, x0, y0, z0, u)|2ν(du) ∈ L1[0, T].
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(B2) For any T ∈ (0,∞) and N ∈ N, there exists KN ,T ∈ L1
+[0, T] such that

3∑

i=1

|bi(t, x1, y1, z1) – bi(t, x2, y2, z2)|2 +
3∑

i=1

n∑

j=1

|σij(t, x1, y1, z1) – σij(t, x2, y2, z2)|2

+
3∑

i=1

∫

{|u|<1}
|hi(t, x1, y1, z1, u) – hi(t, x2, y2, z2, u)|2ν(du)

≤ KN ,T (t)[(x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2],

∀t ∈ [0, T], (x1, y1, z1), (x2, y2, z2) ∈
[

1
N

, 1 –
1
N

]3

.

(B3) For any t ∈ (0,∞), (x, y, z) ∈ � and u ∈R
d – {0},

3∑

i=1

bi(t, x, y, z) = 0,
3∑

i=1

σij(t, x, y, z) = 0 for j = 1, 2, . . . , n,

3∑

i=1

hi(t, x, y, z, u) = 0,
3∑

i=1

gi(t, x, y, z, u) = 0.

(B4) For any (x, y, z) ∈ �, t ∈ (0,∞) and u ∈R
d – {0},

(

1 +
h1(t, x, y, z, u)

x

)

,
(

1 +
h2(t, x, y, z, u)

y

)

,
(

1 +
h3(t, x, y, z, u)

z

)

> 0,

and
(

1 +
g1(t, x, y, z, u)

x

)

,
(

1 +
g2(t, x, y, z, u)

y

)

,
(

1 +
g3(t, x, y, z, u)

z

)

> 0.

(B5) For any T ∈ (0,∞),

inf
t∈[0,T], (x,y,z)∈�

{
b1(t, x, y, z)

x
+

b2(t, x, y, z)
y

+
b3(t, x, y, z)

z

}

> –∞,

n∑

j=1

sup
t∈[0,T], (x,y,z)∈�

{ |σ1j(t, x, y, z)|
x

+
|σ2j(t, x, y, z)|

y
+

|σ3j(t, x, y, z)|
z

}

< ∞,

and there exists ηT ∈ B(Rd) such that (2.2) holds and

sup
t∈[0,T], (x,y,z)∈�,u∈Rd–{0}

k(t, x, y, z, u)
ηT (u)

< ∞,

where k(t, x, y, z, u) is defined by (2.1).
We now discuss the existence and uniqueness of solutions to the system (1.3) when con-

sidering the proportional form.

Theorem 3.1 Suppose that Assumptions (B1)–(B5) hold. Then, for any given initial value
(X0, Y0, Z0) ∈ �, the system (1.3) has a unique strong solution taking values in �.



Easlick and Sun Advances in Continuous and Discrete Models         (2024) 2024:22 Page 15 of 26

Proof By (B3), (B4), and the interlacing technique, to complete the proof, we need only
consider the case that gi ≡ 0, i = 1, 2, 3. Then, equation (1.3) becomes equation (2.3).

By (B1) and (B2), similar to [15, Lemma 2.1], we can show that there exists a unique
local strong solution to equation (2.3) on [0, τ ), where τ is the explosion time. We will
show below that τ = ∞ a.s.. Define

τN = inf

{

t ∈ [0, τ ) : (Xt , Yt , Zt) /∈
[

1
N

, 1 –
1
N

]3
}

, N ∈N,

and

τ∞ = lim
N→∞ τN .

We have that τ∞ ≤ τ so it suffices to show τ∞ = ∞ a.s.. Hence assume the contrary that
there exist ε > 0 and T > 0 such that

P(τ∞ < T) > ε,

which implies that

P(τN < T) > ε, ∀N ∈N. (3.1)

Define

V (x, y, z) = – ln(xyz), (x, y, z) ∈ (0, 1)3,

and

Wt = (Xt , Yt , Zt).

By Itô’s formula, we obtain that for t ≤ τN ,

V (Wt) = V (W0) +
∫ t

0
LV (s, Ws)ds +

∫ t

0
〈Vx(Ws),σ (s, Xs)〉dBs

+
∫ t

0

∫

{|u|<1}
[V (Ws– + h(s, Ws–, u)) – V (Ws–)] Ñ(ds, du).

