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Abstract
2D magnetotelluric (MT) imaging detects underground structures by measuring
electromagnetic fields. This study tackles two issues in the field: traditional methods’
limitations due to insufficient forward modeling data, and the challenge of multiple
solutions in complex scenarios. We introduce an enhanced 2D MT imaging approach
with a novel self-attention mechanism, involving: 1. Generating diverse geophysical
models and responses to increase data variety and volume. 2. Creating a
Swin–Unet-based 2D MT Imaging network with self-attention for better modeling
and relation capture, incorporating a MT sample generator using real data to lessen
large-scale supervised training dependence, and refining the loss function for optimal
validation. This method also includes eliminating MT background response to boost
training efficiency and reduce training time. 3. Applying a transverse
electric/transverse magnetic method for comprehensive 2D MT data response. Tests
show that our method greatly improves 2D MT imaging’s accuracy and efficiency,
with excellent generalization.
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1 Introduction
In the magnetotelluric (MT) method, natural electromagnetic fields are used to investi-
gate the structure of the Earth’s electrical conductivity. The electromagnetic (EM) fields
at the surface of the Earth behave almost like plane waves, with most of their energy being
reflected and a small amount propagating vertically downward into the Earth. The am-
plitude, phase, and directional relationships between electric (E) and magnetic (H or B)
fields on the surface depend on the distribution of electrical conductivity in the subsur-
face. By use of computer models, field measurement programs can be designed to study
regions of interest within the Earth from depths of a few tens of meters to the upper man-
tle [1]. Practitioners encounter several intricate challenge related to forward modeling for
two-dimensional electromagnetic imaging on the Earth’s surface [2–4]. Firstly, the subsur-
face’s complexity, characterized by multi-faceted, heterogeneous, and intricate geological
formations such as varied rock strata, mineral deposits, and aquifers, presents significant
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modeling difficulties. Accurately simulating the electromagnetic response of these struc-
tures, particularly at geological interfaces with irregular boundaries and substantial depth
variations, is a formidable task.

Secondly, model parameterization and precision are pivotal. Electromagnetic forward
modeling necessitates a parameterized depiction of the subsurface, encompassing prop-
erties like conductivity. The exactitude of these parameters is vital for faithfully simulating
subsurface features and yielding dependable imaging results. Nonetheless, achieving pre-
cise parameterization is challenging due to the inherent complexity of the subsurface.

Thirdly, the issue of resolution and depth imaging is salient. The attenuation and scat-
tering of electromagnetic signals during propagation hinder the high-resolution imaging
of deep-seated structures. This phenomenon diminishes the resolution of deeper forma-
tions, complicating the acquisition of accurate subsurface information.

To address these challenges, various numerical simulation methods are employed in MT
forward modeling, including the finite element method, the integral equation method, and
the finite difference method. These techniques are well-suited for handling the large com-
putational domains required for simulating electromagnetic behavior in complex subsur-
face structures. However, the process of solving the large sparse matrices that arise dur-
ing these simulations is computationally intensive and often requires advanced iterative
solvers, such as Krylov subspace methods. Despite their effectiveness, these solvers can
sometimes fail to converge, especially when applied to highly complex geological models.

To enhance convergence and efficiency, multigrid methods have been introduced as an
auxiliary tool for iterative solvers. Combining these advanced techniques is often neces-
sary to achieve successful forward modeling in MT studies (e.g., using a block Gauss–
Seidel (GS) smoothing algorithm to improve the convergence of geometric multigrid
(GMG), which assists Krylov subspace iterative solvers). Furthermore, a significant num-
ber of theoretical models are needed to support these complex simulations and ensure
accurate data interpretation. To counter these challenges, our approach involves the gen-
eration of diverse geophysical theoretical models and electromagnetic response samples,
thereby augmenting data variety and volume. Electromagnetic inversion entails deriving
electrical models from resistivity and phase measurements obtained at the Earth’s surface.
Magnetotelluric sounding inversion methods can be broadly categorized into linear and
nonlinear inversions. Linear inversion methods, including the Gauss–Newton method,
conjugate gradient method, and Marquardt method, converge rapidly but tend to depend
heavily on the initial model and are prone to becoming trapped in local optima. Non-
linear inversion methods, on the other hand, not only overcome the limitations of linear
inversion, but also effectively avoid becoming trapped in local optima, making them a fo-
cus of scholarly research. Common nonlinear inversion methods include Particle Swarm
Optimization (PSO), Monte Carlo simulation, genetic algorithms, and neural network al-
gorithms. Due to its straightforward principles, independence from initial models, global
optimization capabilities, and fast convergence, PSO is applied across a wide variety of
fields such as electrical engineering, geophysics, and machine learning. The objective is
to create models that not only align with observed data but also approximate the actual
subsurface conditions accurately [5–7]. Electromagnetic inversion is fundamentally an op-
timization problem, where the goal is to minimize an objective function � [8], comprising
the data function (�d) and the constraint function (�m), both modulated by a regulariza-
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tion parameter λ (the Lagrange multiplier) [9].

