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Abstract
The abnormal aggregation of proteins into amyloid fibrils, usually implemented by a
series of biochemical reactions, is associated with various neurodegenerative
disorders. Considering the intrinsic stochasticity in the involving biochemical
reactions, a general chemical master equation model for describing the process from
oligomer production to fibril formation is established, and then the lower-order
statistical moments of different molecule species are captured by the derivative
matching closed system, and the long-time accuracy is verified using the Gillespie
algorithm. It is revealed that the aggregation of monomers into oligomers is highly
dependent on the initial number of misfolded monomers; the formation of oligomers
can be effectively inhibited by reducing the misfolding rate, the primary nucleation
rate, elongation rate, and secondary nucleation rate; as the conversion rate decreases,
the number of oligomers increases over a long time scale. In particular, sensitivity
analysis shows that the quantities of oligomers are more sensitive to monomer
production and protein misfolding; the secondary nucleation is more important than
the primary nucleation in oligomer formation. These findings are helpful for
understanding and predicting the dynamic mechanism of amyloid aggregation from
the viewpoint of quantitative analysis.

Keywords: Amyloid aggregation; Primary nucleation; Secondary nucleation;
Derivative matching moment closure; Sensitivity analysis

1 Introduction
Spontaneous protein aggregation is referred to as a complex phenomenon in which the
soluble protein monomers or protein fragments aggregate by self-association into insol-
uble amyloid fibrils through a series of intermediate species, such as oligomers in living
systems. The normal aggregation of proteins is useful for many biological or biotechno-
logical functions, such as the polymerization of actin [1], the structural strength of spider
silk [2], and the storage of peptide hormone hormones within secretory cells [3], while the
abnormal aggregation can be associated with various neurodegenerative disorders [4], in-
cluding Alzheimer’s, Parkinson’s, Huntington’s, type II diabetes, and prion disease. Clearly,
an overall understanding of the formation mechanism of the amyloid fibrils is vital for con-
trolling or inhibiting the toxicity of the amyloid oligomers.
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Increasing experimental and theoretical investigations reveal that the process of pro-
tein aggregation actually is a nucleation-dependent multi-stage polymerization mecha-
nism [5–7], including nucleation, conversion and elongation, and is generally considered
a type of crystallization [8, 9]. In the nucleation stage, the unstructured aggregates are
stochastically generated from the protein monomers by a kind of self-association action. In
the conversion stage, the unstructured oligomers are converted into short fibrillar aggre-
gates. While in the stage of elongation, these fibrillar species undergo a rapid extension by
monomer addition. After the fibrillar species was elongated, the freely moving monomers
in solution can be adsorbed onto the fibril surface and then detach as oligomers, and
this auto-catalytic process is the so-called monomer-dependent secondary nucleation. In
fact, the earliest secondary nucleation in the formation of protein filaments was identi-
fied in mutant hemoglobin Hbs [10, 11]. It was later found in many other proteins such
as amyloid-β peptide [7, 12], α-synuclein [13], and in the recent decade, the secondary
nucleation of monomers on the fibril surface has been recognized as the main mecha-
nism giving rise to the rapid generation of new aggregates [6, 14, 15]. Thus, the amyloid
aggregation with secondary nucleation is like a positive feedback process.

Mathematical models, as bridges between macroscopic measurements and microscopic
mechanisms [5–7] are useful in shedding light on the underlying mechanism for amyloid
aggregation, which should be the first step to control and cure neurodegenerative disor-
ders. For example, it is well known that the primary nucleation model proposed by Oosawa
et al. for describing actin polymerization acts as the basis of the amyloid fibrillary nucle-
ation mechanism [16], a coarse-grained coupled kinetic equation proposed by Knowles et
al. revealed that the dynamics of amyloid growth is dominated by secondary rather than
primary nucleation events [17]. The nucleation-conversion-elongation self-assembly re-
action model proposed by Garcia et al. generalized the classical theory of nucleated poly-
merization by introducing a cascade of metastable intermediate species [18]. In a very
recent study, a general chemical kinetic framework for amyloid oligomers developed by
Dear et al. is the first systematic study of the oligomerization mechanisms of different types
of amyloid proteins [19]. These achievements elucidate the aggregation mechanism to a
certain extent. Nevertheless, most kinetic investigations for protein oligomers are based
on deterministic mean-filed models.

Note that there are clear sources of stochasticity in amyloid aggregation. Amyloid ag-
gregation is implemented through a series of biochemical reactions; some reactions are
complex, while some are still to be uncovered, so these unknown reactions are the first
source of uncertainty. The biochemical reactions involved usually occur in small-volume
environments. The intrinsic molecular noise, which tends to make the inherent variabil-
ity of the aggregation process prominent [11, 20–22], is the second source. Meanwhile,
note that the chemical master equation is appropriate for describing the time evolution of
a well-stirred chemically reacting system [23, 24], and its low-order statistical moments
can be captured with the derivative matching moment closure [25, 26]. Thus, in this pa-
per, we develop a unified probabilistic description of the chemical master equation for the
relative process of protein self-assembly. Then, we apply the derivative matching moment
closure method to disclose the factors that most impact the amyloid aggregation from the
statistical average.

The paper is structured as follows: In Sect. 2, the chemical master equation for the amy-
loid aggregation process from misfolded monomers to toxic oligomers to fibrils is devel-
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Figure 1 A schematic representation of the microscopic processes describing oligomer kinetics in amyloid
aggregation reactions

oped, and the resultant closed moment system is deduced. In Sect. 3, the accuracy of the
moment closure method to the stochastic model is examined by means of stochastic sim-
ulation results. Particularly, the effects of the various aggregation rate parameters on the
population of oligomers during nucleation are systematically studied, and the significance
of the relevant parameters is analyzed. Finally, some concluding remarks are drawn in
Sect. 4.

2 Model and method
2.1 Chemical master equation for protein amyloid aggregation
Biophysical experiments show that the subtle process of amyloid aggregation, which is
usually implemented through a series of chemical reactions, can be divided into several
stages, including primary nucleation, conversion from oligomer to fibril, fibril elongation,
fragmentation, and secondary nucleation [11, 14, 27, 28]. The primary nucleation is the
start of the aggregation, with the rate of formation of new aggregates dependent solely
on the concentrations of monomers, while the secondary nucleation occurs at a rate de-
pendent on the surface-catalyzed fibrils. That is, one or more monomers interact with
the existing fibrils to generate new oligomers. Note that a long fibril can also break into
shorter fibrils at any location along their length to yield new aggregates, independently
of monomer concentration. Nevertheless, compared with the monomer-dependent sec-
ondary nucleation, the monomer-independent fibril fragmentation is negligible since it
is not the main mechanism leading to the rapid formation of new aggregates. Based on
these considerations, we aim to develop a chemical master equation to describe the ag-
gregation process (Fig. 1), including slow primary nucleation, single-step conversion, fast
elongation, and secondary nucleation stages in this subsection.

Note that the combined effect of these above different microscopic steps can be de-
scribed by the master equation of the key experimental observable. In particular, increas-
ing evidence suggests oligomers, the aggregation intermediate species, are correlated with
cellular toxicity in various forms of amyloidogenesis [29] and neuronal death [30, 31], and
thus, the intermediate species of oligomers should be incorporated. For simplicity, the
evolution of the intermediate species of size not larger than n1 is only considered, while
the oligomer of the average size at conversion is used to denote the species of the maximal
size. Here, we adopt the phase-structure method [32, 33] to distinguish between oligomers
and fibrils. Compared with transient populations of oligomers, it is easier to obtain the av-
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erage populations from experiments [34], and thus, this kind of treatment is appropriate.
In fact, the same technique has been used in the fibril stage.