Then, by (B5), there exist CT > 0 and ηT ∈ B(Rd) such that (2.2) holds and

(ln N)P(τN < T) – V (X0, Y0, Z0)

≤ E
[
V (XT∧τN , YT∧τN , ZT∧τN )

]
– V (X0, Y0, Z0)

= E

[∫ T∧τN

0
LV (s, Xs, Ys, Zs)ds

]

= –E
[∫ T∧τN

0

{
b1(s, Xs, Ys, Zs)

Xs
+

b2(s, Xs, Ys, Zs)
Ys

+
b3(s, Xs, Ys, Zs)

Zs

}

ds
]
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+
1
2

n∑

j=1

E

[∫ T∧τN

0

{
σ 2

1j(s, Xs, Ys, Zs)
X2

s
+

σ 2
2j(s, Xs, Ys, Zs)

Y 2
s

+
σ 2

3j(s, Xs, Ys, Zs)
Z2

s

}

ds

]

+ E

[∫ T∧τN

0

∫

{|u|<1}
k(s, Xs, Ys, Zs, u)ν(du)ds

]

≤ CT T +
C2

T T
2

+ CT T
∫

{|u|<1}
ηT (u)ν(du),

which contradicts with (3.1). Therefore, τ = ∞ a.s. and the proof is complete. �

Similar to Theorem 2.2, we can prove the following result on the extinction and persis-
tence of diseases.

Theorem 3.2 Suppose that Assumptions (B1)–(B5) hold. Let (Xt , Yt , Zt) be a solution to
equation (1.3) with (X0, Y0, Z0) ∈ �. We assume that

∫ ∞

0

ϕ(t)
(1 + t)2 dt < ∞,

where

ϕ(t) := sup
(x,y,z)∈�

{∑n
j=1 σ 2

2j(t, x, y, z)
y2 +

∫

{|u|<1}

[

ln

(

1 +
h2(t, x, y, z, u)

y

)]2

ν(du)

+
∫

{|u|≥1}

[

ln

(

1 +
g2(t, x, y, z, u)

y

)]2

ν(du)

}

.

(i) If

α := lim sup
t→∞

{

sup
(x,y,z)∈�

[
b2(t, x, y, z)

y
–

∑n
j=1 σ 2

2j(t, x, y, z)
2y2

]

+
∫

{|u|<1}
sup

(x,y,z)∈�

[

ln

(

1 +
h2(t, x, y, z, u)

y

)

–
h2(t, x, y, z, u)

y

]

ν(du)

+
∫

{|u|≥1}
sup

(x,y,z)∈�

[

ln

(

1 +
g2(t, x, y, z, u)

y

)]

ν(du)

}

< 0,

then

lim sup
t→∞

ln Yt

t
≤ α a.s..

(ii) If there exist positive constants λ0 and λ such that

lim inf
t→∞

1
t

∫ t

0

{

λ0Ys +
b2(s, Xs, Ys, Zs)

Ys
–

∑n
j=1 σ 2

2j(s, Xs, Ys, Zs)
2Y 2

s

+
∫

{|u|<1}

[

ln

(

1 +
h2(s, Xs–, Ys–, Zs–, u)

Ys–

)

–
h2(s, Xs–, Ys–, Zs–, u)

Ys–

]

ν(du)

+
∫

{|u|≥1}
ln

(

1 +
g2(s, Xs–, Ys–, Zs–, u)

Ys–

)

ν(du)
}

ds ≥ λ,
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then

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ λ

λ0
a.s..

(iii) If there exist positive constants λ0 and λ such that

lim inf
t→∞ inf

(x,y,z)∈�

{

λ0y +
b2(t, x, y, z)

y
–

∑n
j=1 σ 2

2j(t, x, y, z)
2y2

+
∫

{|u|<1}

[

ln

(

1 +
h2(t, x, y, z, u)

y

)

–
h2(t, x, y, z, u)

y

]

ν(du)

+
∫

{|u|≥1}
ln

(

1 +
g2(t, x, y, z, u)

y

)

ν(du)
}

≥ λ,

(3.2)

then

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ λ

λ0
a.s..