� = �d + λ�m. (1)

Conventional electromagnetic inversion methods often demand substantial computa-
tional resources and extended durations for completion [10, 11]. Furthermore, the acqui-
sition of large-scale supervised samples is challenging. To surmount these impediments,
pretraining strategies are proposed. By initially training models on an extensive, unla-
beled dataset of electromagnetic responses, they can internalize richer and more universal
features, enhancing their performance and generalization on actual samples. Subsequent
fine-tuning on a smaller, labeled dataset enables swifter convergence and enhanced per-
formance compared to traditional training methodologies. Additionally, networks lever-
aging self-attention mechanisms, exemplified by the Swin–Unet network based on the
Swin transformer, are deemed more efficacious for pretraining tasks than conventional
convolutional neural network (CNN) architectures [12]. Therefore, this study proposes
the Swin–Unet network as the ideal architecture for the two-dimensional electromagnetic
imaging of Earth.

2 Related work
1) Dataset Generation for Theoretical Geophysical Electromagnetic Models: We inno-
vated a method for producing datasets comprising theoretical geophysical electromag-
netic models and two-dimensional electromagnetic imaging data. Utilizing the SimPEG
framework [13], we systematically generated geophysical theory models, computed two-
dimensional electromagnetic resistivity response maps in a parallelized manner, and
archived them as training samples.

2) Application of Visual Network Models with Self-Attention Mechanisms: Our ex-
ploration into the application of self-attention-based visual network models in two-
dimensional electromagnetic imaging is noteworthy. Employing Swin–Unet as the foun-
dational network architecture, we processed real measurement data using the Neo4j graph
database. We designed pretraining tasks, enhanced loss functions by informing them using
geophysical priors, and trained the network with forward-modeled samples. A compre-
hensive assessment of the model’s performance was conducted to validate its efficacy.

3) Two-Dimensional Electromagnetic Imaging Network for transverse electric/trans-
verse magnetic (TE/TM) Joint Modes: We introduced a specialized two-dimensional
electromagnetic imaging network adept at integrating information from both TE and
TM modes. This integration significantly enhances the accuracy of imaging deep-seated
anomalies.

3 Methodology
In this segment, we elaborate on the Transformer’s encoder and decoder, the Swin–
Unet network architecture, the refined loss function, the method used to expedite model
training via elimination of background electromagnetic responses, and the merits of the
TE/TM joint mode.

3.1 Transformer’s encoder and decoder
The transformer network, a deep neural network model, adopts an encoder–decoder
framework [14]. The encoder transforms the input sequence into a set of representations,
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Figure 1 Transformer encoder–decoder structure [15]

while the decoder leverages these representations to generate the output sequence. In the
Transformer network, the encoder consists of multiple identical layers, each comprising a
self-attention mechanism layer and a feedforward neural network layer. The self-attention
layer evaluates the significance of each position in the input sequence, and the feedforward
layer conducts nonlinear transformations on these positional representations. Similarly,
the decoder is composed of identical layers, each containing a self-attention mechanism
layer and an encoder–decoder attention layer. This latter layer enables the decoder to
concentrate on relevant positions in the input sequence during output generation. The
encoder–decoder structure of the Transformer is depicted in Fig. 1.

In the described architecture, each layer of the encoder is composed of three sequential
modules: a self-attention module, a multi-head attention module, and a fully connected
layer module. Additionally, three residual connections are integrated, each bypassing one
of these modules. These connections merge with the original output through layer nor-
malization to produce the final output. The decoder, on the other hand, comprises multi-
ple identical layers, each containing a self-attention sub-layer, an encoder–decoder atten-
tion sub-layer, and a fully connected feedforward neural network. The input for the de-
coder includes the target sequence’s embedding vector and a weighted sum of the position
vectors from the encoder’s output, where weights are computed by the encoder–decoder
attention sub-layer. The decoder iteratively generates the output sequence, employing the
softmax function at each position to convert the output into a probability distribution [16],
with the highest probability determining the output for that position.
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Figure 2 Swin–Unet network structure [18]

3.2 Network architecture
Swin–Unet, a U-shaped image segmentation network, is built upon the Swin transformer
architecture [17] and incorporates the U-shaped structure and skip connections from
Unet [18], with Swin transformer blocks forming the encoder’s backbone. Additionally,
a symmetric decoder block extension, termed the patch-expanding layer, is integrated for
image reconstruction. The network’s architecture is illustrated in Fig. 2.

The encoder in Swin–Unet mirrors the Swin transformer’s setup [18]. The initial input
image of dimensions W × H × C is transformed into a vector of dimensions W

4 × H
4 × C

through patch partitioning and embedding. This vector undergoes feature learning in two
successive Swin Transformer blocks. The features’ dimensions and resolution remain un-
altered within these blocks. Patch-merging layers amalgamate smaller patches into larger
ones, concurrently augmenting feature dimensions and achieving multiscale feature fu-
sion. The encoder’s structure is characterized by shift-based window self-attention com-
putation, facilitating the learning of feature relationships from local to global scopes.