In order to derive the mathematical model, we still need to make the following assump-
tions:

(1) The monomer undergoes a conformational change to form a misfolded monomer
with a misfolding rate K+

0 , and then two misfolded monomers form the minimum stable
aggregate (i.e., dimer) as a critical nucleus [24, 35];

(2) Oligomers polymerize into larger intermediate species by adding monomers while
dissociating into smaller intermediate species by subtracting monomers; the fibril elon-
gation also occurs through monomer addition. Meanwhile, oligomer and fibril states are
modeled as average stages O and P2, respectively [32, 33];

(3) Oligomers are heterogeneous aggregates of different sizes that are structurally dis-
tinct from mature fibrils. It involves a conversion step from oligomers into short fibrillar
species capable of further growth, which is assumed to be carried out by adding monomers
to oligomers in reaction order nc [7, 19, 36];

(4) The secondary nucleation is also assumed to be a one-step nucleation process [12].
Note that the size of oligomers detached from the fibril surface is smaller than the aver-
age size Oα of the converting oligomers, so we assume the oligomers generated from the
secondary nucleation are dimer [7];

(5) Reverse conversion of fibrils to oligomers is neglected as it is experimentally found
that fibrils are far more stable than non-fibrillar oligomers [19].

Note that the concentration of monomers produced in vivo cannot grow unbounded.
A saturated production function kp = f (NM0 )NM0 = δNM0 (1 – NM0

γ
) can be introduced to

represent its production process [33], where f (NM0 ) = δ(1 – NM0
γ

) is the corrected increase
rate in the logistic equation, with δ being the growth rate of monomers and γ the carry-
ing capacity. To keep up with the transthyretin oligomers [26], the average oligomer size
Oα = 6 is assumed, while following Ref. [37] the average fibril size is chosen as Pα = 10
in the subsequent simulation. Let M0, M1, M2, M3, and M4 denote monomers, misfolded
monomers, dimers, triamers, and tetramers, respectively. Let O be the oligomers of aver-
age size Oα , P1 be the converted oligomers (also known as fibrillar oligomers or fibrils),
and P2 be the fibrils of average size Pα . Suppose n1 = 4 and nc = 2, then the resultant bio-
chemical reactions can be summarized, as shown in Table 1.

With N(t) = (NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 ) denoting the number of M0, M1,
M2, M3, M4, O, P1, P2 at time t and the 8 × 14 stoichiometric matrix

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

–1 0 0 0 0 1 0 0 0 0 0 0 0
1 –2 –1 –1 –(Oa – 4) –1 2 1 1 Oa – 4 –2 –(Pa – Oa – 2) –2
0 1 –1 0 0 0 –1 1 0 0 0 0 1
0 0 1 –1 0 0 0 –1 1 0 0 0 0
0 0 0 1 –1 0 0 0 –1 1 0 0 0
0 0 0 0 1 0 0 0 0 –1 –1 0 0
0 0 0 0 0 0 0 0 0 0 1 –1 0
0 0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

in mind, where each row belongs to a reaction and each column involves a substance, then
the chemical master equation [38] can be given as follows:

d
dt

P(NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 , t)
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Table 1 Kinetics of protein aggregation

Reaction Propensity function Description

∅ → M0 kp Monomer production

M0 → M1 K+0 M0 Misfolding

M1 +M1 →M2 K+1 M
2
1 Primary nucleation

M1 +M2 →M3 K+2 M1M2 Oligomer formation
M1 +M3 →M4 K+3 M1M3

(Oa – 4)M1 +M4 → O K+4 M
Oa–4
1 M4

M1 → M0 K–0M1 Refolding

M2 → M1 +M1 K–1M2 Disassociation
M3 → M1 +M2 K–2M3

M4 → M1 +M3 K–3M4

O → (Oa – 4)M1 +M4 K–4O

2M1 + O → P1 KcM2
1O Oligomer conversion

(Pa – Oa – 2)M1 + P1 → P2 K+M
Pa–Oa–2
1 P1 Elongation

2M1 + P2 →M2 + P2 KseM2
1P2 Secondary nucleation

= kpP(NM0 – 1, NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 , t)

+ K+
0

(
NM0 + 1

)
P

(
NM0 + 1, NM1 – 1, NM2 , NM3 , NM4 , NO, NP1 , NP2 , t

)

+ K+
1
(
NM1 + 2

)2P
(
NM0 , NM1 + 2, NM2 – 1, NM3 , NM4 , NO, NP1 , NP2 , t

)

+ K+
2

(
NM1 + 1

) (
NM2 + 1

)
P

(
NM0 , NM1 + 1, NM2 + 1, NM3 – 1, NM4 , NO, NP1 , NP2 , t

)

+ K+
3

(
NM1 + 1

) (
NM3 + 1

)
P

(
NM0 , NM1 + 1, NM2 , NM3 + 1, NM4 – 1, NO, NP1 , NP2 , t

)

+ K+
4
(
NM1 + Oa – 4

)Oa–4 (
NM4 + 1

)
P(NM0 , NM1 + Oa – 4, NM2 , NM3 , NM4 + 1,

NO – 1, NP1 , NP2 , t)

+ K–
0

(
NM1 + 1

)
P

(
NM0 – 1, NM1 + 1, NM2 , NM3 , NM4 , NO, NP1 , NP2 , t

)

+ K–
1

(
NM2 + 1

)
P

(
NM0 , NM1 – 2, NM2 + 1, NM3 , NM4 , NO, NP1 , NP2 , t

)

+ K–
2

(
NM3 + 1

)
P

(
NM0 , NM1 – 1, NM2 – 1, NM3 + 1, NM4 , NO, NP1 , NP2 , t

)

+ K–
3

(
NM4 + 1

)
P

(
NM0 , NM1 – 1, NM2 , NM3 – 1, NM4 + 1, NO, NP1 , NP2 , t

)

+ K–
4 (NO + 1)P

(
NM0 , NM1 – Oa + 4, NM2 , NM3 , NM4 – 1, NO + 1, NP1 , NP2 , t

)

+ Kc
(
NM1 + 2

)2
(NO + 1)P

(
NM0 , NM1 + 2, NM2 , NM3 , NM4 , NO + 1, NP1 – 1, NP2 , t

)

+ K+
(
NM1 + Pa – Oa – 2

)Pa–Oa–2 (
NP1 + 1

)
P(NM0 , NM1 + Pa – Oa – 2, NM2 ,

NM3 , NM4 , NO, NP1 + 1, NP2 – 1, t)

+ Kse
(
NM1 + 2

)2NP2 P
(
NM0 , NM1 + 2, NM2 – 1, NM3 , NM4 , NO, NP1 , NP2 , t)

– (kp + K+
0 NM0 + K+

1 N2
M1 + K+

2 NM1 NM2 + K+
3 NM1 NM3 + K+

4 NOa–4
M1

NM4

+ K–
0 NM1 + K–

1 NM2 + K–
2 NM3 + K–

3 NM4 + K–
4 NO + KcN2

M1 NO + K+NPa–Oa–2
M1

NP1

+ KseNM1
2NP2 )P

(
NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 , t

)
, (1)

where P(NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 , t) is the joint probability distribution of
species at the state vector (NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 ) at time t. We remark
that Eq. (1) is a probabilistic description of the formation process of protein aggregation,
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which contains more statistical information than the associated deterministic models in
the mean-field sense [7, 33]. What is more, different from the stochastic master equation
model constructed in Ref. [26], where only a primary nucleation process with intermediate
oligomers was considered, the above model (1) covers the whole aggregation process from
soluble protein monomers to insoluble fibrils.

2.2 The moment system and the derivative matching moment closure
Note that (1) is a chemical master equation of nonlinear reaction rates. For this type of
equation, the analytical solution can usually not be acquired. The Gillespie stochastic sim-
ulation algorithm (SSA) [38, 39] can obtain the random solution, but it takes quite a long
time to capture statistical moments. Instead, the method of moment evolutionary equa-
tions is the first and foremost technique in this regard.

