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Abstract
In this study, the semi-discretization technique is employed to establish a discrete
representation of a modified Leslie-Gower prey-predator system that includes a
Holling II type functional response. The dynamics of this model are then analyzed
through the application of center manifold theory and bifurcation theory. We present
comprehensive results for the local stability of the fixed points across the entire
parameter space. Additionally, we provide sufficient conditions for the occurrence of
flip bifurcation and Neimark-Sacker bifurcation. Besides, the system has experienced a
flip bifurcation to chaos controlled using the method of chaos control, viz., state
feedback method, pole placement technique, and hybrid control strategy.
Furthermore, we provide specific conditions to ensure that bifurcation and chaos can
be stabilized. Finally, numerical simulations are conducted to validate theoretical
analysis and illustrate several new complex dynamical behaviors between two
species.
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1 Introduction and preliminaries

The interactive dynamics between populations of prey and predator has been a focal point
of interest within the discipline of mathematical ecology for an extended period. In 1910,
Lotka [1] first proposed a prey-predator model similar to a chemical reaction. Volterra
[2, 3] considered the same problem in 1926. Later, Holling [4, 5] extended the model to
include density-dependent prey growth and presented various functional responses. The
Leslie-Gower model [6, 7] is also one of the prey-predator models and modified by May [8].
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In 2003, Alaoui and Okiye [9] proposed an adapted Leslie-Gower model that incorpo-
rated the Holling II functional response

⎧
⎨

⎩

dx
dt = (r1 – b1x – a1y

x+k1
)x,

dy
dt = (r2 – a2y

x+k2
)y,

(1.1)

where x and y represent the population densities of prey and predator at time t, respec-
tively, and parameters r1, b1, a1, k1, r2, a2, and k2 are positive numbers with the subse-
quent biological implications: r1 (r2) denotes the rate of increase in the prey (predator)
population, while b1 quantifies the level of competition between individuals within the
prey species. a1 (a2) denotes the maximum value that can be reached per capita reduction
rate of prey (predator), and k1 (k2) assesses the degree to which the environment offers
protection to the prey (predator) species.

Numerous researchers have conducted thorough investigations into the dynamics of the
system (1.1). To enhance readers’ comprehension, we offer a collection of relevant liter-
ature [9–14]. Alaoui and Okiye [9] focused on examining the boundedness of solutions
and the global stability of the positive fixed points within the system. Zhu and Wang [10]
obtained rigorous results regarding the existence of globally attractive positive periodic
solutions in the case where the parameters are positive and T-periodic functions. Wang
and Zhang [11] identified the necessary conditions for the presence of a slow-fast limit cy-
cle. Martínez-Jeraldo and Aguirre [12] studied the Allee effect affecting the prey species in
the Leslie-Gower predator-prey model. They identified saddle-node, homoclinic and Hopf
bifurcations around a Bogdanov-Takens point. Chakraborty et al. [13] studied a modified
Leslie-Gower model with an impulsive three-species food chain and derived the global sta-
bility and permanence of the system. Chen et al. [14] studied the Leslie-Gower predator-
prey model with feedback control and demonstrated that feedback control parameters
do not affect the overall stability of the Leslie-Gower model; instead, they solely alter the
location of the singular interior equilibrium while preserve its global stability.

To date, an increasing number of scholars have considered various comprehensive fac-
tors in biological and/or ecological systems, such as the functional response [9, 10, 15–19],
Allee effect [12], impulsive effect [13, 15], diffusive effect [20], time delay [16, 21], and oth-
ers. As is known, discrete-time models are more appropriate techniques for identifying the
evolutionary behavior of a species with nonoverlapping generations, such as annual plants
or insects that have a yearly reproductive cycle. Consequently, it is widely acknowledged
that discrete-time models exhibit more intricate dynamics compared with continuous-
time models, resulting in chaotic patterns in population interactions [22]. At the same
time, chaos control can enhance the existence of chaos or create chaos when it is benefi-
cial to the system. However, when chaos is undesirable and harmful to the system, chaos
control involves eliminating or weakening the influence of chaos. Several strategies, in-
cluding state feedback, pole placement, and hybrid control, are applied to control bifur-
cation and chaos in a discrete prey-predator model. For related work, please refer to the
papers [23–27] and the references cited therein.

In order to discretize a continuous system, many authors choose the forward or back-
ward Euler method [28]. Due to the requirement of accuracy, the forward Euler method
(or backward Euler method) requires a step size of 0 < h � 1. In reality, meeting this condi-
tion can be challenging. In other words, the accuracy requirement is often violated. Thus,
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we utilize the semi-discretization method [29–37] in this paper to avoid violating the ac-
curacy requirement and obtain the discrete version of system (1.1). For the details of the
semi-discretization method, please refer to [29, 30, 32–35].

Here, we employ identical parameters scaling as described in a previous work [15] and
take

t̄ = r1t, x̄(t) = x(t), ȳ(t) =
a2

r2
y(t), β =

b1

r1
, m =

r2a1

r1a2
, s =

r2

r1
.

Subsequently, by reassigning the parameters x̄, ȳ, and t̄ as x, y and t respectively, the system
(1.1) is transformed into

⎧
⎨

⎩

dx
dt = x(1 – βx – my

x+k1
),

dy
dt = sy(1 – y

x+k2
).

(1.2)

In order to facilitate discussion, let us assume the parameters k1 = k2 = k, which implies
that the level of protection provided by the environment to both prey and predator is
equal.

Letting

x
k

−→ x,
y
k

−→ y, βk −→ a,

system (1.2) is reduced to the subsequent form:

⎧
⎨

⎩

dx
dt = x(1 – ax – my

x+1 ),
dy
dt = sy(1 – y

x+1 ).
(1.3)

By employing the semi-discretization technique on system (1.3), it is easy to obtain the
discrete system as outlined below:

⎧
⎨

⎩

xn+1 = xne1–axn– myn
xn+1 ,

yn+1 = ynes(1– yn
xn+1 ).

(1.4)

Here, the parameters a, m and s are all positive constants with distinct biological inter-
pretations.

Now, the discrete system (1.4) can be also denoted by the following mapping:

F :

(
x
y

)

−→
(

xe1–ax– my
x+1

yes(1– y
x+1 )

)

. (1.5)

In this paper, we mainly consider bifurcation problems in addition to the stability of
map (1.5). Additionally, we observe that a chaotic set will emerge in our system; therefore,
chaos control strategies are applied to stabilize unstable orbits by introducing small per-
turbations into map (1.5). Meanwhile, we use a definition and a key lemma, as referenced
in [29, Def. 4.1, Lem. 4.2], which are mainly aimed at studying the stability and local bifur-
cation of its fixed points. Furthermore, state feedback, pole placement, and hybrid control
methods are successful in controlling chaos on the map (1.5).
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The rest of this paper is structured as follows. In Sect. 2, we formulate the conditions for
the existence and stability of fixed points of map (1.5). In Sect. 3, we select the parameter
s as the bifurcation parameter to study complex bifurcation problems at the positive fixed
point E∗. In Sect. 4, numerical simulations are conducted to validate the aforementioned
theoretical findings and reveal several new dynamical properties. In Sect. 5, the control
strategies outlined in map (1.5) are implemented to control chaos and validated through
numerical simulations. In Sect. 6, we draw several new conclusions and give some discus-
sions.

2 Existence and stability of fixed points
The stability of fixed points in map (1.5) is considered, and these fixed points satisfy the
following conditions:

x = xe1–ax– my
x+1 , y = yes(1– y

x+1 ).

