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Abstract
On rainy days the uncertainty of the shape and distribution of rain streaks can cause
the images captured by RGB image-based measurement tools to be blurred and
distorted. Thanks to the wavelet transform ability to provide spatial and frequency
domain information about an image and its multidirectional and multiscale nature, it
is widely used in traditional image enhancement methods. In image deraining the
distribution of rain streaks is not only related to spatial domain features but is also
closely related to frequency domain spatial features. However, deep learning-based
rain removal models mainly rely on the spatial features of the image, and RGB data
can hardly distinguish rain marks from image details, which leads to the loss of crucial
image information during rain removal. We have developed a lightweight
single-image rain removal model called the deep wavelet transform network (DWTN)
to address this limitation. This method separates image details from rain images and
can more effectively remove rain marks. The proposed DWTN has three significant
contributions. First, DWTN uses the feature components after the wavelet transform
as the input to the model and assigns a separate frequency-aware enhancement
block (FAEB) to each element. These blocks focus on specific frequency features that
benefit the rain removal task. Second, we introduce a frequency feature fusion block
(FFFB) that fuses different wavelet components to reduce noise and enhance the
image background through a channel attention mechanism while attenuating rain
streaks. Finally, we design a spatial feature enhancement block (SFEB), which uses a
spatial attention mechanism to calibrate the spatial position of features to improve
the rain removal performance. We evaluate the performance of DWTN using PSNR
and SSIM on four synthetic datasets and NIQE and BRISQUE on two real datasets. The
results of the evaluation of the six datasets and at least four performance metrics
show that the proposed DWTN is superior to existing methods.
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1 Introduction
The performance of high-level vision measurement task system is hightly dependent on
the quality of input images in machine vision-based task system, such as autonomous driv-
ing [1] and object detection [2]. In rainy weather, rain streaks can cause severe degradation
in the quality of images captured by vision measurement system [3]. Specifically, suppose
the degradation model is Iclr = Ir – R, where Iclr represents a clean image in the image de-
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raining problem, and Ir and R denote a rainy day image and streaks obtained through the
network. According to that, deraining networks have become a popular tool for perform-
ing high-level vision tasks due to their ability to remove rain streaks from images [4]. Since
the birth of JORDER [5] in 2017, human experts have conducated a huge number of ex-
periments and consequently devised serval useful structures, such as SCAN [6] and PDR-
Net [7]. However, designing an effective rain removal network has two main chanllenges.
Firstly, the deranining task is the pretask of the high-level vision task, so the execution
efficiency of the rain removal network affects the execution efficiency of the high-level
vision task. Secondly, the output image quality of the rain removal network also directly
affects the performance of the high-level vision task. The optimal network architecture
and parameters depend on the specific rain streaks distribution, image content, and de-
sired trade-off between removing rain streaks and preservation of image details [8].

Most existing single image rain removal methods work in the RGB domain. Jiang et al.
[9] proposed a multiscale progressive fusion network for image deraining by excavating
and exploiting the inherent correlations of rain streaks across different scales. However,
the limited receptive field of the convolution and the characteristic of capturing the local
features hinder the ability of the model to eliminate rain streaks. To alleviate such limita-
tions, Xiao et al. [10] utilize a more general transformer to replace CNNs as the network
backbone. Transformers can better model the nonlocal information for high-quality image
reconstruction. RGB domain-based work has achieved significant success in single-image
deraining tasks because of its complex and deeper network architecture. However, these
methods have difficulty in separating the rain pattern from the real image content [11, 12].

Many traditional methods [13] have shown that reconstructing degraded images is more
straightforward in the frequency domain. Wavelet-based approaches have been exten-
sively studied in computer vision and have exhibited excellent performance in various
tasks such as classification [14], image denoising [15], and image deraining [16]. Using
wavelet transform in the image deraining task has four main advantages. First, wavelet
transforms can decompose an image into components of different scales, and rain pat-
terns also appear in images at various scales so that the model can analyze image features
at different resolutions. This facilitates the removal of rain streaks of different sizes and
shapes. Second, wavelet transforms can provide spatial and frequency information about
an image, and rain streaks often cause local changes in space and frequency. Third, wavelet
transforms can effectively separate noise (such as rain streaks) from the signal (image con-
tent) in an image. With appropriate thresholding, raindrop noise can be suppressed in the
wavelet coefficient space while retaining the main details of the image. Fourth, wavelet
transforms can provide multidirectional decompositions, making them very effective in
detecting and processing raindrop marks with directionality. Liu et al. [17] constructed a
U-Net structured image restoration network using multiscale features generated by the
wavelet transform, an early study of using the wavelet transform for image restoration in
deep learning. Hsu et al. [18] also referred to the U-Net structure to design the network
and used a wavelet transform to divide the image into high- and low-frequency parts. Fi-
nally, the results are mixed and concatenated layer by layer to improve the image-deraining
effect. In most wavelet transform-based image deraining studies, scholars have directly
spliced image features of various frequencies after wavelet transformation and then used
deep learning networks to recover images. Although these methods have achieved some
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success in the rain removal task, they ignore the characteristics of the different frequency
features and the correlation between them.