For simplicity, we rewrite (1) into

dP(N , t)
dt

=
14∑

r=1

P(N – Sr , t)ωr(N – Sr) –
14∑

r=1

P(N , t)ωr(N), (2)

where Sr is the row vector of the stoichiometric matrix, and ωr(N) is the propensity func-
tion for the rth chemical reaction governed by mass action kinetics [38]

ωr(N) = KNs1
M0

Ns2
M2

. . . Ns8
P2

(3)

with K being the reaction constant. Multiplying the both sides of (2) by eN� and summing
over all possible values of N , we arrive at

d
dt

∑
N

P(N , t)eN�

=
∑

N

eN�

14∑
r=1

P(N – Sr , t)ωr(N – Sr) –
∑

N

eN�

14∑
r=1

P(N , t)ωr(N). (4)

Then, note that the first term in the right-hand side of (4) is equal to

∑
N

eN�

14∑
r=1

P(N – Sr , t)ωr(N – Sr) =
14∑

r=1

∑
N

e(N–Sr)�P(N , t) ωr(N).

Thus, (4) can be reduced to

d
dt

∑
N

eN�P(N , t) =
14∑

r=1

[
(e�Sr – 1)

∑
N

eN�P(N , t)ωr(N)

]
. (5)

Note that the moment generating function is M(�, t) =
∑
N

eN�P(N , t) =
14∑

m=0
μm

�m

m! with

μm =
〈
Nm〉

=
〈
NM0

m1 NM1
m2 · · ·NP2

m8
〉

=
∑

N

NmP(N , t)
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being the moment of order
∑8

i=1 mi. Here, �m = θ
m1
1 θ

m2
2 · · · θm8

8 , m = [m1 m2 ... m8] ∈ Z8≥0,
and Z8≥0 stands for the eight-dimensional space of nonnegative integers. By extracting the
coefficients for θ1, θ2, . . . , θ8 from the both sides of (5), we acquire the moment evolutionary
equations of general form as

∂μm

∂t
=

14∑
r=1

[
∑

i

ωr,i

14∑
r=1

Sk
r

(
m
k

)
μi+m–k] –

∑
i

14∑
r=1

ωr,iμi+m. (6)

Since the higher-order moments are involved in the evolution of the low-order moments,
the moment system (6) is not self-closed. In order to close this system, various moment
closure techniques [40, 41] have been proposed to approximate the higher-order moments
by the lower-order ones. The derivative matching moment closure [25] is such a scheme
that does not rely on the prior distribution but can lead to exact moment dynamics in
many cases [26, 42].

The evolution of the first two order statistical moments of the relevant oligomers is of
general interest. That is, the low-order moment system consists of 2C1

8 +C2
8 = 44 equations

(see Appendix A), corresponding to the moment equations (6) for 1 ≤ ∑8
i=1 mi ≤ 2. Let μ

be the vector consisting of all the moments up to the second order and μ̄ be the vector of
moments of order greater than two, then (6) can be rewritten as

dμ

dt
= a + Aμ + Bμ̄, (7)

where μ = [μ(1,0),μ(0,1),μ(2,0),μ(1,1),μ(0,2)]T , a is state-independent vector, A and B are
state-independent matrices. The so-called moment closure is to approximate the higher
order moments in μ̄ by functions of the lower order moments. That is, one needs to choose
a vector-valued function φ̄ such that the original moment system can be approximated by

dν

dt
= a + Aν + Bφ̄ (ν) , (8)

where φ̄ is the so-called closure function.
The so-called derivative matching moment closure is to approximate each of the higher-

order moments with a divisible function under the requirement that the closed approxi-
mate moment system keeps the initial value and the initial rate of change of the original
unclosed moment system. The divisible function is assumed to have a general form

φm̄(μ) =
k∏

p=1

(
μmp

)αp ,

where αp(p = 1, 2, . . . , k) can be given by the unique solution to the following set of linear
equations:

(
m̄
ms

)
=

k∑
p=1

αp

(
mp

ms

)
, s = 1, . . . , k (9)
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Figure 2 The schema for the SSA flow: (a) Cumulative function used in the Gillespie algorithm; (b) Output of
the Gillespie algorithm

with

(
h
l

)
=

{
h!

l!(h–l)! , h ≥ l;
0, h < l

and

(
h1, . . . , hs

l1, . . . , ls

)
=

(
h1

l1

)
· · ·

(
hs

ls

)
. When applying this clo-

sure scheme to our low-order moment system, the higher-order moments can be replaced
by the following functions of lower-order moments (see Appendix B).

2.3 Gillespie stochastic simulation algorithm
In order to verify the correctness and accuracy of the derivative matching moment
method, let us use the stochastic simulation algorithm (SSA), which Gillespie proposed
under the assumptions that the system is homogeneous and well-mixed [38, 39], to di-
rectly simulate the time evolution of the master equation system (1). The idea is to simu-
late the time evolution of the system in a series of steps in the way of a random walk. At
each time step, the system is exactly in one state (i.e., the number of molecules of each
species is determined). The algorithm determines the nature of the next reaction as well
as the waiting time �t, supposing that the system is at a given state at time t. The proba-
bility for a specific reaction to occur depends on its kinetics rate, which is a function of its
corresponding kinetics constant and the number of molecules, while the waiting time is
determined by the total transition probability. When applying the SSA to our system, there
are 14 biochemical reactions involved (see Table 1 and Fig. 2), and the specific algorithm
flow is as follows:

1) Set the initial number of t = 0 for each species to

N(0) = (NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 )|t=0.

2) Calculate the transition rate ωr(N) according to (3).

3) Set the total transition rate C14(N) =
14∑

r=1
ωr(N).

4) Generate two uniform random numbers z1 and z2.

5) Find r ∈ [1, . . . , S] such that
r∑

k=1
ωk(N) > z1C14(N) >

r–1∑
k=1

ωk(N).

6) Set �t = – 1
C14(N) ln z2.

7) Set t = t + �t and update species populations based on the reaction r.
8) Return to step 2) and repeat until an end condition is met.
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3 Results and discussion
For near isothermal reactions, considering that the activation energy plays a major role in
determining the reaction rate constant, the following relation is obtained from the Arrhe-
nius equation [43]:

K+
1 < K+

2 < K+
3 < K+

4 .

That is, the oligomer formation rate increases with the increase in aggregate size. Specif-
ically, we use the relations [33]:

K+
i = K+

i–1 + ε, 2 ≤ i ≤ 4, ε = 1 × 10–3.

Note that the process for protein to assembly into amyloid fibrils is similar to that in Ref.
[19], the rate constants involved in the reactions relevant with oligomers are set as follows
(with concentration units: μM and time units: h).

K+
1 = 3.8 × 10–3, Kc = 3.3 × 10–2, K+ = 1, Kse = 2.9 × 10–2,

K–
0 = K–

1 = K–
2 = K–

3 = K–
4

�= Kd = 0.36. (10)

Here, the equilibrium constant ke = K–
1
/

K+
1 is set around 0.01, which ensures that the

oligomer is moderately more unstable than the monomer [7]. In addition, we assume that
the misfolding rate K+

0 = 0.03 is always less than refolding rate K–
0 . Throughout the calcu-

lation, δ = 5 and γ = 4000 are fixed, and the initial conditions are set as

NM0 (0) = 2000, NM1 (0) = NM2 (0) = NM3 (0) = NM4 (0) = NO(0) = NP1 (0) = NP2 (0) = 0.

Considering the biologically significant parameters in modeling the aggregation process
may have very different order of magnitude ranges [33], we emphasize that the values
used in the numerical simulations are only for illustrative purposes and may not accurately
reflect the rate constants for specific protein (such as transthyretin) amyloid aggregation.
In this paper, these parameters are chosen to satisfy the bounds of biological rationality
[7, 19, 33]. In the diagram below, we use M̄0, M̄1, M̄2, M̄3, M̄4, Ō, P̄1, P̄2 to represent the
average of NM0 , NM1 , NM2 , NM3 , NM4 , NO, NP1 , NP2 .