3.3 Loss function
In the realm of two-dimensional electromagnetic imaging, where model outputs are cat-
egorized similarly to image segmentation networks, the choice of loss function is pivotal
[19]. The cross-entropy loss function, prevalently used in image segmentation [20], aims to
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minimize the discrepancy between predicted and actual outputs, thus effectively address-
ing misclassifications and multi-class challenges. However, its use is limited by its inabil-
ity to differentiate the significance of pixels, which is crucial in electromagnetic imaging
tasks, particularly when detecting smaller anomalies. The cross-entropy function’s com-
putational bias towards the background can lead to small anomalies being overlooked.

Focal Loss is a variant of cross-entropy loss designed to address class imbalance in im-
age segmentation tasks. In scenarios where there is a significant imbalance between fore-
ground and background pixels, standard cross-entropy loss tends to focus more on the
majority class (background), leading to suboptimal performance for the minority class
(foreground or objects of interest). Focal Loss mitigates this by down-weighting the loss
for well-classified examples and focusing more on hard-to-classify examples.

The mathematical expression for Focal Loss is:

Focal Loss = –α (1 – pt)
γ log (pt) ,

where:
pt is the model’s estimated probability for the correct class.
α is a balancing factor to adjust the importance of positive and negative examples.
γ is the focusing parameter that reduces the loss contribution of well-classified exam-

ples.
In Swin–Unet, Focal Loss is especially useful for pixel-wise classification tasks, as it en-

hances performance in detecting smaller or less frequent classes, ensuring that the model
learns features from underrepresented pixels in segmentation tasks.

Dice Loss is a metric-based loss function commonly used for segmentation tasks to mea-
sure the overlap between the predicted segmentation and the ground truth. It is partic-
ularly effective in handling imbalanced datasets, where the number of background pixels
far exceeds the number of foreground pixels.

The Dice coefficient (D) is a measure of similarity between two sets, and the Dice Loss
is defined as:

Dice Loss = 1 –
2 ×

∣
∣
∣Y ∩ Ŷ

∣
∣
∣
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∣
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where:
Y represents the true labels (ground truth mask).
Ŷ represents the predicted labels (predicted mask).∣
∣
∣Y ∩ Ŷ

∣
∣
∣ denotes the intersection of the true and predicted labels (i.e., the number of

correctly classified pixels).
|Y| +

∣
∣
∣Ŷ

∣
∣
∣ represent the number of pixels in the true labels and predicted labels, respec-

tively.
This formula measures the overlap between the predicted and true segmentations, en-

suring that the model accurately captures the details of both foreground and background
in segmentation tasks. A Dice Loss close to 0 indicates that the model’s predictions closely
align with the true segmentation.

In the context of Swin–Unet, using this Dice Loss formula aims to maximize the over-
lap between the true segmentation and the predicted segmentation, thereby improving
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the accuracy of image segmentation, especially in scenarios with an imbalance between
foreground and background.

In image segmentation tasks, merging Dice Loss with Focal Loss creates a comprehen-
sive loss function. This synergistic approach balances the impact of different classes during
training and elevates the model’s performance in complex scenarios.

The Swin–Unet model in this study employs a combination of these loss functions, tai-
lored to the specific challenges of two-dimensional electromagnetic imaging, to ensure
nuanced and accurate anomaly detection.

This revised explanation offers a clearer, more technical insight into the network struc-
ture and loss functions used, and shows how they align with the sophisticated nature of
research in electromagnetic imaging.

The loss functions used in the Swin–Unet model in the original paper are as follows:

Losstotal = αLossFocal + (1 – α)LoceDice,

where α is the predefined weight of the loss function, defaulting to 0.4.
In two-dimensional electromagnetic imaging, anomalies often occupy a smaller spatial

area compared to the background in the samples. This disparity leads to a scenario where
LossFocal tends to converge more rapidly than LoceDice. During the middle and later stages
of training, the relatively stable LossFocal disproportionately influences the total loss func-
tion Losstotal , potentially undermining the effectiveness of the combined loss function. To
address this imbalance, we propose a loss function with dynamically adjustable weight
coefficients, thus enhancing the training process:

Loss′
total = α′LossFocal +

(

1 – α′)LoceDice. (2)

Here, α′ is defined as:

α′ =
1

1 + e–
(

Loss Focal–β
) · αvariable + αstatic. (3)

In this formulation, αvariable and αstatic are adjustable hyperparameters of the training
process. The parameter β represents a threshold for LossFocal , signaling its convergence
when it reaches or drops below this threshold. When the value of LossFocal exceeds β , the
value of α′ leans towards α; conversely, as LossFocal falls below β , α′ tends towards 0.

As illustrated in Figs. 3 and 4, the optimized loss function enables Dice Loss to converge
more rapidly. Although the training curve for Focal Loss shows greater fluctuation com-
pared to the pre-optimization phase, it still remains within a lower numerical range. Thus,
the refinement of the loss function markedly enhances the efficiency and effectiveness of
model training.