Taking into consideration the biological implications of map (1.5), the analysis focuses
solely on nonnegative fixed points. Consequently, it is determined that map (1.5) exhibits
a maximum of four fixed points under various conditions: the trivial fixed point O(0, 0), the
semi-trivial fixed points A( 1

a , 0), B(0, 1), and the unique positive fixed point E∗( 1–m
a , 1–m+a

a ),
when 0 < m < 1.

For map (1.5), the Jacobian matrix at a fixed point E(x, y) is shown below

J(E) =

⎛

⎝
(1 – ax + mxy

(x+1)2 )e1–ax– my
x+1 –mx

x+1 e1–ax– my
x+1

sy2

(x+1)2 es(1– y
x+1 ) (1 – sy

x+1 )es(1– y
x+1 )

⎞

⎠ .

Hence, the characteristic polynomial of Jacobian matrix J(E) is expressed as follows:

F(λ) = λ2 + Bλ + C, where B = –Tr(J(E)), C = Det(J(E)).

Now, we present certain findings regarding the local stability of the fixed points O, A, B,
and E∗ in the subsequent theorems.

Theorem 2.1 The fixed point O = (0, 0) of map (1.5) is a source.

Theorem 2.2 The fixed point A = ( 1
a , 0) of map (1.5) is a saddle.

Theorem 2.3 The following statements about the fixed point B = (0, 1) of map (1.5) are
true.

1. When 0 < m < 1, the fixed point B(0, 1) is a saddle,
2. When m = 1, the fixed point B(0, 1) is non-hyperbolic,
3. When m > 1, the fixed point B(0, 1) is a sink.

The results of Theorems 2.1, 2.2, and 2.3 are simple, and hence the proofs are omitted
here.

Theorem 2.4 When 0 < m < 1, map (1.5) has a unique positive fixed point E∗ = ( 1–m
a ,

1–m+a
a ). Moreover, the results for the positive fixed point E∗ as shown in Table 1 below are

valid, where R1 = 2 + 2m(1–m)
(m+1)(1–m+a) and R2 = (2m–1–a)(1–m)

m(1–m+a) .
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Table 1 Properties of the positive fixed point E∗

Conditions Eigenvalues Properties

m ∈ (0, 12 ] a > 0 s < R1 |λ1,2|< 1 Sink
s = R1 λ1 = –1, |λ2|�= 1 Non-hyperbolic
s > R1 |λ1|< 1, |λ2|> 1 Saddle

m ∈ ( 12 , 1) a ∈ (0, 2m – 1) s < R2 |λ1,2|> 1 Source
s = R2 |λ1,2|= 1,λ1 = λ2 Non-hyperbolic
R2 < s < R1 |λ1,2|< 1 Sink
s = R1 λ1 = –1, |λ2|�= 1 Non-hyperbolic
s > R1 |λ1|< 1, |λ2|> 1 Saddle

a ∈ [2m – 1,+∞) s < R1 |λ1,2|< 1 Sink
s = R1 λ1 = –1, |λ2|�= 1 Non-hyperbolic
s > R1 |λ1|< 1, |λ2|> 1 Saddle

Proof For the positive fixed point E∗( 1–m
a , 1–m+a

a ), the Jacobian matrix of map (1.5) is given
by

J(E∗) =

⎛

⎝

2m(1–m)+am
1–m+a

–m(1–m)
1–m+a

s 1 – s

⎞

⎠ .

The characteristic polynomial of Jacobian matrix J(E∗) can be written as

F(λ) = λ2 + Bλ + C,

where

B = –Tr(J(E∗)) = s – 1 – m –
m(1 – m)

1 – m + a
,

C = Det(J(E∗)) = (1 – s)m +
m(1 – m)

1 – m + a
.

Notice that F(1) = s(1 – m) > 0 always holds for 0 < m < 1. Obviously,

F(–1) = 2 + 2m – s(m + 1) +
2m(1 – m)

1 – m + a
, (2.1)

F(–1) > (=, <)0 ⇐⇒ s < (=, >)2 +
2m(1 – m)

(m + 1)(1 – m + a)
�= R1,

C – 1 > (=, <)0 ⇐⇒ s < (=, >)
(2m – 1 – a)(1 – m)

m(1 – m + a)
�= R2.

(2.2)

Now, compare R1 with R2.

R1 – R2 > 0 ⇐⇒ 2 +
2m(1 – m)

(m + 1)(1 – m + a)
–

(2m – 1 – a)(1 – m)

m(1 – m + a)
> 0

⇐⇒ 2m(m + 1)(1 – m + a) + (1 + a)(1 – m) > 0.
(2.3)

Thus, R1 > R2 always holds. Then, consider the subsequent two cases.
Case I: m ∈ (0, 1

2 ].
Then, R2 < 0 < s. According to (2.2), one has C < 1; hence, the following derivations hold

true.
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1. 0 < s < R1. It follows from (2.2) that F(–1) > 0 and C < 1. According to [29, Def. 4.1
(1), Lem. 4.2 (i.1)], one can conclude that the eigenvalues satisfy |λ1,2| < 1, and hence
the fixed point E∗ is a sink.

2. s = R1. Then, from (2.2), one has that F(–1) = 0 and C �= 1. [29, Def. 4.1 (4), Lem. 4.2
(i.2)] illustrates that the eigenvalues are λ1 = –1 and λ2 �= –1, and therefore the fixed
point E∗ is non-hyperbolic.

3. s > R1. Then, according to (2.2), we know that F(–1) < 0. [29, Def. 4.1 (3), Lem. 4.2
(i.3)] indicates that the eigenvalues satisfy |λ1|< 1 and |λ2|> 1, so the fixed point E∗ is
a saddle.

Case II: m ∈ ( 1
2 , 1).

Now, we again consider the following two subcases:
I. a ∈ (0, 2m – 1);
II. a ∈ [2m – 1, +∞).
First, consider Subcase I: a ∈ (0, 2m – 1); then, R1 > R2 > 0. We divide s > 0 into the

following five cases:
1. 0 < s < R2 
⇒ F(–1) > 0, C > 1 
⇒ |λ1| > 1, |λ2| > 1 
⇒ E∗ is a source;
2. s = R2 
⇒ C = 1, –2 < B < 2 
⇒ |λ1,2| = 1, λ1 = λ2 
⇒ E∗ is non-hyperbolic (a

Neimark-Sacker bifurcatin may occur);
3. R2 < s < R1 
⇒ F(–1) > 0, C < 1 
⇒ |λ1,2| < 1 
⇒ E∗ is a sink;
4. s = R1 
⇒ B �= 2, F(–1) = 0 
⇒ λ1 = –1, λ2 �= –1 
⇒ E∗ is non-hyperbolic (a flip

bifurcation possibly occurs);
5. s > R1 
⇒ F(–1) < 0 
⇒ –1 < λ1 < 1, λ2 > 1 
⇒ E∗ is a saddle.

Next, analyze Subcase II: [2m – 1, +∞); then, one has R2 ≤ 0. The same results as in Case I:
m ∈ (0, 1

2 ] may be obtained. Therefore, the above results discussed were summarized in
Table 1. �

3 Bifurcation analysis at the positive fixed point E∗

In this section, we mainly focus on examining the local bifurcation problems of map (1.5)
at the unique positive fixed point E∗( 1–m

a , 1–m+a
a ), when 0 < m < 1.

3.1 Flip bifurcation
For the positive fixed point E∗, the following statements regarding the flip bifurcation of
map (1.5) are true.