Figure 3 shows the mean we obtain for the various reaction species. It can be seen that
the results obtained from the derivative matching moment method are consistent with
those obtained from the SSA. This means that the moment method accurately captures the
time evolution of the lower-order statistical moments. Therefore, we will analyze different
amyloid aggregation processes using derivative matching moment closure schemes.

3.1 Fibril-independent oligomers formation
Let Kc = K+ = Kse = 0 as in Table 1, then the amyloid aggregation process is reduced to the
process of early amyloid aggregation, where only the primary oligomer formation with
monomer addition and subtraction is involved.

Figure 4 shows the statistically quantitative evolution of the monomer, the misfolded
monomer, the dimer, the triamer, the tetramer, the oligomer with average size 6, the
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Figure 3 The mean number of M0,M1,M2,M3,M4,O,P1,P2. Comparison of the mean by derivative matching
moment closure method (red solid curves) and SSA (black dots). The initial values are set as
NM0 (0) = 2000, NM1 (0) = NM2 (0) = NM3 (0) = NM4 (0) = NO(0) = NP1 (0) = NP2 (0) = 0, and the parameters are
Oα = 6,Pα = 10,δ = 5,γ = 4000,K+0 = 0.03,K+1 = 3.8×10–3,K+i = K+i–1 +ε(2≤ i ≤ 4),ε = 1×10–3,Kc = 3.3×10–2,
K+ = 1, Kse = 2.9× 10–2, Kd = 0.36. The results obtained by SSA are based on 10000 realizations

converted oligomer, and the fibril. When δ = 0, that is kp = δNM0 (1 – NM0
γ

) = 0, which
means there is no monomer production in vitro experiment. When δ �= 0, that is kp =
δNM0 (1 – NM0

γ
) �= 0, which means there is production of monomers in vivo experiments.

From this figure, it is clear that increasing the number of monomers would greatly in-
crease the number of oligomers and thus accelerate the nucleation process in both cases.
Moreover, it is also clear that the aggregation process is highly dependent on the initial
number of monomers, and the more monomers there are at the initial time, the more
oligomers there will be. This observation is consistent with the discovery disclosed by
previous experimental and theoretical research [15, 26]. Note that the production of big
molecular proteins varies from person to person, and thus the individual level of amino
acid monomers fluctuates. Hence, the observation from Fig. 4 again can help explain why
some people are more apt to suffer from amyloid disease to some extent.

Figure 5 shows the effect of the misfolding rate K+
0 on the average number of the

monomer, the misfolded monomer, the dimer, the triamer, the tetramer, the oligomer,
the converted oligomer, and the fibril. It is clear that as the misfolding rate increases, the
number of all types of oligomers (Fig. 5(c)–(f )) increases at a given time, while it takes less
time for these oligomers to reach a given level. Reversely, reducing the misfolding rate can
help slow or inhibit the formation of protein aggregation. Note that the model (1) covers
the description of the early protein aggregation in transthyroxin amyloid disease [26], de-
creasing the misfolding rate for the protein monomers should be of general importance for
preventing amyloid disease. In fact, strategies to stabilize the folded state and avoid pro-
tein misfolding are now increasingly widely utilized in the clinic to treat familial amyloid
polyneuropathy [44].

Figure 6 shows the effect of the primary nucleation rate K+
1 on the average number of

the monomer, the misfolded monomer, the dimer, the triamer, the tetramer, the oligomer,
the converted oligomer, and the fibril. It can be seen clearly that the number of oligomers
(Fig. 6(c)–(f )) increases as the nucleation rate grows, suggesting that inhibiting the pri-
mary nucleation process can effectively slow the formation of amyloid disease. Note that
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Figure 4 The mean number of oligomersM0,M1,M2,M3,M4,O at different parameters: δ = 5,NM0 (0) = 2000
(red), δ = 0,NM0 (0) = 2000 (green) and δ = 0,NM0 (0) = 3000 (blue). The other parameters are
Oα = 6,Pα = 10,γ = 4000,K+0 = 0.03,K+1 = 3.8× 10–3,K+i = K+i–1 + ε(2 ≤ i ≤ 4),ε = 1× 10–3,Kc = K+ = Kse = 0,
Kd = 0.36

Figure 5 The mean number of oligomersM0,M1,M2,M3,M4,O at different misfolding rates: K+0 = 0.01 (blue),
0.02 (green), and 0.03 (red). The other parameters are Oα = 6,Pα = 10,δ = 0,γ = 4000,K+1 = 3.8× 10–3,
K+i = K+i–1 + ε(2 ≤ i ≤ 4),ε = 1× 10–3,Kc = K+ = Kse = 0,Kd = 0.36

in this process, the accumulation of toxic oligomers tends to play a leading role in amy-
loid disease [5, 30, 31, 34, 45], and therefore, it is necessary to reduce their formation in
the primary pathway. For example, chaperone proteins have been used to inhibit protein
aggregation in the primary nucleation process in cultured cells of mice [45].

3.2 Fibril-dependent oligomers formation
Now let us turn to the general aggregation process where Kc, K+, and Kse are all not van-
ishing. Besides the primary nucleation, the aggregation process involving fibrils, which
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Figure 6 The mean number of oligomersM0,M1,M2,M3,M4,O at different primary nucleation rates:
K+1 = 1.8× 10–3 (blue), 2.8× 10–3 (green), and 3.8× 10–3 (red). The other parameters are Oα = 6,Pα = 10,
δ = 0,γ = 4000,K+0 = 0.03,K+i = K+i–1 + ε(2 ≤ i ≤ 4),ε = 1× 10–3,Kc = K+ = Kse = 0,Kd = 0.36

contains the conversion stage of oligomers, the elongation stage of fibrils, and the fibril-
dependent secondary nucleation, is also taken into account.

Figure 7 shows the effect of the conversion rate Kc on the average number of the
monomer, the misfolded monomer, the dimer, the triamer, the tetramer, the oligomer,
the converted oligomer, and the fibril. The quantitative observation shows that in the
early stage of aggregation, with the decrease of conversion rate, the number of oligomers
(Fig. 7(c)–(d)) decreased somewhat. This corresponds to reactions in closed or open sys-
tems at an early stage, where a reduction in the conversion of oligomers slows down the
aggregation reaction, corresponding to a reduction in the number of oligomers. How-
ever, over longer time scales, this strategy resulted in a significant increase in the num-
ber of oligomers. This effect occurs because the reduction of Kc reduces the reaction flux
from monomers to amyloid fiber precursors, which can rapidly expand into mature fib-
ril(Fig. 7(g)–(h)), reflecting the complexity of the aggregation process [36]. Figure 7 also
shows that the number of converted oligomer P1 is far less than that of unconverted
oligomer O, and this is consistent with the existing experimental findings [7, 19]. Thus,
following Refs. [7, 19], this point actually reflects a basic fact: oligomers are a key source of
fibrils, but due to the high free energy and low stability of intermediate oligomers species,
most oligomers dissociate back to monomers rather than form new fibrils. As a result, it
can be concluded that there are few oligomers on the pathway to fibrils but relatively many
off-pathway oligomers.