The model training utilizes the following hyperparameter configuration to optimize per-
formance and meet these challenges: the batch size is set to 48, optimized for 12 classifica-
tion categories. To prevent overfitting, a dropout rate of 0.1 is used. The model processes
patches of size 2 × 2, combined with an embedding dimension of 96, and employs Swin
Transformer layers with depths of [2, 6] and identical settings for decoder depths, enhanc-
ing the model’s representational capability.
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Figure 3 Comparison of training curves before and after loss function optimization (Dice Loss)

Figure 4 Comparison of training curves before and after loss function optimization (Focal Loss)

The adamw optimizer is used, with a learning rate set to 0.00015, a warm-up strategy
applied in the first 10 epochs, and a total of 3000 training iterations. The attention mech-
anism is configured with a varied number of heads at different levels, [3, 6, 12, 21], and a
window size of 7 × 7. The ratio of the dimensionality of the hidden layers in the MLP layer
to that in the attention mechanism is set to 4. The careful selection of these hyperparam-
eters aims to improve the model’s ability to detect small-scale anomalies in images while
maintaining awareness of broader features The specific model depths and hyperparame-
ters are shown in Table 1.

3.4 Model training acceleration method
This paper introduces an innovative approach to mitigate the influence of background
electromagnetic responses in forward modeling for two-dimensional electromagnetic
imaging. In many instances, a significant portion of the electromagnetic responses gen-
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Table 1 Training hyperparameter list

Hyperparameter name Setting value Description

batch_size 48 Batch Size
num_classes 12 Number of Classes
drop_rate 0.1 Dropout Probability
patch_size 2 Patch Size
embed_dim 96 Embedding Dimension
depths [2, 6] Depth of Each Swin Transformer Layer
decoder_depths [2, 6] Depth of Each Decoder
optimizer.name adamw Optimizer
learning_rate 0.0005 Learning Rate
warmup_epochs 10 Warmup Epochs
epochs 3000 Training Epochs
num_heads [3, 6, 12, 21] Number of Attention Heads
window_size 7 Window Size
MLP_ratio 4 Ratio of MLP Layer Hidden Dimension to Attention

Mechanism Dimension

erated corresponds to background noise, which can hinder the model’s learning efficacy
[22, 23]. Our method involves treating the vectors corresponding to zero-value blocks in
input sample regions as null vectors, effectively disregarding any relative positional offsets.
This approach sets all self-attention computations associated with these regions to zero,
thereby masking the irrelevant background information. Consequently, this strategy al-
lows the model to concentrate more intently on detecting and processing anomaly-related
responses during its training phase. Additionally, incorporating samples that partially rep-
resent anomaly responses during training can bolster the model’s capacity to discern and
understand the relationships present in the data, thereby enhancing overall accuracy. The
implementation process encompasses the following steps:

1. Integrate a masking layer atop the relative positional bias matrix in the original net-
work model. This layer sets the relative positional bias for zero vectors to zero.

2. Employ a sample generation program to create background electromagnetic re-
sponses for two-dimensional electromagnetic imaging in scenarios devoid of anomalies,
denoted as RBackground.

3. Compute the difference between the input electromagnetic responses RSample of the
training samples and RBackground as follows:

RDiff = smaller_zeroing(RSample – RBackground)

Here, RDiff encapsulates the anomaly response information within RSample. The function
‘smaller_zeroing’ nullifies elements in the matrix whose absolute values are below a set
threshold. This step is crucial, as additive noise is inherent in the generation of both back-
ground electromagnetic responses and anomaly responses. The exclusion of this noise is
imperative to prevent its interference with self-attention calculations. Figure 5 illustrates
the process of generating RDiff .

4. Adapt the model’s data loader for training to accommodate RDiff data. Incorporate a
switching function in the data loader, enabling it to alternate between loading input sam-
ples from RSample and RDiff .

5. Introduce a training hyperparameter λ, signifying the likelihood of the data loader
selecting RDiff for input data loading. As the training progresses, λ gradually diminishes to
zero. Post-training, the model requires only the original electromagnetic response maps
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Figure 5 RDiff generation process

Figure 6 Comparison of convergence changes in loss function before and after improvement

for imaging purposes, obviating the need for input masking responses. Figure 3 depict the
loss function’s convergence curves during training, both with and without the background
electromagnetic response elimination method. The graph demonstrates that this method
significantly augments the model’s training efficiency.

Next, we will introduce how patch embedding is performed in the network. In the Swin
Transformer, to handle large-scale data, the input data needs to be divided into many small
patches, each of which is embedded into a vector.

As shown in Fig. 7, the input two-dimensional raw data first passes through a two-
dimensional convolution layer, where both the stride and kernel_size of the convolution
layer are set to the same size as the hyperparameter patch_size, and the bias is set to 0.
The number of output channels of the convolution layer is set to the dimension of the
embedding vector. In the figure, embed_dim is exemplified with a value of 1.
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Figure 7 The computation process of patch embedding

Figure 8 Convolution computation process

After the convolution, the data is flattened and undergoes a dimensional transformation
through a linear embedding operation, ultimately resulting in the vector representation
corresponding to each patch.