Theorem 3.1 Assume that the parameters (a, m, s) ∈ �1 = {(a, m, s) ∈ R3
+|a > 0, s > 0, 0 <

m < 1} and let s0 = R1 = 2 + 2m(1–m)
(m+1)(1–m+a) . Let U and γ2 be defined in (3.7) and (3.8), respec-

tively. If U �= 0, map (1.5) experiences a flip bifurcation at the positive fixed point E∗ when
the parameter s passes over the critical threshold s0. If γ2 > 0 (resp. γ2 < 0), the flip bifurca-
tion is supercritical (resp. subcritical), and the flip orbits that bifurcate from E∗ are stable
(resp. unstable).

Proof Take the transformation lt = xt – 1–m
a , mt = yt – 1–m+a

a , which transfers E∗( 1–m
a , 1–m+a

a )

to the origin O(0, 0), introduce a slight disturbance s∗ to the parameter s around s0, namely,



Ruan and Li Advances in Continuous and Discrete Models         (2024) 2024:30 Page 7 of 27

s∗ = s – s0, with 0 < |s∗| � 1 and set s∗
t+1 = s∗

t = s∗; then, map (1.5) may be shown as below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lt+1 = (lt + 1–m
a )e

am(lt –mt )
alt +1–m+a –alt – 1–m

a ,

mt+1 = (mt + 1–m+a
a )e

a(s0+s∗t )(lt –mt )
alt +1–m+a – 1–m+a

a ,
s∗

t+1 = s∗
t .

(3.1)

Applying the Taylor expansion to system (3.1) at (lt , mt , s∗
t ) = (0, 0, 0) yields

⎛

⎜
⎝

lt

mt

s∗
t

⎞

⎟
⎠ −→

⎛

⎜
⎝

m(2–2m+a)
1–m+a

–m(1–m)
1–m+a 0

2 + s0 –1 – s0 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

lt

mt

s∗
t

⎞

⎟
⎠ +

⎛

⎜
⎝

g1(lt , mt , s∗
t ) + o(ρ2

1 )

g2(lt , mt , s∗
t ) + o(ρ2

1 )

0

⎞

⎟
⎠ , (3.2)

where ρ1 =
√

l2
t + m2

t + (s∗
t )2,

g1(lt , mt , s∗
t ) =a200l2

t + a110ltmt + a101lts∗
t + a020m2

t + a011mts∗
t + a002(s∗

t )2

+ a300l3
t + a210l2

t mt + a201l2
t s∗

t + a120ltm2
t + a111ltmts∗

t

+ a102lt(s∗
t )2 + a030m3

t + a021m2
t s∗

t

+ a012mt(s∗
t )2 + a003(s∗

t )3,

g2(lt , mt , s∗
t ) =b200l2

t + b110ltmt + b101lts∗
t + b020m2

t + b011mts∗
t + b002(s∗

t )2

+ b300l3
t + b210l2

t mt + b201l2
t s∗

t + b120ltm2
t + b111ltmts∗

t

+ b102lt(s∗
t )2 + b030m3

t + b021m2
t s∗

t

+ b012mt(s∗
t )2 + b003(s∗

t )3,

a200 = am
1–m+a + a(1 – m) (1–2m+a)2–2m

2(1–2m+a)2 , a110 = (1–m+a)3+a2m(1–m)(2–2m+a)
a(1–2m+a)2 ,

a101 = 0, a020 = am2(1–m)
2(1–m+a)2 , a011 = a002 = 0,

a300 = a2(1–2m+a)2–2m
2(1–2m+a)2 – a2(1 – m) (1–2m+a)3–6m(2–2m+a)

6(1–m+a)3 ,

a210 = –3a2m(8m–5a–5)
6(1–m+a)2 – m(1–m)(1–2m+a)2

6(1–m+a) + a2m(1–m)[–4m2+(13+4a)m–a2–5a–7]
3(1–m+a)3 ,

a201 = 0, a120 = a2m2

2(1–m+a)2 – m2(1 – m)[ a2(4–2m+a)(m–a)
6(1–m+a)3 – 1–2m+a

6a ],

a111 = a102 = 0, a030 = –a2m3(1–m)
6(1–m+a)3 , a021 = a012 = a003 = 0, b200 = aK(2+K2)

2(1–m+a) , b110 = –aK(K+2)
1–m+a ,

b101 = 1, b020 = aK(K+2)
2 , b011 = –1,

b002 = 0, b300 = –a2K
(1–m+a)2 [1 + (1 – m + a)K + 1

6 K2],

b210 = a2K
(1–m+a)2 (2 + 5

2 K + 1
2 K2), b201 = –a(K+1)

1–m+a ,

b120 = a2K
(1–m+a)2 (1 + 2K + 1

2 K2), b111 = 2a(K+1)
1–m+a ,

b102 = 0, b030 = a2K2(K+3)
6(1–m+a)2 , b021 = –a(K+1)

1–m+a , b012 = b003 = 0,
where

K =
2m(m – 1)

(m + 1)(1 – m + a)
– 2. (3.3)
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One can obtain that the three eigenvalues of the matrix

A =

⎛

⎜
⎜
⎝

m(2–2m+a)
1–m+a

–m(1 – m)

1 – m + a
0

2 + 2m(1–m)
(m+1)(1–m+a)

–2m(1–m)
(m+1)(1–m+a) – 1 0

0 0 1

⎞

⎟
⎟
⎠

are λ1 = –1, λ2 = m[1 – (1–m)2

(1–m+a)(1+m) ], λ3 = 1 with the corresponding eigenvectors ξ1 =
⎛

⎜
⎝

m(1–m)
(1+m)(1–m+a)+m(1–m)

1
0

⎞

⎟
⎠, ξ2 =

⎛

⎜
⎝

m+1
2
1
0

⎞

⎟
⎠ and ξ3 =

⎛

⎜
⎝

0
0
1

⎞

⎟
⎠. Set T = (ξ1, ξ2, ξ3), namely,

T =

⎛

⎜
⎜
⎝

m(1–m)
(1+m)(1–m+a)+m(1–m)

m+1
2 0

1 1 0
0 0 1

⎞

⎟
⎟
⎠ ,

then

T–1 =

⎛

⎜
⎜
⎝

–2C
B

(m+1)C
B 0

2C
B

–2m(1–m)
B 0

0 0 1

⎞

⎟
⎟
⎠ ,

where

B =a(1 + m)2 + [m(1 + 2m) + 1](1 – m), (3.4)

C =(1 + 2m)(1 – m) + a(1 + m). (3.5)

The transformation

⎛

⎜
⎝

lt

mt

s∗
t

⎞

⎟
⎠ = T

⎛

⎜
⎝

ut

vt

σt

⎞

⎟
⎠ changes system (3.2) into

⎛

⎜
⎝

ut+1

vt+1

σt+1

⎞

⎟
⎠ =

⎛

⎜
⎝

–1 0 0
0 m[1 – (1–m)2

(1–m+a)(1+m) ] 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

ut

vt

σt

⎞

⎟
⎠ +

⎛

⎜
⎜
⎝

g3(ut , vt ,σt) + o(ρ3
2 )

g4(ut , vt ,σt) + o(ρ3
2 )

0

⎞

⎟
⎟
⎠ , (3.6)

where ρ2 =
√

u2
t + v2

t + σ 2
t ,

⎛

⎜
⎜
⎝

g3(ut , vt ,σt)

g4(ut , vt ,σt)

0

⎞

⎟
⎟
⎠ =T–1

⎛

⎜
⎜
⎝

g1( m(1–m)
C ut + m+1

2 vt , ut + vt ,σt)

g2( m(1–m)
C ut + m+1

2 vt , ut + vt ,σt)

0

⎞

⎟
⎟
⎠ .