Figure 8 shows the effect of elongation rate K+ on the average number of the monomer,
the misfolded monomer, the dimer, the triamer, the tetramers, the oligomer, the converted
oligomer, and the fibril. It can be seen that with the increase of elongation rate, the num-
bers of all the oligomers (Fig. 8(c)–(f )) increase at a given time, while it takes less time for
these oligomers to reach a given level. In other words, reducing the elongation rate can in-
hibit the formation of toxic oligomers. In fact, there have been experimental research that
used inhibitors to compete with fibril end and interact with sequence regions important
for elongation reaction to achieve effective inhibition on fibril elongation [46].
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Figure 7 The mean number of oligomersM0,M1,M2,M3,M4,O,P1,P2 at different conversion rates:
Kc = 3.3× 10–3 (blue), 8× 10–3 (green), and 3.3× 10–2 (red). The other parameters are
Oα = 6,Pα = 10,δ = 5,γ = 4000,K+0 = 0.03,K+1 = 3.8× 10–3,K+i = K+i–1 + ε(2≤ i ≤ 4),ε = 1× 10–3,K+ = 1,Kse =
2.9× 10–2,Kd = 0.36

Figure 8 The mean number of oligomersM0,M1,M2,M3,M4,O,P1,P2 at different elongation rates:
K+ = 5× 10–4 (blue), 1× 10–3 (green), and 1 (red). The other parameters are
Oα = 6,Pα = 10,δ = 5,γ = 4000,K+0 = 0.03,K+1 = 3.8×10–3,K+i = K+i–1 +ε(2≤ i ≤ 4),ε = 1×10–3,Kc = 3.3×10–2,
Kse = 2.9× 10–2,Kd = 0.36

Figure 9 shows the effect of secondary rate Kse on the average number of the monomer,
the misfolded monomer, the dimer, the triamer, the tetramers, the oligomer, the converted
oligomer, and the fibril. Again, it is observed that the number of converted oligomers is
much lower than that of the unconverted oligomers. Particularly, it is observed that the
quantitative results show that inhibition of secondary nucleation could reduce the number
of oligomers. Note that the fibril structure itself is not toxic in vivo, but it promotes the
formation of toxic oligomers by surface catalysis. It has been shown that toxicity tends
to be most relevant in aggregation reactions involving fibrils and monomers [6, 14, 47].
Moreover, it is known that a distinctive feature of various amyloid diseases is the different
patterns of spreading through adjacent tissues, but this spreading has to be explained by
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Figure 9 The mean number of oligomersM0,M1,M2,M3,M4,O,P1,P2 at different secondary nucleation rates:
Kse = 5× 10–3 (blue), 8× 10–3 (green), and 2.9× 10–2 (red). The other parameters are
Oα = 6,Pα = 10,δ = 5,γ = 4000,K+0 = 0.03,K+1 = 3.8×10–3,K+i = K+i–1 +ε(2≤ i ≤ 4),ε = 1×10–3,Kc = 3.3×10–2,
K+ = 1,Kd = 0.36

Figure 10 (a) The mean number of M2 with secondary nucleation rate Kse = 2.9× 10–2 (blue) and without
secondary nucleation Kse = 0 (red); (b) In the presence of secondary nucleation, the mean number of
oligomerM∗

2 produced by primary (green) and secondary (magenta) processes in aggregation reactions. The
other parameters are Oα = 6,Pα = 10,δ = 5,γ = 4000,K+0 = 0.03,K+1 = 3.8× 10–3,K+i = K+i–1 + ε(2 ≤ i ≤ 4),
ε = 1× 10–3,Kc = 3.3× 10–2,K+ = 1,Kd = 0.36

the mobility of oligomers derived from fibrils to a large extent [6]. Therefore, inhibition
of secondary nucleation is expected to help reduce toxicity and its spreading, and to our
knowledge, the employment of antibodies and molecular chaperone is for such a purpose,
namely to selectively inhibit the catalytic cycle of the secondary nucleation pathway [46].

3.3 Primary via secondary nucleation
Now, let us compare the differences in generation of oligomers from primary and sec-
ondary pathways. First, let us show the change in the mean of the dimer with or without
secondary processes. From Fig. 10(a), it is clear that more oligomers can be formed in the
presence of secondary nucleation than in the absence of secondary nucleation. Next, let us
compare the number of dimers produced in the primary and secondary processes. The-
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oretically, the means (μ1∗
00100000 and μ2∗

00100000) of the dimer produced in the two processes
can be derived from the following equations:

∂μ1∗
00100000
∂t

= K+
1 μ02000000,

∂μ2∗
00100000
∂t

= Kseμ02000001.

The numerical results are shown in Fig. 10(b). As shown in Fig. 10(b), in the early stage of
aggregation, the dimers formed in the secondary process are less than the dimers formed
in the primary process, but the dimer formed in the secondary process can experience
very rapid growth, and thus, the number of the dimers formed in the primary process
far falls behind. This can be explained as follows. The early stage of aggregation is dom-
inated by the monomers-dependent primary nucleation, while secondary nucleation is
fibril-dependent, but there are only monomers, and thus, the dimers generated from the
primary nucleation are more abundant in quantity in this stage. Once fibril reaches a crit-
ical concentration, the secondary nucleation will replace the primary nucleation as the
main origin of the new dimer, which causes a quick proliferation due to positive feedback
[14]. It can be predicted that the dimer produced by subsequent secondary nucleation
may be several orders of magnitude more than the dimer produced by primary nucle-
ation. This prediction is consistent with the experimental research [14, 48]. Hence, from
an overall perspective of preventing the protein amyloid disease, it is more vital to inhibit
the secondary nucleation in order to reduce the oligomers. In this sense, it should be more
effective for suppressing the production of neurotoxic oligomers by altering the secondary
nucleation pathway.

3.4 Sensitivity analysis
More than ten parameters are involved in the model (1), and thus, it is natural to ask which
parameters are most significant. Nevertheless, it is as difficult to solve this question from
the viewpoint of experiments as to determine the value of model parameters. Considering
the parameters of our model have different units and are of different orders of magnitude,
We carry on the elasticity analysis [33, 49] to examine the proportional response to the
scale change in the model parameters. Here the elasticity obtained from the proportional
response measures the sensitivities of different parameters.

For the system (1), we define the 8 × 11 elastic coefficient matrix as

CE =
dN̄
dp

p
N̄

,

where N̄ =
(
M̄0, M̄1, M̄2, M̄3, M̄4, Ō, P̄1, P̄2

)
and p = (δ,γ , K+

0 , K+
1 , K+

2 , K+
3 , K+

4 , Kd, Kc, K+, Kse).
Then, we obtain the elastic coefficient by means of finite difference as

(CE)i,j(t; p) =
∂N̄i(t; p)

dpj

pj

N̄i(t; p)
≈

(
N̄i(t; p + �pj) – N̄i(t; p)

�pj

)
pj

N̄i(t; p)

with �pj = 0.2pj. The transpose of the full elasticity coefficient matrix when t = 20 is shown
in Table 2. It is clear that the carrying capacity γ and the misfolding rate K+

0 of oligomers
M2, M3, M4 have relatively large elastic coefficient values of 1.0598, 1.0567, 1.0579, 1.0630,
1.0581, and 1.0615 respectively, which have extremely promoting effects, so both of them
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are the most sensitive parameters. Note that the elastic coefficient of the secondary nucle-
ation rate Kse with respect to the formation of dimer M2 is 0.1737, which is much higher
than that of the corresponding primary nucleation rate K+

1 of 0.0044, thus verifying that
secondary nucleation is indeed more sensitive to its generation than primary nucleation.
Similarly, it is also clear from the values of the elastic coefficients that the nucleation rates
K+

2 and K+
3 markedly promotes the production of oligomers M3 and M4, respectively, while

the conversion and elongation rates Kc and K+ only have relatively little impact, although
Kc can promote the formation of M2 but inhibit the formation of M3. As is known, there
are few experiments dedicated to exploring the detailed process as ours, including the
role of the conversion and elongation rates, and thus, the analysis presented here should
be useful in shedding more light onto the aggregation mechanism of amyloid protein.