Example 3.3 We revisit Example 2.5 with some changes for the population proportions
model. Let d = 1 and the intensity measure ν of the Poisson random measure N be given
by

dν = 1[–2,2](x)dx.

(a) Let β ,γ , ξ ,σ1,σ2,ϕ1,ϕ2,ϕ3 ∈ L∞
+ [0,∞) and h1, h2, g1, g2 ∈ L∞

+ (–∞,∞). Define

ϕ(t, x, y) = ϕ1(t)x + ϕ2(t)y + ϕ3(t)xy, (t, x, y) ∈ [0,∞) ×R
2
+.

We consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = – β(t)Xξ (t)
t Yt

1+ϕ(t,Xt ,Yt ) dt – σ1(t)Xξ (t)
t Yt

1+ϕ(t,Xt ,Yt ) dB(1)
t –

∫

{|u|<1} h1(u)Xξ (t)
t– Yt–Ñ(dt, du)

–
∫

{|u|≥1} g1(u)Xξ (t)
t– Yt–N(dt, du),

dYt =
[

β(t)Xξ (t)
t Yt

1+ϕ(t,Xt ,Yt ) – γ (t)Yt

]

dt + σ1(t)Xξ (t)
t Yt

1+ϕ(t,Xt ,Yt ) dB(1)
t + σ2(t)YtdB(2)

t

+
∫

{|u|<1}[h1(u)Xξ (t)
t– Yt– – h2(u)Yt–]Ñ(dt, du)

+
∫

{|u|≥1}[g1(u)Xξ (t)
t– Yt– – g2(u)Yt–]N(dt, du),

dZt = γ (t)Ytdt – σ2(t)YtdB(2)
t +

∫

{|u|<1} h2(u)Yt–Ñ(dt, du)

+
∫

{|u|≥1} g2(u)Yt–N(dt, du).

(3.3)

Suppose that

ξ ≥ 1, h1, h2, g1, g2 < 1.
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We have dXt
dt + dYt

dt + dZt
dt = 0. Hence, by Theorem 3.1, the system (3.3) has a unique strong

solution taking values in �. If

β + 2g1 < γ ,

then, by Theorem 3.2(i) and noting that ln(1 + x) – x ≤ 0 for x > –1, we obtain that the
disease gets extinct with an exponential rate

–α ≥ γ – β – 2g1.

Additionally, a key feature of the system (3.3) to note is that the transmission function is
in the form of a power function which differs from the often seen bilinear form.

(b) Let β ,γ1,γ2,σ1,σ2,σ3 ∈ L∞
+ [0,∞) and h1, h2, h3, g1, g2, g3 ∈ L∞

+ (–∞,∞). We consider
the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = –β(t)XtYtdt – σ1(t)XtYtdBt –
∫

{|u|<1} h1(u)Xt–Yt–Ñ(dt, du)

–
∫

{|u|≥1} g1(u)Xt–Yt–N(dt, du),

dYt = [β(t)Xt – γ1(t) + γ2(t)Zt] Ytdt + [σ1(t)Xt – σ2(t) + σ3(t)Zt]YtdBt

+
∫

{|u|<1}[h1(u)Xt– – h2(u) – h3(u)Zt–]Yt–Ñ(dt, du)

+
∫

{|u|≥1}[g1(u)Xt– – g2(u) – g3(u)Zt–]Yt–N(dt, du),

dZt = [γ1(t) – γ2(t)Zt]Ytdt + [σ2(t) – σ3(t)Zt]YtdBt

+
∫

{|u|<1}[h2(u) + h3(u)Zt–]Yt–Ñ(dt, du)

+
∫

{|u|≥1}[g2(u) + g3(u)Zt–]Yt–N(dt, du).

(3.4)

We have dXt
dt + dYt

dt + dZt
dt = 0. Hence, by Theorem 3.1, the system (3.4) has a unique strong

solution taking values in �.
Suppose that

h1, h2 + h3, g1, g2 + g3 < 1, γ1 < β ≤ γ2,

and

[(σ1 + σ3) ∨ σ2]2 + 4[h1 – ln{(1 – h2 – h3)(1 – g2 – g3)}] < 2(γ2 – γ1).