Consider for the center manifold that

vt = h(ut ,σt) = m20u2
t + m11utσt + m02σ

2
t + o(ρ2

3 ),
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where ρ3 =
√

u2
t + σ 2

t ; then, based on the subsequent expressions:

vt+1 =m[1 –
(1 – m)2

(1 – m + a)(1 + m)
]h(ut ,σt) + g4(ut , h(ut ,σt),σt) + o(ρ2

3 ),

vt+1 =m20u2
t+1 + m11ut+1σt + m02σ

2
t + o(ρ2

3 ),

ut+1 = – ut + g3(ut , h(ut ,σt),σt) + o(ρ2
3 ),

and by matching coefficients across the same orders of terms, one can derive

m20 =
–2m(1 – m + a)(1 + m)

BC
[–m(1 – m)a20

C
– a11 +

aK
2

(K + 2

+
(K2 + 2)m2(1 – m)2

(1 – m + a)C2 ) –
aK(K + 2)m(1 – m)

(1 – m + a)C
]

+
am2(1 + m)

B(1 – m + a)
,

m11 =
–2m(1 – m)(1 + m)2(1 – m + a)2

BC[(1 – m)2(1 – 2m + a) + 4m(1 – m + a)]
,

m02 =0.

Therefore, system (3.6), confined to the center manifold, is denoted below

ut+1 =: f1(ut ,σt) = –ut + c11utσt + c20u2
t + c30u3

t + c21u2
t σt + c12utσ

2
t + o(ρ3

3 ),

where

c11 =a11m11(
m(1 – m)

C
+

m + 1
2

) +
m + 1

B
[m(1 – m) + C],

c20 =
–2m(1 – m)

B
[
a11(m20 + 1) +

a20m(1 – m)

C
]

–
a11m20(m + 1)C

B

–
2a02C

B
+

m(1 – m2)

B
(b110 +

b200m(1 – m)

C
) +

b020(m + 1)C
B

,

c30 =
–2C

B
[
m20(2a02 –

m(1 – m2)

C
) + a03 +

m(1 – m)

C
(a21m(1 – m)

C

+ a30
m2(1 – m)2

C2 + a12
)]

+
(m + 1)C

B
[
m20

(
2b020 + b110(

m(1 – m)

C

+
1 + m

2
) +

b20m(1 + m)(1 – m)

C
)

+ b030 +
m(1 – m)

C
[b120

+
b210m(1 – m)

C2 +
b300m2(1 – m)2

C3 ]
]
,

c21 =
[m20(m + 3)

2
+ m11(

b110(m + 1)

2
+ 2b020)

] (m + 1)C
B

+
m(1 – m2)

B
[
m11

(
b110 + b200(m + 1)

)
+ b111 +

b201m(1 – m)

C
]
,

c12 =
m11(m + 1)(m + 3)C

2B
.

Afterwards, we compute the subsequent quantities to assess the occurrence of a flip bi-
furcation in accordance with [38, (21.2.17)–(21.2.22), p. 516]. One has the following re-
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sults:

f 2
1 (ut ,σt) = ut – 2c11utσt + (c2

11 – 2c12)utσ
2
t – c11c20u2

t σt – 2(c2
20 + c30)u3

t + o(ρ3
3 ),

f1(0, 0) = 0,
∂f1

∂ut
|(0,0) = –1,

∂f 2
1

∂σt
|(0,0) = 0,

∂2f 2
1

∂u2
t

|(0,0) = 0,

β1 =
∂2f 2

1
∂ut∂σt

|(0,0) = –2c11,β2 =
∂3f 2

1

∂u3
t

|(0,0) = –12(c2
20 + c30).

Notice that

β1 �= 0 ⇐⇒ c11 �= 0,

equivalently,

U =(3m + 1)(1 – m) + a(1 – m) –
(2m2 + 5m + 1)(1 – m) + a(1 + m)2

[(1 + 2m)(1 – m) + a(1 + m)]2

∗ am(1 – m)2(1 + m)[(1 + m)(1 – m) + a]

(2m2 + m + 1)(1 – m) + a(1 + m)2 �= 0,
(3.7)

and

β2 �= 0 ⇐⇒ c30 + c2
20 �= 0.

Thus, if U �= 0, then, map (1.5) experiences a flip bifurcation at the positive fixed
point E∗.

The transversal condition (γ1) and nondegenerate condition (γ2), which are used to as-
certain the presence and orientation of a flip bifurcation [29–34], are also calculated based
on the following two specific quantities:

γ1 =
( ∂2f1

∂ut∂σt
+

1
2

∂f1

∂σt

∂2f1

∂u2
t

)∣
∣
∣
∣
(0,0)

= c11,

γ2 =
(1

6
∂3f1

∂u3
t

+
(1

2
∂2f1

∂u2
t

)2
)∣
∣
∣
∣
(0,0)

= c30 + c2
20.

(3.8)

If γ2 > 0 (resp. < 0), the period-doubling orbits that bifurcate from E∗ are stable (resp.
unstable). �

3.2 Neimark-Sacker bifurcation
When the parameters m ∈ ( 1

2 , 1), a ∈ (0, 2m – 1), and s = R2 = (2m–1–a)(1–m)
m(1–m+a) , it follows from

Table 1 that the eigenvalues λ1 and λ2 are a pair of conjugate complex roots with |λ1| =
|λ2| = 1. At this moment, map (1.5) may experience a Neimark-Sacker bifurcation. One
can derive the subsequent result.

Theorem 3.2 Let s0 = R2 = (2m–1–a)(1–m)
m(1–m+a) and L be defined in (3.13). Assume the parameters

(a, m, s) ∈ �2 = {(a, m, s) ∈ R3
+| 1

2 < m < 1, 0 < a < 2m – 1, s > 0}. Then map (1.5) experiences
a Neimark-Sacker bifurcation at the positive fixed point E∗ when the parameter s changes
within the small neighborhood of the critical threshold s0. Moreover, if L < (>)0, then an
attracting (repelling) invariant closed curve bifurcates from the fixed point for s > (<)s0.
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Proof Take lt = xt – 1–m
a and mt = yt – 1–m+a

a to transform E∗ to the origin O. Given a slight
disturbance s∗ to the parameter s around s0, namely, s∗ = s – s0, with 0 < |s∗| � 1, map (1.5)
may be written as following:

⎧
⎪⎨

⎪⎩

lt+1 = (lt + 1–m
a )e

am(lt –mt )
alt +1–m+a –alt – 1–m

a ,

mt+1 = (mt + 1–m+a
a )e

a(s0+s∗)(lt –mt )
alt +1–m+a – 1–m+a

a .
(3.9)

Applying the Taylor expansion to (3.9) at (lt , mt) = (0, 0) yields

(
lt+1

mt+1

)

=

⎛

⎝

m(2–2m+a)
1–m+a

–m(1–m)
1–m+a

(2m–1–a)(1–m)
m(1–m+a) + s∗ (1–m)2+a

m(1–m+a) – s∗

⎞

⎠

(
lt

mt

)

+

(
O(r2

4)

O(r2
4)

)

, (3.10)

where r4 =
√

l2
t + m2

t .
Assume that the characteristic polynomial of the Jacobian matrix for linearized system

of system (3.10) as F(λ) = λ2 – p(s∗)λ + q(s∗) with

p(s∗) = 1 + m +
m(1 – m)

1 – m + a
– s0 – s∗, q(s∗) = 1 – ms∗.