The computation process of the convolution operation is shown in Fig. 8. As can be seen,
when the convolution bias is set to 0, the result of any convolution kernel scanning an area
where all values are zero is also 0. The result of the convolution is then organized through
a linear embedding operation into a set of vectors corresponding to the patch regions. For
patches where all values are zero, the corresponding vector representation is a zero vector.

3.5 Transformer relative position encoding for TE/TM joint mode
In the context of electromagnetic imaging, the TE/TM joint mode amalgamates data from
both the TE and TM modes. This combined approach leverages the strengths of each
mode to counterbalance their respective limitations, offering a more holistic insight into
subsurface structures [24], particularly helpful in discerning electrical variations in verti-
cal and horizontal orientations. The application of this integrative mode facilitates high-
resolution electromagnetic imaging across a broader depth spectrum, thereby rendering
the interpretation of underground structures more accurately.

To effectively train models utilizing TE and TM joint modes, it is essential to concur-
rently input dual resistivity response maps corresponding to these modes [21]. This cross-
modal input necessitates significant alterations in the network architecture, thus increas-
ing computational and storage demands and prolonging training durations. In response,
we approach TE and TM data as a unified modality, directly concatenating the two re-
sponse maps as network inputs. However, this straightforward concatenation introduces
a challenge: the boundary regions of the two maps, which are not initially contiguous,
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might be misinterpreted as adjacent by the model post-concatenation [25]. To mitigate
this issue, we introduce a Transformer relative position encoding scheme specifically tai-
lored for the TE/TM joint mode.

The Swin transformer employs relative position encoding to adeptly capture the relative
positional information within sequence data [26]. This method, in contrast to traditional
absolute position encoding, is more suitable for managing sequences of varying lengths,
particularly for extensive sequences. In the Swin Transformer, relative position encoding
is implemented by inserting relative position embeddings before each self-attention layer.
These embeddings comprise two components: one from absolute position encoding and
another from relative position encoding. The latter adopts a sinusoidal position encoding
pattern, assigning each position a fixed-length vector and encoding positions using sine
and cosine functions. This strategy effectively retains the relative distance information
among adjacent sequence positions, thus enhancing the capture of local patterns.

In the Swin transformer, the equation for each windowed self-attention computation is
formulated as follows:

Attention (Q, K , V ) = SoftMax
(

QKT/
√

dk + B
)

V . (4)

Here, Q, K, V, and dk are analogous to their counterparts in the standard self-attention
computation. Q, K, and V denote matrices composed of query, key, and value vectors,
respectively, while dk represents the dimensions of the key vectors. B symbolizes the rela-
tive position of the encoding bias matrix. Notably, the dimensions of Q and K are w2 × N,
where w is the window size and N is the embedding vector dimension. Consequently, the
dimensions of QKT and B are w2 × w2 × N. Given the uniformity of the position encod-
ing offset index matrix across the embedding vector dimensions, it suffices to compute a
single two-dimensional offset index matrix, then replicate this matrix along the embed-
ding vector dimension. The offset index matrix, of size w2 × w2, represents each patch
within the window, with each column denoting the relative position index for each patch,
inclusive of itself. Upon generating the index matrix, each index fetches the relative posi-
tion bias from the relative position bias table (a trainable tensor). Figure 9 elucidates the
computation process of the relative position bias matrix for a window size of 2.

To rectify the positional information discrepancies when concurrently inputting TE/TM
response data into the network, we propose an advanced strategy for transformer relative
position encoding, specifically tailored for TE/TM joint mode:

1) Patch Embedding with Type Markers: During the patch-embedding process for each
small block region, we append a TE/TM type marker at the end of the corresponding
vector. The TE mode is denoted by a marker value of –1 and the TM mode by 1. Con-
sequently, this alteration modifies the output data format of the patch embedding from
the original structure (batch, window_nums, window_size × window_size, N) to (batch,
window_nums, window_size × window_size, N + 1).

2) Data Transformation Operations: The network architecture is adapted to segregate
the type markers prior to executing transformation operations and then to reintegrate
them afterward. The patch-merging process scales up low-resolution feature maps to align
with high-resolution maps and concatenates them in channel order, thereby altering the
feature map size. To address this, we implement separate patch-merging operations for
the original data and the type markers and then merge them, ensuring the integrity of the
type of information.
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Figure 9 Relative positional offset matrix computation process

Figure 10 The computation process of the mask “Mask_CrossReg”

With these steps, TE/TM type marker information for each patch becomes accessible
during windowed self-attention computation. The marker information tensor is denoted
as “Pos”. We then generate a cross-region mask “Mask_CrossReg” using the marker infor-
mation tensor:

MaskCrossReg = Posflatten × Posflattentrans

As illustrated in Fig. 10, the regions where MaskCrossReg
[

MaskCrossReg > 0
]

indicate that
the corresponding rows and columns belong to small block regions of the same type. Con-
versely, regions where MaskCrossReg

[

MaskCrossReg = 0
]

signify that rows and columns cor-
respond to small block regions of different types.
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Figure 11 Subsurface spatial grid distribution

Subsequently, “Mask_CrossReg” is applied to the relative position bias matrix. In the
resulting matrix, after masking operation, elements equating to 0 are replaced by a cross-
region bias δ, a trainable parameter, typically initialized as 1. This modified relative posi-
tion encoding maintains the same relative position bias for small blocks of the same type
that was present prior to modification. For small blocks of different types, their relative
position bias is substituted by the cross-region bias δ.