Set

λ0 = γ2, λ = γ2 – γ1 –
{

[(σ1 + σ3) ∨ σ2]2

2
+ 2

[
h1 – ln

{
(1 – h2 – h3)(1 – g2 – g3)

}]
}

.

Then, condition (3.2) is satisfied. Therefore, by Theorem 3.2(iii), we obtain that the disease
is persistent and

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ λ

λ0
a.s..



Easlick and Sun Advances in Continuous and Discrete Models         (2024) 2024:22 Page 19 of 26

Table 1 Parameters for simulation 1 of the system (2.14)

f (t) f f

β(t) = 0.13 + 0.01 sin(t) 0.12 0.14
γ (t) = 0.9 + 0.02 sin(t) 0.88 0.92
ε(t) = 0.15 + 0.07 sin(t) 0.08 0.22
σ (t) = 0.12 + 0.01(sin(t) + cos(t)) 0.12 – 0.01

√
2 0.12 + 0.01

√
2

�(t) = 0.5 + 0.06 sin(t) 0.44 0.56
μ(t) = 0.07 + 0.004 cos(t) 0.066 0.074

4 Simulations
In this section, we present simulations corresponding to Examples 2.4, 2.5, and 3.3. Sim-
ulations are completed by use of the Julia programming language (cf. [4]) and the Dif-
ferentialEquations.jl package (cf. [22]). The methodology used is a jump-adapted Euler–
Maruyama (EM) scheme (cf. [7]) with a time step �t = 0.01. We include both average and
sample paths in the simulations in the following simulation study. Moreover, the average
was computed from 100 simulations; and whence, 3 sample paths were selected randomly
and plotted with the average. For the readers who seek more information about the Ju-
lia programming language and/or simulation of stochastic differential equations, we refer
them to the above references.

Remark 4.1 The time t in the following is taken to be epidemiological time without spe-
cific unit; however, we may imagine the time units represent days, weeks, or months.
Additionally, the evenly spaced-timestep �t corresponds to the hypothetical times at
which measurements were taken corresponding to the model; namely, the hypothetical
time-series data. Certainly, when analyzing real-world data a specified time measurement
would be given.

The choice of parameter values and parameter periods made by the authors was arbi-
trary, yet educated. Namely, it is important to show the flexibility of the USSIR model
and illustrate the viability of the theoretical results by use of simulations. The results are
intended to be both understandable and useful to the informed reader.

Simulation 4.2 This simulation is concerned with Example 2.4, the system (2.14). The
initial condition is set to (X0, Y0, Z0) = (2.0, 0.8, 1), where the starting population is 3.8
million. In the following simulations, the parameters will change to demonstrate their ef-
fects on a system with unchanging initial condition. The first two simulations illustrate
extinction of the disease and the final simulation will illustrate persistence of the disease.
We initially set the parameters as in Table 1.

It is important to note that since the initial condition is unchanging this forces two pa-
rameters, namely �(t) and μ(t), to remain unchanged for this simulation. Moreover, we
have that

� =

{

(x, y, z) ∈R
3
+ : x + y + z ≤ �

μ
= 8.484848

}

as the invariant set for the system (2.14). That is, this system has a unique strong solution
taking values in � per Theorem 2.1. Given these parameters and following Example 2.4,
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Figure 1 Simulation 1 using E–M scheme of system (2.14) and displaying the average and three
randomly-selected sample paths

Table 2 Parameters for simulation 2 of the system (2.14)

f (t) f f

σ (t) = 0.55 + 0.003(sin(t) + cos(t)) 0.55 – 0.003
√
2 0.55 + 0.003

√
2

we have

R̃0 =
β �

μ(μ + γ + ε)
–

σ 2�
2

2μ2(μ + γ + ε)
≤ 0.7646 < 1, σ 2 < 0.0121 < 0.0165 =

μβ

�
.

As demonstrated in Fig. 1, the disease will get extinct with an exponential rate

–α ≥ (μ + γ + ε)
(

1 – R̃0

)
≥ 0.241.

We now make only the alteration of a single parameter in the system (2.14). Assume that
σ (t) has the form given in Table 2.