Then, the two roots of F(λ) = 0 are

λ1,2(s∗) =
p(s∗) ± √

p2(s∗) – 4q(s∗)

2
.

Noticing that the parameter vector (m, a, s) ∈ �2, one has

W =: p2(0) – 4q(0) =[(2m2 + m + a + 1)(1 – m)

+ am(m + 3)] ∗ [(1 – m)2(1 – 2m + a)] < 0.

Thus,

λ1,2(0) =
p(0) ± i

√
4q(0) – p2(0)

2
=: α ± βi,

where

α =
p(0)

2
=

1
2

(1 + m +
m(1 – m)

1 – m + a
– s0),

β =
√

4q(0) – p2(0)

2
=

√
–W
2

.

Obviously, for 0 < |s∗| � 1,

|λ1(s∗)| = |λ2(s∗)| =
√

q(s∗) =
√

1 – ms∗,

hence,

(d|λ1(s∗)|
ds∗

)∣
∣
∣
∣
s∗=0

=
(d|λ2(s∗)|

ds∗
)∣
∣
∣
∣
s∗=0

= –
m
2

< 0.
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The occurrence of the Neimark-Sacker bifurcation is characterized by the following spe-
cific conditions that must be satisfied:

(H .1)
(d|λ1,2(s∗)|

ds∗
)∣
∣
∣
∣
s∗=0

�= 0;

(H .2) λi
1,2(0) �= 1, i = 1, 2, 3, 4.

It is obvious that λi
1,2(0) �= 1 for all i = 1, 2, 3, 4; hence, all necessary conditions for the oc-

currence of the Neimark-Sacker bifurcation have been met.
Now, proceed to search for the normal form of system (3.9) when s∗ = 0. Applying the

Taylor expansion to system (3.9) at (lt , mt) = (0, 0) leads to

(
lt

mt

)

−→
⎛

⎝

m(2–2m+a)
1–m+a

–m(1–m)
1–m+a

(2m–1–a)(1–m)
m(1–m+a)

(1–m)2+a
m(1–m+a)

⎞

⎠

(
lt

mt

)

+

(
G5(lt , mt) + o(r3

5)

G6(lt , mt) + o(r3
5)

)

, (3.11)

where r5 =
√

l2
t + m2

t ,

G5(lt , mt) =a20l2
t + a11ltmt + a02m2

t + a30l3
t + a21l2

t mt + a12ltm2
t

+ a03m3
t ,

G6(lt , mt) =b20l2
t + b11ltmt + b02m2

t + b30l3
t + b21l2

t mt + b12ltm2
t

+ b03m3
t ,

a20 = am
1–m+a + a(1 – m) (1–2m+a)2–2m

2(1–2m+a)2 , a11 = (1–m+a)3+a2m(1–m)(2–2m+a)
a(1–2m+a)2 ,

a02 = am2(1–m)
2(1–m+a)2 , a30 = a2(1–2m+a)2–2m

2(1–2m+a)2 – a2(1 – m) (1–2m+a)3–6m(2–2m+a)
6(1–m+a)3 ,

a21 = –3a2m(8m–5a–5)
6(1–m+a)2 – m(1–m)(1–2m+a)2

6(1–m+a) + a2m(1–m)[–4m2+(13+4a)m–a2–5a–7]
3(1–m+a)3 ,

a12 = a2m2

2(1–m+a)2 – m2(1 – m)[ a2(4–2m+a)(m–a)
6(1–m+a)3 – 1–2m+a

6a ], a03 = –a2m3(1–m)
6(1–m+a)3 , b20 = as0

1–m+a ( s0
2 – 1),

b11 = as0(2–s0)
1–m+a , b02 = as0

1–m+a ( s0
2 – 1), b30 = a2s0

(1–m+a)2 (
s2
0
6 – s0 + 1), b21 = a2s0

(1–m+a)2 (– s2
0
2 + 5s0

2 – 2),

b12 = a2s0(s2
0–4s0+2)

2(1–m+a)2 , b03 = a2s2
0(3–s0)

6(1–m+a)2 .
Clearly, two distinct eigenvalues of the matrix

A =

(
a10 a01

s0 1 – s0

)

are λ1(0) and λ2(0) with the corresponding eigenvectors ξ1 =(
0
β

)

and ξ2 =

(
a01

1
2 (1 – s0 – a10)

)

. Let T = (ξ1, ξ2), i.e.,

T =

(
0 a01

β 1
2 (1 – s0 – a10)

)

; then, T–1 =

⎛

⎝

s0+a10–1
2a01β

1
β

1
a01

0

⎞

⎠ .
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The transformation

(
lt

mt

)

= T

(
ut

vt

)

brings system (3.11) to the following form:

⎛

⎝
ut+1

vt+1

⎞

⎠ =

⎛

⎝
α –β

β α

⎞

⎠

⎛

⎝
ut

vt

⎞

⎠ +

⎛

⎝
f (ut , vt) + o(r3

6)

g(ut , vt) + o(r3
6)

⎞

⎠ , (3.12)

where r6 =
√

u2
t + v2

t ,

⎛

⎝
f (ut , vt)

g(ut , vt)

⎞

⎠ =T–1

⎛

⎝
G5(a01vt ,βut + (1–s0–a10)

2 vt)

G6(a01vt ,βut + (1–s0–a10)
2 vt)

⎞

⎠ .

Furthermore,

f uu =β[2b02 –
a02(1 – s0 – a10)

a01
],

f uv =a01[b11 –
a11(1 – s0 – a10)

2a01
] + (1 – s0 – a10)[b02 –

a02(1 – s0 – a10)

2a01
],

f vv =
a2

01
β

[2b20 –
a20(1 – s0 – a10)

a01
] +

a01(1 – s0 – a10)

β
[b11 –

a11(1 – s0 – a10)

2a01
]

+
(1 – s0 – a10)2

2β
[b02 –

a02(1 – s0 – a10)

2a01
],

f uuu =6β2[b03 –
a03(1 – s0 – a10)

2a01
],

f uuv =a01β[2b12 –
a12(1 – s0 – a10)

a01
] + 3β(1 – s0 – a10)[b03 –

a03(1 – s0 – a10)

2a01
],

f uvv =a2
01[2b21 –

a21(1 – s0 – a10)

a01
] + 2a01(1 – s0 – a10)[b12 –

a12(1 – s0 – a10)

2a01
]

+
3(1 – s0 – a10)2

2
[b03 –

a03(1 – s0 – a10)

2a01
],

f vvv =
3(1 – s0 – a10)2

2β
[a01(b12 – a21) +

a12(1 – s0 – a10)

2
] +

3a2
01b21(1 – s0 – a10)

β
,

guu =
2a02β

2

a01
, guv = a11β +

a02β

a01
(1 – s0 – a10),

gvv =2a20a01 + a11(1 – s0 – a10) +
a02(1 – s0 – a10)2

2a01
,

guuu =
6a03β

3

a01
, guuv = 2a12β

2 +
3a03β

2(1 – s0 – a10)

a01
,

guvv =2a21a01β + 2a12β(1 – s0 – a10) +
(1 – s0 – a10)2

2a01
βa03,

gvvv =6a30a2
01 + 3a21a01(1 – s0 – a10) +

3a12(1 – s0 – a10)2

2
+

3a03(1 – s0 – a10)3

4a01
.
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Next, we compute the first Lyapunov coefficient L to judge the occurrence and stability
of the Neimark-Sacker bifurcation [31, 34]:

L = –Re
( (1 – 2λ1)λ2

2
1 – λ1

ξ20ξ11

)
–

1
2
|ξ11|2 – |ξ02|2 + Re(λ2ξ21), (3.13)

where
ξ20 = 1

8 [f uu – f vv + 2guv + i(guu – gvv – 2f uv)],
ξ11 = 1

4 [f uu + f vv + i(guu + gvv)],
ξ02 = 1

8 [f uu – f vv – 2guv + i(guu – gvv + 2f uv)],
ξ21 = 1

16 [f uuu + f uvv + guuv + gvvv + i(guuu + guvv – f uuv – f vvv)].
Some calculations display

ξ20 =
1
8
(
(1 – s0 – a10)[

a01

β
(a20 – b11) +

1 – s0 – a10

2β
(a11 +

a02(1 – s0 – a10)

2a01

– b02) +
a02β

a01
] + 2β(b02 + a11) –

2a2
01b20

β

)

+
1
8
(
(1 – s0 – a10)(

a02(1 – s0 – a10)

2a01
– 2b02) +

2a02β
2

a01
– 2a01(b11 + a20)

)
i,

ξ11 =
1
4
(
(1 – s0 – a10)[

a01

β
(b11 – a20) +

1 – s0 – a10

2β
(–a11 –

a02(1 – s0 – a10)

2a01

+ b02) –
a02β

a01
] + 2βb02 +

2a2
01b20

β

)

+
1
4
(
(1 – s0 – a10)(

a02(1 – s0a10)

2a01
+ a11) +

2a02β
2

a01
+ 2a20a01

)
i,

ξ02 =
1
8
(
(1 – s0 – a10)[

a01

β
(a20 – b11) +

1 – s0 – a10

2β
(a11 +

a02(1 – s0 – a10)

2a01

– b02) –
3a02β

a01
] –

2a2
01b20

β

)
+

1
8
(
2(1 – s0 – a10)(b02 – a11)

+
a02

a01
(2β2 –

(1 – s0 – a10)2

2
) + 2a01(b11 – a20)

)
i,

ξ21 =
1

16
(
(1 – s0 – a10)[(

3
2

b03 +
a12

2
)(1 – s0 – a10) + 2a01a21] + 2a01(b12 + 3a30a01)

+ 2β2(a12 + 3b03)
)

+
1

16
(3a12(1 – s0 – a10)3

4β
+ (

2a03β

a01
–

3a01(b12 – a21)

2β
)

(1 – s0 – a10)2 + [3β(a12 – b03 –
3a2

01b21

β
)(1 – s0 – a10)] + β(

6a03β
2

a01
– 2a01b12)

)
i.

Substituting these values into the expression of L, the value of L will be obtained. When
L �= 0, the Neimark-Sacker bifurcation takes place. In the case of L < (>)0, an attracting
(repelling) invariant closed curve will emerge from the fixed point for s > (<)s0.

The proof is completed. �

4 Numerical simulations
In this section, we utilize Matlab software to validate the theoretical findings and explore
additional dynamical behaviors that emerge as the parameters vary.
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Example 4.1 We choose the parameters a = 0.3, m = 0.3, s = 2 and the initial values as
(x0, y0) = (6, 3). When these parameters are fixed, map (1.5) can be transformed as the
following one:

F :

(
x
y

)

−→
(

xe1–0.3x– 0.3y
x+1

ye2(1– y
x+1 )

)

. (4.1)

It can be concluded that the positive fixed point of the above system (4.1) is E∗(2.3333,
3.3333) and the critical point R1 = 2.323. According to Theorem 2.4, the unique positive
fixed point is locally asymptotically stable when these parameters satisfy 0 < m < 0.5, a > 0
and s < R1. Figure 1 shows the stable dynamics in map (1.5), including that two species
coexist and converge to the fixed point E∗(2.3333, 3.3333). Then, we modify the value of
the parameter s and let the parameter s ∈ (2.2, 3.0). Since the bifurcation diagram of the
(s, x)-plane closely resembles that of the (s, y)-plane, we will exclusively present the former.
From Fig. 2(a), we observe the existence of flip bifurcation at E∗ when s0 = R1 = 2.323,
which is aligned with the result presented in Theorem 3.1. By calculating the sign of the
parameter γ2, we can obtain period-2 orbit and its stability. Moreover, the periods are 2, 4,

Figure 1 Stable time series for map (1.5) at a = 0.3,m = 0.3 and s = 2

Figure 2 Bifurcation of the map (1.5) in the (s, x)-plane and the maximal Lyapunov exponent for a = 0.3 and
m = 0.3 with the initial values (x0, y0) = (6, 3)
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Figure 3 Bifurcation diagrams of map (1.5) with respect to s and the initial value (x0, y0) = (6, 3)

Figure 4 Time series for map (1.5) at a = 0.1 andm = 0.6 with the initial value (x0, y0) = (6, 3)

8, etc., which illustrate that a chaotic set (period-doubling route to chaos) emerges as the
increasing of the value of the parameter s. Figure 2(b) illustrates the range of maximum
Lyapunov exponents in relation to the parameter s ∈ (2.2, 3.0) under the condition where
a = 0.3 and m = 0.3; it is also observed that the maximal Lyapunov exponents are positive
for b ∈ (2.92, 3.0), which means that chaos will occur in this system; hence, chaos control
is considered in Sect. 5.

Remark In Fig. 3, two bifurcation diagrams are drawn with respect to s, which illustrate
that for lower value of parameter a, chaos disappears in map (1.5). Nevertheless, for the
lower value of parameter m, chaos will occur in advance.

Example 4.2 For the set of parameters a = 0.1, m = 0.6, s = 0.1 and the initial value
(x0, y0) = (6, 3), according to Theorem 3.2, one can see that when s0 = R2 = 0.1333, map
(1.5) undergoes a Neimark-Sacker bifurcation. In Figs. 4 and 5, the fixed point E∗ is un-
stable when s < R2; conversely, E∗ becomes stable, and a closed invariant curve disappears
when s > R2. Figure 6 is plotted as the bifurcation diagram at (s, x)-plane, which shows the
prey population converges to stable as the parameter s increases. To clearly demonstrate
this point of view, we take the parameter s near 0.133 and obtain more phase portraits
in Fig. 7, which demonstrates the occurrence of the Neimark-Sacker bifurcation for map
(1.5) at the fixed point E∗(4, 5).
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Figure 5 Phase portraits for map (1.5) at a = 0.1 andm = 0.6 with the initial value (x0, y0) = (6, 3)

Figure 6 Bifurcation diagram of map (1.5) with respect to s and the initial value (x0, y0) = (6, 3)

5 Chaos control
Chaos is a ubiquitous nonlinear phenomenon and has been observed in a variety of dy-
namical systems. In effect, it makes the system undesirable as it can cause a lot of destruc-
tive results in many scenarios. Therefore, it is particularly important to use chaos control
to ensure that the system is predictable and stable. Then, in this section, we will introduce
state feedback, pole placement, and hybrid control strategies to control chaos [23–27] and
illustrate them by numerical simulations.

5.1 State feedback control
We define the controlled system of map (1.5) is

⎧
⎨

⎩

xt+1 = xte1–axt– myt
xt +1 + Ut ,

yt+1 = ytes(1– yt
xt +1 ),

(5.1)
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Figure 7 Phase portraits for map (1.5) at a = 0.1 andm = 0.6 with the initial value (x0, y0) = (6, 3)

where Ut = –h1(xt – 1–m
a ) – h2(yt – 1–m+a

a ). For the positive fixed point E∗( 1–m
a , 1–m+a

a ), the
Jacobian matrix of system (5.1) is as follows

J(E∗) =

⎛

⎝

m(2–2m+a)
1–m+a – h1

–m(1–m)
1–m+a – h2

s 1 – s

⎞

⎠ .