4 Experimental results and analysis
This section delineates the acquisition of the pre-training dataset, quantitative evaluation,
and imaging analysis under the TE mode, including a comparative assessment of the TE
mode versus the TE/TM joint mode.

4.1 Dataset
To generate a diverse range of geological models, we developed a script that automates the
process. The geophysical simulation framework SimPEG was employed for forward mod-
eling calculations, augmented by the Intel Math Kernel Library [27] to parallelize these
computations, thereby acquiring 2D electromagnetic apparent resistivity response maps
of the theoretical models. The implementation entailed the following steps:

1. Spatial Grid Construction: An underground spatial grid was established, extending
from –4 km to 4 km in the X-direction and from 0 km to 10 km in the Y-direction, as
depicted in Fig. 11.

2. Automatic Generation of Theoretical Models: A program was created for the auto-
mated generation of theoretical models. This program randomly determines the number,
size, and distribution of anomalies within these models. The surrounding rock’s resistivity
was fixed at 100 � · m. For the anomalies, resistivity values were randomly selected from
either a low resistivity range (1–100 � · m) or a high resistivity range (200–10,000 � · m).
The aim of this randomization of positions and arrangements of anomalies is to enhance
the diversity of the training samples. Figure 12 illustrates the varied theoretical model
samples generated. To simplify the model computations, resistivity values were classified
into 12 categories based on their magnitude, as summarized in Table 2.

3. Electromagnetic Forward Modeling: The SimPEG framework was utilized to develop
the electromagnetic forward modeling program. Measurement points were placed along
the x-axis at 100-meter intervals, totaling 81 points. The program also set 55 frequency
points within a specified range, as detailed in Table 3.
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Figure 12 Diversity theoretical model sample

Table 2 Classification of theoretical model anomaly body resistivity

Classification code resistivity range (� ·m)

1 (1, 5]
2 (5, 10]
3 (10, 25]
4 (25, 50]
5 (50, 200]
6 (200, 500]
7 (500, 1000]
8 (1000, 1500]
9 (1500, 2000]
10 (2000, 3000]
11 (3000, 5000]
12 (5000, 10000)

Table 3 Frequency range

Frequency/Hz

0.034 0.044 0.057 0.686 0.858 0.108 0.137 0.177 0.228 0.274
0.343 0.434 0.549 0.709 0.915 1.098 1.373 1.739 2.197 2.838
3.662 4.394 5.493 6.958 8.789 11.35 14.64 17.57 21.97 27.83
35.15 45.41 58.59 70.31 87.89 111.3 140.6 181.6 234.3 281.25
351.5 445.3 562.5 726.5 937 1218 1593 2062 2625 3281
4125 5156 6562 8343 10,406

The SimPEG framework facilitated the electromagnetic forward modeling calculations,
generating apparent resistivity response maps for both TM and TE modes. These response
maps served as input samples, with the data from theoretical models providing labeled
samples. Each pair of input and labeled samples was assigned a unique ID to maintain a
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Table 4 Performance benchmark testing of 2D electromagnetic forward modeling accelerated with
MKL parallelization

Number of enabled CPU cores Time for 100 calculations
(seconds)

Average time per single calculation
(seconds)

1 (Without MKL) incomplete 631
8 4614.5 46.14
16 2861.3 28.61

one-to-one correspondence. The use of the Intel Math Kernel Library significantly expe-
dited the computations [27], reducing the computation time by more than ten times com-
pared to non-parallel processing. The efficiency benchmarks are presented in Table 4. The
sample generation script demonstrated high efficiency, producing 60,000 training sam-
ples. Using 16-core parallel acceleration on a workstation equipped with an Intel i9-13900k
CPU, the generation process spanned approximately 20 days.

4.2 Real dataset
For pretraining, a substantial dataset of unsupervised real electromagnetic responses from
the Earth is necessary. This research utilized data compiled by the Incorporated Research
Institutions for Seismology (IRIS) spanning from 2000 to the present, encompassing over
5200 geoelectric measurement points globally. The data can be accessed at IRIS Electro-
magnetic Transfer Functions (http://ds.iris.edu/spud/emtf). However, the individual data
from these measurement points cannot be directly used for pretraining a 2D imaging net-
work. It is essential to connect these points along specific orientations to create measure-
ment lines. The frequency point responses at each measurement point on these lines were
arranged based on their spatial positions, forming resistivity response images for each
measurement line, which were then used as pretraining samples.