This alteration yields

σ 2 ≥ 0.29 > 0.0165 ≥ max

{
μβ

�
,

β
2

2(μ + γ + ε)

}

.

Thus, we have a scenario in which the disease gets extinct with an exponential rate

–α ≥ (μ + γ + ε) –
β

2

2σ 2 ≥ 0.993.

Moreover, if we compare Fig. 2 to the above Fig. 1, we notice that the disease appears to
get extinct at a faster rate, which is expected given the above results.

Now assume that the parameters for the system (2.14) are given in Table 3. This modi-
fication yields

R̃0 =
β�

μ(μ + γ + ε)
–

σ 2�
2

2μ2(μ + γ + ε)
≥ 1.7 > 1.
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Figure 2 Simulation 2 using E–M scheme of system (3.4) and displaying the average and three
randomly-selected sample paths

Table 3 Parameters for simulation 3 of the system (2.14)

f (t) f f

β(t) = 0.56 + 0.01 sin(4t) 0.55 0.57
γ (t) = 0.25 + 0.1 cos(5t) 0.15 0.35
σ (t) = 0.24 + 0.01(sin(t) + cos(t)) 0.24 – 0.01

√
2 0.24 + 0.01

√
2

Figure 3 Simulation 3 using E–M scheme of system (2.14) and displaying the average and three
randomly-selected sample paths

In Fig. 3, we see that such a modification yields disease persistence as opposed to disease
extinction achieved in the previous two simulations for the system (2.14).

Simulation 4.3 We assume the system (2.17) has initial conditions (3.75, 1.15, 1.1), where
the values are taken to be in millions. Set the parameters as in Table 4.

We have λ0 = 1.16, λ ≥ 0.089, and

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ 0.089

1.16
≥ 0.076.

The resulting persistence of the disease is illustrated below in Fig. 4.

Simulation 4.4 We assume the system (2.18) has initial conditions (7.27, 1.5, 1.11), where
the values are taken to be in millions. Set the parameters as in Table 5.
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Table 4 Parameters for the simulation of the system (2.17)

f (t) f f

M = 2 – –
�(t) = 0.15 + 0.006 sin(t) 0.144 0.156
μ(t) = 0.002 + 0.0001cos(t) 0.0019 0.0021
β(t) = 0.18 + 0.01 sin(2t) 0.17 0.19
γ1(t) = 0.15 + 0.004 cos(t) 0.146 0.154
γ2(t) = 0.12 + 0.02 cos(t) 0.1 0.14
γ3(t) = 0.12 + 0.04 cos(2t) 0.08 0.16
γ4(t) = 0.1 + 0.04 sin(4t) 0.06 0.14
ξ (t) = 1 + ln(1 + | sin(t)|) 1 1 + ln2
ϕi(t) = 0.01 + 0.005 cos(t), i = 1, 2 0.005 0.015
ϕ3(t) = 1 + 0.25 sin(15t) 0.75 1.25
σ1(t) = 0.015 + 0.01 cos(t) 0.005 0.025
σ2(t) = 0.012 + 0.01 sin(t) 0.002 0.022
h1(u) = 0.0001 – –
h2(u) = 0.00025 – –
h3(u) = 0.0009 – –
g1(u) = 0.001 – –
g2(u) = 0.0012 – –

Figure 4 Simulation using E–M scheme of system (2.17) and displaying the average and three
randomly-selected sample paths

Table 5 Parameters for the simulation of the system (2.18)

f (t) f f

M = 1.5 – –
�(t) = 0.09 + 0.01 cos(t) 0.08 0.1
μ(t) = 0.003 + 0.001 sin(t) 0.002 0.004
β(t) = 0.14 + 0.005 cos(10t) 0.135 0.145
γ1(t) = 0.002 + 0.002 cos(25t) 0 0.004
γ2(t) = 0.35 + 0.04 cos(15t) 0.31 0.39
σ (t) = 0.3125 + 0.002(sin(t) + cos(t)) 0.3125 – 0.002

√
2 0.3125 + 0.002

√
2

h1(u) = 0.0001 – –
h2(u) = 0.0004 – –
h3(u) = 0.0009 – –
g1(u) = 0.001 – –
g2(u) = 0.007 – –
g3(u) = 0.005 – –