The characteristic polynomial of Jacobian matrix J(E∗) is

F(λ) = λ2 – tr(J(E∗))λ + det(J(E∗)),

where

tr(J(E∗)) =
m(2 – 2m + a)

1 – m + a
+ 1 – s – h1,

det(J(E∗)) = (1 – s)(
m(2 – 2m + a)

1 – m + a
– h1) + s(

m(1 – m)

1 – m + a
+ h2).
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The eigenvalues λ1 and λ2 are the roots of the equation F(λ) = 0, and the lines l1, l2 and l3

must satisfy the conditions λ1λ2 = 1, λ1 = 1, λ1 = –1. One has

λ1λ2 = 1 ⇒ l1 : (1 – s)(
m(2 – 2m + a)

1 – m + a
– h1) + s(

m(1 – m)

1 – m + a
+ h2) = 1,

λ1 = 1 ⇒ l2 : h1 + h2 +
m(m – 1 + a)

1 – m + a
= 0,

λ1 = –1 ⇒ l3 : (2 – s)(
m(2 – 2m + a)

1 – m + a
– h1 + 1) + s(

m(1 – m)

1 – m + a
+ h2) = 0.

(5.2)

For the stability, map (1.5) will be locally stable if all eigenvalues are contained within a
triangular region bounded by three lines l1, l2, and l3.

5.2 Pole placement technique
Based on pole-placement method, Romeiras et al. [26] proposed the new chaos controlling
technique, which is perceived as a generalized OGY method first time studied by Ott et
al. [24]. Applying the method in map (1.5), one has the following:

⎧
⎨

⎩

xn+1 = xne1–axn– myn
xn+1 = f (xn, yn, a),

yn+1 = ynes(1– yn
xn+1 ) = g(xn, yn, a),

(5.3)

where a is taken as control parameter with |a – a0| < δ and δ > 0 arbitrarily small. The
parameter a0 refers to the nominal value belonging to chaotic region. Subsequently, sys-
tem (5.3) can be estimated in the neighborhood of unstable fixed point E∗(x∗, y∗) as the
equation

[
xn+1 – x∗

yn+1 – y∗

]

≈ A

[
xn – x∗

yn – y∗

]

+ B[a – a0], (5.4)

where

A =

[
∂f (x∗ ,y∗ ,a0)

∂xn
∂f (x∗ ,y∗ ,a0)

∂yn
∂g(x∗ ,y∗ ,a0)

∂xn
∂g(x∗ ,y∗ ,a0)

∂yn

]

=

(
m(2–2m+a0)

1–m+a0
–m(1–m)
1–m+a0

s 1 – s

)

,

B =

[
∂f (x∗ ,y∗ ,a0)

∂a
∂g(x∗ ,y∗ ,a0)

∂a

]

=

[
–x∗2

0

]

.

Set

C = [B : AB] =

[
–x∗2 (–x∗2) m(2–2m+a0)

1–m+a0

0 –x∗2s

]

,

then system (5.3) is considered controllable when the matrix C possesses a rank of 2.
Hence, if |C| �= 0, system (5.3) will be controllable. Furthermore, from (5.4) we assume
that

[a – a0] = –D

[
xn – x∗

yn – y∗

]

,
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where D = [d1, d2], then map (5.4) can be represented as

[
xn+1 – x∗

yn+1 – y∗

]

≈ [A – BD]

[
xn – x∗

yn – y∗

]

. (5.5)

We take D = [d1, d2] to satisfy two eigenvalues of the matrix (A – BD) to lie in an open unit
disk, then the fixed point E∗(x∗, y∗) is locally asymptotically stable. These specific eigen-
values are commonly referred to as regulator poles, and positioning these eigenvalues at
a specified value is known as the pole-placement technique. Furthermore, the rank of the
matrix C is 2, guaranteeing that the pole-placement problem has only a singular solution
(a unique matrix D). Next, we set the characteristic equations of matrices A and A – BD to
be λ2 + α1λ + α2 and λ2 + β1λ + β2, respectively. Therefore, from [23], the distinct solution
to the pole placement problem can be identified as outlined below

D = [β2 – α2, β1 – α1]T–1,

where T = CF and

F =

[
α1 1
1 0

]

.

5.3 Hybrid control strategy
First, we consider an n-dimensional discrete nonlinear dynamical system

xt+1 = f (xt , s), (5.6)

where xt ∈ R
n, t ∈ Z, s ∈ R is bifurcation parameter of system (5.6). Combinating state

feedback and parameter perturbation to system (5.6), one gets

xt+m = αf m(xt , s) + (1 – α)xt , (5.7)

where the control parameter α ∈ (0, 1), m ∈ N
+ and f m(·) is the mth iteration of f (·). Spe-

cially, the controlled system (5.7) will reduce to the original system (5.6) when α = 1 [39].
For two-dimensional example, we provide general results for controlling bifurcation in
discrete systems. Let m = 1, xt ∈ R

2. The uncontrolled system (5.6) and corresponding
controlled system (5.7) are

⎧
⎨

⎩

xt+1 = f (xt , yt , s),

yt+1 = g(xt , yt , s),
(5.8)

and

⎧
⎨

⎩

xt+1 = αf (xt , yt , s) + (1 – α)xt ,

yt+1 = αg(xt , yt , s) + (1 – α)yt .
(5.9)
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For the fixed point (x0, y0), the Jacobian matrix of system (5.9) is shown below

J(x0, y0) =

⎛

⎝
αfx(x0, y0, s) + 1 – α αfy(x0, y0, s)

αgx(x0, y0, s) αgy(x0, y0, s) + 1 – α

⎞

⎠ .

Then, the characteristic polynomial of the Jacobian matrix J(x0, y0) is

F(λ) = λ2 – tr(J(x0, y0))λ + det(J(x0, y0)), (5.10)

where

tr(J(x0, y0)) =α(fx(x0, y0, s) + gy(x0, y0, s)) + 2(1 – α),

det(J(x0, y0)) =[αfx(x0, y0, s) + 1 – α][αgy(x0, y0, s) + 1 – α]

– α2fy(x0, y0, s)gx(x0, y0, s).

Theorem 5.1 If the unregulated system (5.8) exhibits a Codim 1 bifurcation at the fixed
point when the bifurcation parameter s = s0 and parameters α and s meet the specified
criteria:

1. F(1) = 1 – tr(J(x0, y0)) + det(J(x0, y0)) > 0,
2. F(–1) = 1 + tr(J(x0, y0)) + det(J(x0, y0)) > 0,
3. det(J(x0, y0)) < 1,

then, the bifurcation of the controlled system (5.9) at the fixed point E(x0, y0) can be delayed
(advanced) or even eliminated. Simultaneously, the fixed point of the controlled system is
asymptotically stable.

Proof Obviously, the fixed point of the controlled system (5.9) is the same as the original
system (5.8), and the eigenvalue equation Eq. (5.10) can be denoted by F(λ) = 0. Thus,
based on the condition of [29, Lem. 4.2 (i.1)], one has |λ1,2| < 1; then, the fixed point of
the controlled system is asymptotically stable, and the bifurcation of the fixed point can
be delayed (advanced) or even eliminated by choosing specific parameters α and s.

By applying the above hybrid control method in Theorem 5.1, we rewrite uncontrolled
map (1.5) into a controlled system as follows:

⎧
⎨

⎩

xt+1 = αxte1–axt– myt
xt +1 + (1 – α)xt ,

yt+1 = αytes(1– yt
xt +1 ) + (1 – α)yt .