Additionally, the Neo4j graph database was employed to manage the measurement point
data. Utilizing Neo4j’s graph storage structure, which facilitates adjacency properties, spa-
tial and other relational data were attached to the nodes, allowing for efficient O(1) time
complexity when executing spatial-relationship-related queries, thus achieving near-real-
time query speeds.

4.3 TE mode imaging analysis
To validate the efficacy of our geoelectric electromagnetic imaging method utilizing the
Swin–Unet network, we conducted numerical simulation experiments. These experi-
ments covered nine distinct scenarios involving various shapes and locations of anoma-
lous bodies. The experimental findings reveal that this method can complete an imaging
process in approximately 30 milliseconds, significantly outpacing traditional inversion al-
gorithms in terms of computational efficiency. Figures 13 to 21 display the imaging out-
comes for these nine scenarios. The first column in each figure illustrates the theoretical
resistivity model, while the second column presents the imaging results obtained from
deep learning predictions.

The deep learning model demonstrated high accuracy in scenarios with larger, shallow-
depth anomalous bodies or simpler geological structures, closely mirroring the theoretical
models. However, challenges arose with smaller, deeper anomalous bodies and in situa-
tions with multiple closely spaced anomalies. The primary challenges were as follows:

http://ds.iris.edu/spud/emtf
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Figure 13 Theoretical resistivity model and imaging results (high-resistance anomaly)

Figure 14 Theoretical resistivity model and imaging results (low-resistance anomaly)

Figure 15 Theoretical resistivity model and imaging results (high- and low-resistivity anomalies arranged side
by side)

Figure 16 Theoretical resistivity model and imaging results (multiple anomalies)

1. Depth Sounding Sensitivity: Geoelectric methods are more receptive to low-resistivity
anomalies but offer lower resolution for high-resistivity ones. The vertical resolution de-
creases with depth, leading to unreliable deep learning model imaging for deeper anoma-
lies. When anomalies are proximate, their response data intermix, complicating identifi-
cation.

2. Mode Limitations: The experiments relied solely on TE mode response data, which
focus on shallow subsurface structures. The absence of TM mode data, which are more
sensitive to deeper structures, limited the model’s accuracy for deeper anomalies.
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Figure 17 Theoretical resistivity model and imaging results (low- and high-resistivity anomalies arranged
vertically)

Figure 18 Theoretical resistivity model and imaging results (dual high-resistance anomalies)

Figure 19 Theoretical resistivity model and imaging results (dual low-resistance anomalies)

Figure 20 Theoretical resistivity model and imaging results (high- and low-resistance anomalies, closely
spaced)

Figure 21 Theoretical resistivity model and imaging results (small high- and low-resistivity anomalies, greater
depth)
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Figure 22 Comparison of imaging results between TE mode and TE/TM mode (a)

Figure 23 Comparison of imaging results between TE mode and TE/TM mode (b)

4.4 TE/TM Joint Imaging Experimental Results
Imaging results from the TE/TM joint mode model are showcased in Figs. 22, 23, and 24.
In these figures, the first column represents the theoretical resistivity models, the second
column displays results from the TE mode-trained deep learning network, and the third
column presents predictions from the TE/TM joint mode-trained network.
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Figure 24 Comparison of imaging results between TE mode and TE/TM mode (c)

Table 5 Comparison of performance of 2D geoelectromagnetic imaging methods based on deep
learning (a)

IOU
(small dataset)

DSC
(small dataset)

Boundary IOU
(small dataset)

IOU
(small dataset)

DSC
(small dataset)

Boundary IOU
(small dataset)

PSPNet 0.924 0.837 0.207 0.956 0.854 0.290
Unet 0.925 0.838 0.209 0.954 0.853 0.287
Swin–Unet 0.919 0.832 0.200 0.971 0.865 0.324

For deep-seated and small anomalies, the neural network trained with TE/TM joint
mode data showed marked improvements in imaging accuracy over the model trained
using the TE mode only.

4.5 Quantitative evaluation
For quantitative assessment, traditional image segmentation network architectures like
the Unet network [28] and the PSPNet network [29] were selected for comparison. We
adapted the data loaders of these networks to the specific requirements of geoelectric 2D
imaging, setting with the in_channel network hyperparameter as 1 and the n_classes hy-
perparameter as 12. Both the Unet and PSPNet networks were trained on our constructed
geoelectric 2D imaging dataset. To evaluate network performance across different data
scales, training was conducted on both a small-scale dataset (6000 pairs) and a large-scale
dataset (60,000 pairs), with quantitative evaluations carried out using validation sets. The
evaluation results for the TE mode are presented in Table 5.

Given that anomalies in the training dataset generally occupy a smaller area compared
to the background (surrounding rock), the Intersection over Union (IOU) metric tends to
yield high values. Taking various metrics into account, the results demonstrated that on
the smaller dataset, the CNN-based geoelectric 2D imaging method achieved a notably
higher accuracy than the Swin–Unet network-based approach. However, the Swin–Unet-
based method outperformed the CNN-based method when trained on the larger dataset.
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Table 6 Comparison of performance of 2D geoelectromagnetic imaging methods based on deep
learning (b).