4 Conclusions
We have built a chemical master equation model for exploring oligomer formation in
amyloid aggregation processes, including primary nucleation, structural conversion, fib-
ril elongation, and secondary nucleation. With the derivative matching closure applied to
the resultant evolutionary equations for the low-order statistical moments, a self-closed
moment system is acquired. The long-time accuracy of the low-order statistical moments
has also been verified and analyzed using the Gillespie simulation algorithm and sensitiv-
ity analysis.

Using the evolution of the low-order statistical moments, it has been revealed that the
aggregation of monomers into toxic oligomers is highly dependent on the average number
of monomers, the misfolding, the primary nucleation, and the secondary nucleation rates.
It was also found that the conversion rate is an adjustable factor affecting amyloid aggre-
gation. Particularly, when the secondary nucleation is present, the formation of oligomers
is a process of auto-catalytic cycle. There is a lag stage before the early stage, and each
species may not reach a stable state in a short time as well, but the sensitivity analysis
shows that inhibiting the secondary nucleation is more critical than inhibiting the pri-
mary nucleation, as disclosed by previous experiments [14, 49]. From here, it is natural to
infer that altering the secondary nucleation pathway should be an effective way to suppress
the production of neurotoxic oligomers.

Note that the amyloid aggregation of protein is a complex multi-step process involving
abundant factors, and thus, it is in general difficult and quite expensive to design every ex-
periment to examine all the details. Nevertheless, a good mathematical model is capable
of providing a guide towards different aspects, although it might not be that realistic. For
instance, it is not easy to control the conversion rate and the elongation rate from the ex-
perimental design, but from the presented model, it can be concluded that both rates have
relatively little impact. It should be emphasized that we model amyloid aggregation using
stochastic chemical master equations rather than the mean-field model as used in most
current literature. Specifically, we start from the probability density function, which can
provide a more accurate description of the dynamics. We anticipate the chemical master
equation model of this paper to be useful for clinical interventions and drug discovery in
the near future. We also wish the model framework in the present study could be general-
ized to a wider range of biological aggregates, including human tissues affected by protein
misfolding diseases with multiple oligomer and fibril stages.
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Appendix A: Moment equations
The moment system of the first two order moments is a system of C1

8 = 8 equations, given
by

∂μ10000000

∂t
= 〈kp〉 – K+

0 μ10000000 + K–
0 μ01000000,

∂μ01000000

∂t
= K+

0 μ10000000 – 2K+
1 μ02000000 – K+

2 μ01100000 – K+
3 μ01010000

–2Kseμ02000001 – (Oα – 4)K+
4 μ0,Oα–4,001000 – 2Kcμ02000100

– (Pα – Oα – 2)K+μ0,Pα–Oα–2,000010 – K–
0 μ01000000 + 2K–

1 μ00100000

+K–
2 μ00010000 + K–

3 μ00001000 + (Oα – 4)K–
4 μ00000100,

∂μ00100000

∂t
= K+

1 μ02000000 – K+
2 μ01100000 + Kseμ02000001 – K–

1 μ00100000

+K–
2 μ00010000,

∂μ00010000

∂t
= K+

2 μ01100000 – K+
3 μ01010000 – K–

2 μ00010000 + K–
3 μ00001000,

∂μ00001000

∂t
= K+

3 μ01010000 – K+
4 μ0,Oα–4,001000 – K–

3 μ00001000 + K–
4 μ00000100,

∂μ00000100

∂t
= K+

4 μ0,Oα–4,001000 – Kcμ02000100 – K–
4 μ00000100,

∂μ00000010

∂t
= Kcμ02000100 – K+μ0,Pα–Oα–2,000010,

∂μ00000001

∂t
= K+μ0,Pα–Oα–2,000010.

The moment system of the two order raw moments is a system of C1
8 = 8 equations,

given by

∂μ20000000

∂t
= 〈2kpNM0〉 – 2K+

0 μ20000000 + 2K–
0 μ11000000 + 〈kp〉 + K+

0 μ10000000

+K–
0 μ01000000,

∂μ02000000

∂t
= 2K+

0 μ11000000 – 4K+
1 μ03000000 – 2K+

2 μ02100000 – 2K+
3 μ02010000

–4Kseμ03000001 – 2 (Oα – 4)K+
4 μ0,Oα–3,001000 – 4Kcμ03000100

–2 (Pα – Oα – 2)K+μ0,Pα–Oα–1,000010 – 2K–
0 μ02000000 + 4K–

1 μ01100000

+2K–
2 μ01010000 + 2K–

3 μ01001000 + 2 (Oα – 4)K–
4 μ01000100 + K+

0 μ10000000

+4K+
1 μ02000000 + K+

2 μ01100000 + K+
3 μ01010000 + 4Kseμ02000001 + (Oα – 4)2

×K+
4 μ0,Oα–4,001000 + 4Kcμ02000100 + (Pα – Oα – 2)2K+μ0,Pα–Oα–2,000010

+K–
0 μ01000000 + 4K–

1 μ00100000 + K–
2 μ00010000 + K–

3 μ00001000+(Oα – 4)2

×K–
4 μ00000100,

∂μ00200000

∂t
= 2K+

1 μ02100000 – 2K+
2 μ01200000 + 2Kseμ02100001 – 2K–

1 μ00200000

+2K–
2 μ00110000 + K+

1 μ02000000 + K+
2 μ01100000 + Kseμ02000001
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+K–
1 μ00100000 + K–

2 μ00010000,
∂μ00020000

∂t
= 2K+

2 μ01110000 – 2K+
3 μ01020000 – 2K–

2 μ00020000 + 2K–
3 μ00011000

+K+
2 μ01100000 + K+

3 μ01010000+K–
2 μ00010000 + K–

3 μ00001000,
∂μ00002000

∂t
= 2K+

3 μ01011000 – 2K+
4 μ0,Oa–4,002000 – 2K–

3 μ00002000 + 2K–
4 μ00001100

+K+
3 μ01010000 + K+

4 μ0,Oa–4,001000 + K–
3 μ00001000 + K–

4 μ00000100,
∂μ00000200

∂t
= 2K+

4 μ0,Oa–4,001100 – 2Kcμ02000200 – 2K–
4 μ00000200 + K+

4 μ0,Oa–4,001000

+Kcμ02000100 + K–
4 μ00000100,

∂μ00000020

∂t
= 2Kcμ02000110 – 2K+μ0,Pα–Oα–2,000020 + Kcμ02000100

+K+μ0,Pα–Oα–2,000010,
∂μ00000002

∂t
= 2K+μ0,Pα–Oα–2,000011 + K+μ0,Pα–Oα–2,000010.

The moment system of the two order mixed raw moments is a system of C2
8 = 28 equa-

tions, given by

∂μ11000000

∂t
= 〈kpNM1〉 – K+

0 μ11000000 + K–
0 μ02000000 + K+

0 μ20000000 – K+
0 μ10000000

–2K+
1 μ12000000 – K+

2 μ11100000 – K+
3 μ11010000 – (Oα – 4)K+

4 μ1,Oα–4,001000

–2Kcμ12000100 – (Pα – Oα – 2)K+μ1,Pα–Oα–2,000010 – 2Kseμ12000001

–K–
0 μ11000000 – K–

0 μ01000000 + 2K–
1 μ10100000 + K–

2 μ10010000

+K–
3 μ10001000 + (Oα – 4)K–

4 μ10000100,
∂μ10100000

∂t
= 〈kpNM2〉 – K+

0 μ10100000 + K–
0 μ01100000 + K+

1 μ12000000 – K+
2 μ11100000

+Kseμ12000001 – K–
1 μ10100000 + K–

2 μ10010000,
∂μ10010000

∂t
= 〈kpNM3〉 – K+

0 μ10010000 + K–
0 μ01010000 + K+

2 μ11100000 – K+
3 μ11010000

–K–
2 μ10010000 + K–

3 μ10001000,
∂μ10001000

∂t
= 〈kpNM4〉 – K+

0 μ10001000 + K–
0 μ01001000 + K+

3 μ11010000

–K+
4 μ1,Oα–4,001000 – K–

3 μ10001000 + K–
4 μ10000100,

∂μ10000100

∂t
= 〈kpNO〉 – K+

0 μ10000100 + K–
0 μ01000100 + K+

4 μ1,Oα–4,001000

–Kcμ12000100 – K–
4 μ10000100,

∂μ10000010

∂t
= 〈kpNP1〉 – K+

0 μ10000010 + K–
0 μ01000010 + Kcμ12000100

–K+μ1,Pα–Oα–2,000010,
∂μ10000001

∂t
= 〈kpNP2〉 – K+

0 μ10000001 + K–
0 μ01000001 + K+μ1,Pα–Oα–2,000010,

∂μ01100000

∂t
= K+

0 μ10100000 – 2K+
1 μ02100000 – K+

2 μ01200000 – K+
3 μ01110000 – 2Kseμ02100001

– (Oα – 4)K+
4 μ0,Oα–4,101000 – 2Kcμ0,2100100 – (Pα – Oα – 2)K+
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×μ0,Pα–Oα–2,100010 – K–
0 μ01100000 + 2K–