The extinction of the disease is illustrated below in Fig. 5. Moreover, as in Example
2.5(b), the disease will get extinct with the rate –α ≥ γ2 + μ – β – 2g1 ≥ 0.165.
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Figure 5 Simulation using E–M scheme of system (2.18) and displaying the average and three
randomly-selected sample paths

Table 6 Parameters for the simulation of the system (3.3)

f (t) f f

β(t) = 0.3 + 0.1 sin(4t) 0.2 0.4
γ (t) = 0.8 + 0.04 cos(7t) 0.76 0.84
ξ (t) = 1 + t

1+t 1 2
ϕi(t) = 0.01 + 0.005 cos(t), i = 1, 2 0.005 0.015
ϕ3(t) = 1 + 0.5 sin(15t) 0.5 1.5
σ1(t) = 0.5 + 0.01 cos(7t) 0.49 0.51
σ2(t) = 0.4 + 0.01 sin(7t) 0.39 0.41
h1(u) = 0.01 – –
h2(u) = 0.025 – –
g1(u) = 0.1 – –
g2(u) = 0.12 – –

Simulation 4.5 We assume that the system (3.3) in Example 3.3(a) has initial values
(X0, Y0, Z0) = (0.8, 0.19, 0.01) and set the parameters as in Table 6.

In Fig. 6, it is illustrated that the extinction of the disease occurs at an exponential rate.
In accordance with Example 3.3(a), the disease will get extinct with an exponential rate

–α ≥ γ – β – 2g1 ≥ 0.16.

Simulation 4.6 We assume that the system (3.4) in Example 3.3(b) has initial values
(X0, Y0, Z0) = (0.85, 0.1, 0.05) and set the parameters as in Table 7.

We achieve results which illustrate the persistence of the disease, as is displayed in Fig. 7.
Furthermore, we have λ0 = 0.55, λ = 0.21, and

lim inf
t→∞

1
t

∫ t

0
Ysds ≥ 0.21

0.55
≥ 0.38.

5 Conclusion
In this paper, we have proposed and investigated the USSIR model given by the system
(1.3). We have presented two forms of the novel model – one for population numbers and
the other for population proportions. For both forms of the model, we have given results
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Figure 6 Simulation using E–M scheme of system (3.3) and displaying the average and three
randomly-selected sample paths

Table 7 Parameters for the simulation of the system (3.4)

f (t) f f

β(t) = 0.17 + 0.01 cos(20t) 0.16 0.18
γ1(t) = 0.12 + 0.01 cos(t) 0.11 0.13
γ2(t) = 0.56 + 0.01 sin(t) 0.55 0.57
σ1(t) = σ2(t) = σ3(t) = 0.141 + 0.02(sin(t) + cos(t)) 0.141 – 0.02

√
2 0.141 + 0.02

√
2

h1(u) = 0.019 – –
h2(u) = 0.018 – –
h3(u) = 0.018 – –
g1(u) = 0.11 – –
g2(u) = 0.01 – –
g3(u) = 0.01 – –

Figure 7 Simulation using E–M scheme of system (3.4) and displaying the average and three
randomly-selected sample paths

on the extinction and persistence of diseases; moreover, we have shown that these results
still hold with time-dependent, nonlinear parameters, and multiple Lévy noise sources.
Notably, we have given examples and simulations that agree with the theoretical results
and illustrate the impact that noise has on a given SIR model system. Moreover, the abil-
ity to allow time-dependency and multiple noises coincides with real world occurrences
of infectious disease spread due to environmental noises or time-dependent events such
as temperature, climates, seasons, and so forth. Our examples are intended to have real-
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world relevance; however, we do surmise that the inclusion of artificiality in the examples
illustrates the flexibility of our model.

There is much work to follow this introduction to the USSIR model. An initial follow-up
problem is parameter estimation of the USSIR model including the presence of periodic
parameters. Additionally, given the measurement of real-world data is distorted by noise
and may contain unknowns, it is important to consider the USSIR model with filtering to
overcome these difficulties and inaccuracies. Both of these problems will be considered
in a future work with applications to real-world data. Additionally, the methods utilized
here certainly would be applicable to models of dimension larger than 3, which may be
explored in a further work.
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