Method IOU DSC Boundary IOU

Swin–Unet (TE) 0.971 0.865 0.324
Swin–Unet (TE/TM) 0.964 0.897 0.329

The quantitative evaluation results for the TE/TM joint mode are shown in Table 6. It is
observed that networks trained with the TE/TM joint mode registered slightly lower IOU
scores compared to those trained solely with the TE mode. Yet, they exhibited significantly
better Dice similarity coefficient (DSC) and boundary IOU scores than the TE mode-only
networks. The IOU and DSC are metrics evaluating the overlap between predicted and
actual segmentation results, although they differ in computation. While the IOU is the ra-
tio of the intersection to the union of true positives, false positives, and false negatives, the
DSC measures the ratio of twice the intersection to the sum of true positives and the sum
of false positives and false negatives. Hence, a high IOU can occur with substantial overlap
in segmentation results, but DSC might be lower if there are numerous false positives or
negatives. Networks trained with the TE/TM joint mode showed a stronger capability in
reducing errors in geoelectric imaging and superior performance in delineating anomaly
boundaries.

5 Discussion
Our study extensively explored 2D geoelectric electromagnetic imaging technology, with
a focus on deep learning-based approaches. While significant advancements were made,
there remain areas for improvement:

1. Data Requirements: The current dataset is somewhat limited for effective pretraining,
necessitating collaboration with more organizations to achieve a more expansive collec-
tion of geoelectric sounding.

2. Model and Data Realism: Theoretical models differ from actual geological conditions.
Optimizing the shapes of anomalies in these models and expanding the number of training
samples are thus crucial.

3. Network Scale: Limited hardware capabilities restrict data categorization, impacting
the precise identification of anomalies. Expanding network scale through enhanced hard-
ware or supercomputing platforms could improve accuracy.

Future research directions:
1. Data augmentation: Investigate data augmentation techniques to improve the model’s

robustness against different noise levels and uncertainties.
2. Model simplification: Explore more streamlined model architectures to reduce com-

putational costs and improve inference speed while maintaining imaging quality.
3. Cross-domain applications: Research the application of this method in other geophys-

ical imaging techniques to assess its generality and adaptability.
4. Uncertainty analysis: Conduct uncertainty analysis on model outputs to evaluate the

impact of various factors on imaging results, thereby improving the
In summary, while our exploration of 2D geoelectric electromagnetic imaging has made

substantial strides, addressing these limitations and pursuing these future research direc-
tions will be essential to enhance the robustness, accuracy, and applicability of deep learn-
ing approaches in geophysical exploration. This will ultimately contribute to a deeper un-
derstanding of subsurface structures and more effective resource management.
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6 Conclusions
We have developed an advanced method for two-dimensional magnetotelluric imaging
based on a visual self-attention mechanism. Our research aims to address the complex
and time-consuming issues present in traditional two-dimensional magnetotelluric inver-
sion imaging methods. These traditional methods, such as finite element, finite difference,
and finite volume methods, face large-scale nonlinear inverse problems and the issue of
multiple possible solutions, meaning different subsurface conductivity structures could fit
the same measured data, making it challenging to find a unique solution.

To overcome these challenges, we have embraced the latest advancements in deep learn-
ing technology. We utilized neural network models to process electromagnetic response
data directly, generating corresponding subsurface conductivity images. This approach
significantly improved computational efficiency and reduced the issue of multiple solu-
tions. However, the accuracy of the model predictions heavily depends on the distribution
of the sample data, and discrepancies between theoretical models and actual geological
settings might affect performance.

To address these issues, we took the following key steps:
1. We developed a geophysical theoretical model generator to produce various geoelec-

tric theoretical models in batches.
2. We used a forward program based on the finite volume method to generate magne-

totelluric responses, with sample generation efficiency being enhanced via parallel accel-
eration optimization.

3. We collected real magnetotelluric data from open source data sources and con-
structed a magnetotelluric pre-training sample generator based on a graph database to
enhance the model’s generalization to real data and reduce its dependence on extensive
supervised training data.

4. We built a two-dimensional magnetotelluric imaging network based on the Swin–
Unet model. The self-attention mechanism in this network offers superior modeling ca-
pabilities and better captures the relationships present in the data, thereby improving the
model’s accuracy and generalization.

5. We introduced a training acceleration method based on prior geophysical knowledge
and improved the existing loss function to effectively enhance the training efficiency of
the model.

Additionally, to address the issue of incomplete information on deep anomalous struc-
tures in the model when only TE mode response data are available, we applied a TE/TM
joint mode magnetotelluric 2D imaging method. The experimental results from this
method demonstrate that our approach significantly enhances the accuracy and efficiency
of two-dimensional magnetotelluric imaging, along with improved generalization capabil-
ities.
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