1 μ00200000 + K–
2 μ00110000

+K–
3 μ00101000 + (Oα – 4)K–

4 μ00100100 + K+
1 μ03000000 – K+

2 μ02100000

+Kseμ03000001 – K–
1 μ01100000 + K–

2 μ01010000 – 2K+
1 μ02000000 + K+

2 μ01100000

–2Kseμ02000001 – 2K–
1 μ00100000 + K–

2 μ00010000,
∂μ01010000

∂t
= K+

0 μ10010000 – 2K+
1 μ02010000 – K+

2 μ01110000 – K+
3 μ01020000 – 2Kseμ02010001

– (Oα – 4)K+
4 μ0,Oα–4,011000 – 2Kcμ02010100 – (Pα – Oα – 2)K+

×μ0,Pα–Oα–2,0100010 – K–
0 μ01010000 + 2K–

1 μ00110000 + K–
2 μ00020000

+K–
3 μ00011000 + (Oα – 4)K–

4 μ00010100 + K+
2 μ02100000 – K+

3 μ02010000

–K–
2 μ01010000 + K–

3 μ01001000 – K+
2 μ01100000 + K+

3 μ01010000

–K–
2 μ00010000 + K–

3 μ00001000,
∂μ01001000

∂t
= K+

0 μ10001000 – 2K+
1 μ02001000 – K+

2 μ01101000 – K+
3 μ01011000

–2Kseμ02001001 – (Oα – 4)K+
4 μ0,Oα–4,002000 – 2Kcμ02001100

– (Pα – Oα – 2)K+μ0,Pα–Oα–2,001010 – K–
0 μ01001000 + 2K–

1 μ00101000

+K–
2 μ00011000 + K–

3 μ00002000 + (Oα – 4)K–
4 μ00001100 + K+

3 μ02010000

–K+
4 μ0,Oα–3,001000 – K–

3 μ01001000 + K–
4 μ01000100 – K+

3 μ01010000

+ (Oα – 4)K+
4 μ0,Oα–4,001000 – K–

3 μ00001000 + (Oα – 4)K–
4 μ00000100,

∂μ01000100

∂t
= K+

0 μ10000100 – 2K+
1 μ02000100 – K+

2 μ01100100 – K+
3 μ01010100

–2Kseμ02000101 – (Oα – 4)K+
4 μ0,Oα–4,001100 – 2Kcμ02000200

– (Pα – Oα – 2)K+μ0,Pα–Oα–2,000110 – K–
0 μ01000100 + 2K–

1 μ00100100

+K–
2 μ00010100 + K–

3 μ00001100 + (Oα – 4)K–
4 μ00000200 + K+

4 μ0,Oα–3,001000

–Kcμ03000100 – K–
4 μ01000100 – (Oα – 4)K+

4 μ0,Oα–4,001000 + 2Kcμ02000100

– (Oα – 4)K–
4 μ00000100,

∂μ01000010

∂t
= K+

0 μ10000010 – 2K+
1 μ02000010 – K+

2 μ01100010 – K+
3 μ01010010

–2Kseμ02000011 – (Oα – 4)K+
4 μ0,Oα–4,001010 – 2Kcμ02000110

– (Pα – Oα – 2)K+μ0,Pα–Oα–2,000020 – K–
0 μ01000010 + 2K–

1 μ00100010

+K–
2 μ00010010 + K–

3 μ00001010 + (Oα – 4)K–
4 μ00000110 + Kcμ03000100

–K+μ0,Pα–Oα–1,000010 – 2Kcμ02000100 + (Pα – Oα – 2)K+

×μ0,Pα–Oα–2,000010,
∂μ01000001

∂t
= K+

0 μ100000001 – 2K+
1 μ02000001 – K+

2 μ01100001 – K+
3 μ01010001

–2Kseμ02000002 – (Oα – 4)K+
4 μ0,Oα–4,001001 – 2Kcμ02000101

– (Pα – Oα – 2)K+μ0,Pα–Oα–2,000011 – K–
0 μ01000001 + 2K–

1 μ00100001
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+K–
2 μ00010001 + K–

3 μ00001001 + (Oα – 4)K–
4 μ00000101

+K+μ0,Pα–Oα–1,000010 – (Pα – Oα – 2)K+μ0,Pα–Oα–2,000010,
∂μ00110000

∂t
= K+

1 μ02010000 – K+
2 μ01110000 + Kseμ02010001 – K–

1 μ00110000 + K–
2 μ00020000

+K+
2 μ01200000 – K+

3 μ01110000 – K–
2 μ00110000 + K–

3 μ00101000

–K+
2 μ01100000 – K–

2 μ00010000,
∂μ00101000

∂t
= K+

1 μ02001000 – K+
2 μ01101000 + Kseμ02001001 – K–

1 μ00101000 + K–
2 μ00011000

+K+
3 μ01110000 – K+

4 μ0,Oα–4,101000 – K–
3 μ00101000 + K–

4 μ00100100,
∂μ00100100

∂t
= K+

1 μ02000100 – K+
2 μ01100100 + Kseμ02000101 – K–

1 μ00100100 + K–
2 μ00010100

+K+
4 μ0,Oα–4,101000 – Kcμ02100100 – K–

4 μ00100100,
∂μ00100010

∂t
= K+

1 μ02000010 – K+
2 μ01100010 + Kseμ02000011 – K–

1 μ00100010 + K–
2 μ00010010

+Kcμ02100100 – K+μ0,Pα–Oα–2,100010,
∂μ00100001

∂t
= K+

1 μ02000001 – K+
2 μ01100001 + Kseμ02000002 – K–

1 μ00100001 + K–
2 μ00010001

+K+μ0,Pα–Oα–2,100010,
∂μ00011000

∂t
= K+

2 μ01101000 – K+
3 μ01011000 – K–

2 μ00011000 + K–
3 μ00002000 + K+

3 μ0102000

–K+
4 μ0,Oα–4,011000 – K–

3 μ00011000 + K–
4 μ00010100 – K+

3 μ01010000

–K–
3 μ00001000,

∂μ00010100

∂t
= K+

2 μ01100100 – K+
3 μ01010100 – K–

2 μ00010100 + K–
3 μ00001100

+K+
4 μ0,Oα–4,011000 – Kcμ02010100 – K–

4 μ00010100,
∂μ00010010

∂t
= K+

2 μ01100010 – K+
3 μ01010010 – K–

2 μ00010010 + K–
3 μ00001010 + Kcμ02010100

–K+μ0,Pα–Oα–2,010010,
∂μ00010001

∂t
= K+

2 μ01100001 – K+
3 μ01010001 – K–

2 μ00010001 + K–
3 μ00001001

+K+μ0,Pα–Oα–2,010010,
∂μ00001100

∂t
= K+

3 μ01010100 – K+
4 μ0,Oα–4,001100 – K–

3 μ00001100 + K–
4 μ00000200

+K+
4 μ0,Oα–4,002000 – Kcμ02001100 – K–

4 μ00001100 – K+
4 μ0,Oα–4,001000

–K–
4 μ00000100,

∂μ00001010

∂t
= K+

3 μ01010010 – K+
4 μ0,Oα–4,001010 – K–

3 μ00001010 + K–
4 μ00000110

+Kcμ02001100 – K+μ0,Pα–Oα–2,001010,
∂μ00001001

∂t
= K+

3 μ01010001 – K+
4 μ0,Oα–4,001001 – K–

3 μ00001001 + K–
4 μ00000101

+K+μ0,Pα–Oα–2,001010,
∂μ00000110

∂t
= K+

4 μ0,Oα–4,001010 – Kcμ02000110 – K–
4 μ00000110 + Kcμ02000200
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–K+μ0,Pα–Oα–2,000110 – Kcμ02000100,
∂μ00000101