(5.11)

The Jacobian matrix of system (5.11) at E∗( 1–m
a , 1–m+a

a ) reads

J(E∗) =

⎛

⎝
α( m(1–m)

1–m+a + m – 1) + 1 –αm(1–m)
1–m+a

αs 1 – αs

⎞

⎠ .

The characteristic polynomial of Jacobian matrix J(E∗) is

F(λ) =λ2 – tr(J(E∗))λ + det(J(E∗)), (5.12)
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where

tr(J(E∗)) = α(
m(1 – m)

1 – m + a
+ m – 1 – s) + 2,

det(J(E∗)) = α(
m(1 – m)

1 – m + a
+ m – 1 – s) + 2 + α2s(1 – m).

Based on Theorem 5.1, system (5.11) is asymptotically stable under the conditions F(1) >
0, F(–1) > 0 and det(J(E∗)) < 0, where

F(1) = 1 + α2s(1 – m) > 0,

F(–1) = 1 + 2α(
m(1 – m)

1 – m + a
+ m – 1 – s) + 4 + α2s(1 – m) > 0,

det(J(E∗)) = α(
m(1 – m)

1 – m + a
+ m – 1 – s) + 2 + α2s(1 – m) < 1. (5.13)

�

5.4 Numerical simulations
In this subsection, we utilize numerical methods for the purpose of controlling chaos in
map (1.5).

For state feedback method, we take the following parameter values:

a = 0.1, m = 0.6, s = 0.1.

Now, the conditions in (5.2) take the following form:

l1 : –9h1 + h2 + 0.2 = 0,

l2 : h1 + h2 – 0.36 = 0,

l3 : –19h1 + h2 + 40 = 0.

(5.14)

For the controlled system (5.1), Ut = –h1(xt – 1–m
a ) – h2(yt – 1–m+a

a ) is defined as a feedback
force, and h1 and h2 represent feedback coefficients. Then, we take parameters h1, h2 as
h1 = 2, h2 = 1, which are selected from the triangular region (as in Fig. 8, which is enclosed
by the marginal lines l1, l2, and l3). Thus, a stable time series is demonstrated in Fig. 9, and
map (1.5) exhibits a stable dynamical behavior.

From Fig. 3(b), when taking the parameters a = 0.3, m = 0.1, map (1.5) undergoes a
period-doubling bifurcation as s varies in [2, 3]. To satisfy |C| �= 0, we set m = 0.1, s = 2.9 in
map (1.5), the parameter a is taken as control parameter and the nominal value a0 = 0.3,
which belongs to chaotic region shown in Fig. 10(a). Hence, the unique positive fixed point
E∗(3, 4) is a saddle and unstable. Moreover, map (1.5) can be shown as

⎧
⎨

⎩

xn+1 = xne1–axn– 0.1yn
xn+1 = f (xn, yn, a),

yn+1 = yne2.9(1– yn
xn+1 ) = g(xn, yn, a).

(5.15)

As in Sect. 5.2, pole placement technique depicts

A =

(
0.175 –0.075

2.9 –1.9

)

, B =

(
–9
0

)

, C =

(
–9 –1.575
0 –26.1

)

.

Obviously, |C| �= 0, which means the controllability of system (5.3).
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Figure 8 Stability region for map (1.5)

Figure 9 Stable time series for map (1.5) when a = 0.1,m = 0.6, s = 0.1 and h1 = 2, h2 = 1

Take a = 0.3 – d1(xn – x∗) – d2(yn – y∗), where D = [d1, d2] represents a gain matrix. The
corresponding controlled system is

⎧
⎨

⎩

xn+1 = xne1–(0.3–d1(xn–x∗)–d2(yn–y∗))xn– 0.1yn
xn+1 ,

yn+1 = yne2.9(1– yn
xn+1 ).

(5.16)

Hence, the Jacobian matrix (A – BD) of the controlled system (5.16) is of the form:

A – BD =

(
0.175 + 9d1 –0.075 + 9d2

2.9 –1.9

)

,

and the corresponding characteristic equation is

λ2 + (1.725 – 9d1)λ – 17.1d1 – 26.1d2 – 0.115 = 0.



Ruan and Li Advances in Continuous and Discrete Models         (2024) 2024:30 Page 24 of 27

Figure 10 Bifurcation diagrams of system at the initial value as (x0, y0) = (6, 3)

According to [29, Lem. 4.2 (i.1)], one has the following conditions:

⎧
⎨

⎩

–8.1d1 – 26.1d2 – 0.84 > 0,

–17.1d1 – 26.1d2 – 1.115 < 0.
(5.17)

Hence, these eigenvalues (regulator poles) are placed at desired value (open unit disk).
For d1 = –0.02 and d2 ∈ (–0.029616, –0.025977), system (5.3) is stable at the fixed point

E∗. Figure 10(b) shows that the chaos in Fig. 10(a) has been reduced to a periodic window.
For the numerical illustration of hybrid control strategy, we take the following parameter

set:

a = 0.3, m = 0.3, s = 2.95.

We find that map (1.5) losses its stability and produces flip bifurcation and chaos.
According to (5.13), for the controlled system (5.11), the control parameter α is re-

stricted to (0.3746, 0.9321). Without sacrificing the generality, we select the values of pa-
rameter α = 0.5, 0.8, 0.9, then, the Jacobian matrix of the controlled system (5.11) takes

J(E∗) =

⎛

⎝
1 – 0.49α –0.105

2.95α 1 – 2.95α

⎞

⎠ . (5.18)

One can see that the corresponding eigenvalue of system (5.18) lie in an open unit disk.
Compared with Fig. 2(a), bifurcation diagrams w.r.t. s in Fig. 11(a)–(c) illustrate that chaos
can be delayed or even eliminated by reducing the value of parameter α.

6 Discussion and conclusion
In this paper, the dynamical properties of a discrete modified Leslie-Gower prey-predator
system with Holling II type functional response are studied. After assuming that the en-
vironment provides the same level of protection to both prey and predator (k1 = k2 = k),
we can simplify the parameters in the system to analyze its dynamics more effectively.
Subsequently, the semi-discretization method is employed to derive the discrete version
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Figure 11 Bifurcation diagrams of the controlled system (5.11) when a = 0.3 andm = 0.3 with the initial value
(x0, y0) = (6, 3)

of system (1.3). Firstly, we not only clearly and completely demonstrate the existence and
stability of the nonnegative fixed points O(0, 0), A( 1

a , 0), B(0, 1), and the unique positive
fixed point E∗( 1–m

a , 1–m+a
a ) for 0 < m < 1, but also derive the sufficient conditions for the oc-

currence of the flip bifurcation and Neimark-Sacker bifurcation of map (1.5) at the unique
positive fixed point E∗. Meanwhile, numerical simulation results are conducted not only
to validate the analytical results derived but also to illustrate more new complex dynami-
cal behaviors, including (i) the stability of the unique positive fixed point E∗; (ii) a closed
invariant curve gradually disappears when the condition changes from s < R2 to s > R2;
(iii) flip bifurcation to chaos will occur in map (1.5). Then, specific conditions for state
feedback control as shown in (5.2), pole placement control as indicated in (5.5), and hy-
brid control as presented in (5.13) are provided to control chaos. Furthermore, the three
methods successfully demonstrate that chaos can be delayed or even eliminated.

Our results obtained in this paper may serve as a catalyst for increasing focus on the
dynamic behavior of discrete systems, complementing existing research on bifurcation
theory and chaos control. Furthermore, these results can enhance our comprehension of
population dynamics in natural ecosystems.
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