∂t
= K+

4 μ0,Oα–4,001001 – Kcμ02000101 – K–
4 μ00000101 + K+μ0,Pα–Oα–2,000110,

∂μ00000011

∂t
= Kcμ02000101 – K+μ0,Pα–Oα–2,000011 + K+μ0,Pα–Oα–2,000020

–K+μ0,Pα–Oα–2,000010.

Appendix B: The moment closed functions

μ30000000 =
μ3

20000000

μ3
10000000

,μ03000000 =
μ3

02000000

μ3
01000000

,μ11100000 =
μ11000000μ10100000μ01100000

μ10000000μ01000000μ00100000
,

μ11010000 =
μ11000000μ10010000μ01010000

μ10000000μ01000000μ00010000
,μ01110000 =

μ01100000μ01010000μ00110000

μ01000000μ00100000μ00010000
,

μ01101000 =
μ01100000μ01001000μ00101000

μ01000000μ00100000μ00001000
,μ01100100 =

μ01100000μ01000100μ00100100

μ01000000μ00100000μ00000100
,

μ01100010 =
μ01100000μ01000010μ00100010

μ01000000μ00100000μ00000010
,μ01100001 =

μ01100000μ01000001μ00100001

μ01000000μ00100000μ00000001
,

μ01011000 =
μ01010000μ01001000μ00011000

μ01000000μ00010000μ00001000
,μ01010100 =

μ01010000μ01000100μ00010100

μ01000000μ00010000μ00000100
,

μ01010010 =
μ01010000μ01000010μ00010010

μ01000000μ00010000μ00000010
,μ01010001 =

μ01010000μ01000001μ00010001

μ01000000μ00010000μ00000001
,

μ12000000 =
μ02000000μ

2
11000000

μ10000000μ
2
01000000

,μ01200000 =
μ00200000μ

2
01100000

μ01000000μ
2
00100000

,

μ01020000 =
μ00020000μ

2
01010000

μ01000000μ
2
00010000

,μ02100000 =
μ02000000μ

2
01100000

μ00100000μ
2
01000000

,

μ02010000 =
μ02000000μ

2
01010000

μ00010000μ
2
01000000

,μ02001000 =
μ02000000μ

2
01001000

μ00001000μ
2
01000000

,

μ02000100 =
μ02000000μ

2
01000100

μ00000100μ
2
01000000

,μ02000010 =
μ02000000μ

2
01000010

μ00000010μ
2
01000000

,

μ02000001 =
μ02000000μ

2
01000001

μ00000001μ
2
01000000

,μ21000000 =
μ20000000μ

2
11000000

μ01000000μ
2
10000000

,

μ20100000 =
μ20000000μ

2
10100000

μ00100000μ
2
10000000

,μ20010000 =
μ20000000μ

2
10010000

μ00010000μ
2
10000000

,

μ20001000 =
μ20000000μ

2
10001000

μ00001000μ
2
10000000

,μ20000100 =
μ20000000μ

2
10000100

μ00000100μ
2
10000000

,

μ20000010 =
μ20000000μ

2
10000010

μ00000010μ
2
10000000

,μ20000001 =
μ20000000μ

2
10000001

μ00000001μ
2
10000000

,

μ12001000 =
μ02000000μ

2
11000000μ

2
01001000μ10001000

μ4
01000000μ

2
10000000μ

2
00001000

,

μ12000100 =
μ02000000μ

2
11000000μ

2
01000100μ10000100

μ4
01000000μ

2
10000000μ

2
00000100

,

μ12000010 =
μ02000000μ

2
11000000μ

2
01000010μ10000010

μ4
01000000μ

2
10000000μ

2
00000010

,
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μ12000001 =
μ02000000μ

2
11000000μ

2
01000001μ10000001

μ4
01000000μ

2
10000000μ

2
00000001

,

μ02100010 =
μ02000000μ

2
01000010μ

2
01100000μ00100010

μ4
01000000μ

2
00100000μ

2
00000010

,

μ02010010 =
μ02000000μ

2
01000010μ

2
01010000μ00010010

μ4
01000000μ

2
00010000μ

2
00000010

,

μ02001010 =
μ02000000μ

2
01000010μ

2
01001000μ00001010

μ4
01000000μ

2
00001000μ

2
00000010

,

μ02000110 =
μ02000000μ

2
01000010μ

2
01000100μ00000110

μ4
01000000μ

2
00000100μ

2
00000010

,

μ02101000 =
μ02000000μ

2
01100000μ

2
01001000μ00101000

μ4
01000000μ

2
00100000μ

2
00001000

,

μ02100100 =
μ02000000μ

2
01100000μ

2
01000100μ00100100

μ4
01000000μ

2
00100000μ

2
00000100

,

μ02011000 =
μ02000000μ

2
01010000μ

2
01001000μ00011000

μ4
01000000μ

2
00010000μ

2
00001000

,

μ02010100 =
μ02000000μ

2
01010000μ

2
01000100μ00010100

μ4
01000000μ

2
00010000μ

2
00000100

,

μ02001100 =
μ02000000μ

2
01001000μ

2
01000100μ00001100

μ4
01000000μ

2
00001000μ

2
00000100

,

μ02100001 =
μ02000000μ

2
01100000μ

2
01000001μ00100001

μ4
01000000μ

2
00100000μ

2
00000001

,

μ02010001 =
μ02000000μ

2
01010000μ

2
01000001μ00010001

μ4
01000000μ

2
00010000μ

2
00000001

,

μ02001001 =
μ02000000μ

2
01001000μ

2
01000001μ00001001

μ4
01000000μ

2
00001000μ

2
00000001

,

μ02000101 =
μ02000000μ

2
01000100μ

2
01000001μ00000101

μ4
01000000μ

2
00000100μ

2
00000001

,

μ02000011 =
μ02000000μ

2
01000010μ

2
01000001μ00000011

μ4
01000000μ

2
00000010μ

2
00000001

,μ03001000 =
μ3

02000000μ
3
01001000

μ2
00001000μ

6
01000000

,

μ03000100 =
μ3

02000000μ
3
01000100

μ2
00000100μ

6
01000000

,μ03000010 =
μ3

02000000μ
3
01000010

μ2
00000010μ

6
01000000

,

μ03000001 =
μ3

02000000μ
3
01000001

μ2
00000001μ

6
01000000

,μ02002000 =
μ02000000μ

4
01001000μ00002000

μ4
01000000μ

4
00001000

,

μ02000200 =
μ02000000μ

4
01000100μ00000200

μ4
01000000μ

4
00000100

,μ02000020 =
μ02000000μ

4
01000010μ00000020

μ4
01000000μ

4
00000010

,

μ02000002 =
μ02000000μ

4
01000001μ00000002

μ4
01000000μ

4
00000001

.
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