To resolve this problem, we propose a novel lightweight multistage image de-raining
network using wavelet transform called Deep Wavelet Transform Network (DWTN).
The input image features are converted into high- and low-frequency features using
a wavelet transform, and the image is restored by removing the rain streaks from the struc-
tural information of the low-frequency features and the detailed information of the high-
frequency features. After the wavelet transforms, the network module responsible for the
low-frequency features learns and restores the structural and textural information of the
image from the low-frequency features, whereas the network module responsible for the
high-frequency features removes the rain pattern from the high-frequency features and
preserves and enhances the edge detailed information of the image.

Unlike previous single-image deraining networks based on wavelet transforms, the
DWTN proposed in this paper processes each feature component individually, allow-
ing the subnetwork to focus on the feature components of one characteristic, resulting
in the reconstruction of better image structures and the restoration of more detailed im-
age textures. To improve the ability of the network to remove rain and preserve more
detailed information, we have incorporated low-frequency feature information into the
high-frequency network using the frequency feature fusion module (FFFB). This helps to
enhance the high-frequency features. We have also introduced high-frequency feature in-
formation into the low-frequency network through FFFB to enhance the low-frequency
features. By doing this, FFFB enables the network to effectively capture the relationship be-
tween high- and low-frequency features, resulting in more effective removal of rain streaks
in the image. By adjusting the network parameters, DWTN can implement rain removal
networks with different parameter sizes according to different working scenarios to meet
the requirements of different working scenarios on model real time and performance.
We show experimental results that demonstrate the effectiveness of DWTN, as shown
in Fig. 1. The experimental results show that our method outperforms the state-of-the-
art single-image rain deraining methods in standard benchmark tests. In the Rain200L,
Rain200H, Rain800, and Rain1400 benchmark tests, our method achieves significantly

Figure 1 Single image deraining on the Rain200L dataset. Our method performs much better than other
state-of-the-art algorithms
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higher PSNR and SSIM scores, proving its effectiveness in removing rain streaks while
preserving image structure and details. The advantages of our approach are mainly in the
a priori knowledge of the wavelet transform, which allows the network to achieve stronger
image deraining using fewer parameters, and the lightweight network enables higher real-
time performance and allows subsequent high-level visual tasks to be performed more
efficiently.

The contributions of this study are summarized as follows:
• We propose a novel method, Deep Wavelet Transform Network (DWTN). It

implements a lightweight network and high-quality image deraining by introducing a
prior knowledge of wavelets into the network. In addition, DWTN uses a
Frequency-Aware Enhancement Block (FAEB) to extract feature information at
different frequencies and then uses a Spatial Feature Enhancement Block (SFEB) to
preserve more detailed information for image restoration.

• We have designed and implemented a frequency feature fusion mechanism (FFFB). By
exploring the existence of latent relationships between high- and low-frequency
features the network can remove streaks from images more efficiently.

• The experimental results demonstrate that the proposed DWTN delivers significant
enhancements in performance on both synthetic and real datasets when compared to
the most advanced methods currently available.

The subsequent sections of this work are structured as follows. Section 2 provides an
overview of previous research, specifically focusing on deraining networks that utilize
deep learning techniques and picture enhancement methods based on wavelet transforms.
Section 3 presents the proposed DWTN network designed for single image deraining.
Section 4 includes comparisons with state-of-the-art techniques, comments, and ablation
studies. The report concludes in Sect. 5, summarizing findings and outlining potential
areas for future research.

2 Related work
2.1 Deep learning-based deraining networks
A rain removal network is an end-to-end neural network where the input contains rain
streaks, and the output is a clean image with the rain streaks removed. The rain removal
network aims to remove rain streaks while preserving the structure and detailed infor-
mation in the image [19, 20]. Convolutional neural networks (CNNs) are a widely used
method trained on a dataset of paired rain images and clean images. It then uses a loss
function to quantify the difference between the rain and clean images. Over the past few
years, many methods have been invented to remove rain streaks from a single input image.
These methods can be divided into two categories, CNN-based and transformer-based.
Since deep residual networks [21] have performed well in complex visual tasks, Fu et al.
[22] proposed a deep detail network (DDN), which uses a continuous network topology
to improve the rain removal effect in the model. Unlike Fu et al., Ren et al. [23] proposed
a simple and efficient progressive rain removal network that achieves image rain removal
and reduces the number of model parameters by sharing parameters at multiple levels.

The main goal of low-level visual tasks is to improve the quality of input images for high-
level visual tasks. Consequently, the effectiveness of complex visual tasks is impacted by
the pace at which more straightforward visual tasks are performed. Fu et al. [24] intro-
duced a lightweight deraining network called LPNet. This network utilizes the feature
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pyramid and residual structures to extract multiscale features from a picture, resulting in
image restoration. Xia et al. [6] introduced the RESCAN method to identify connections
between different levels of picture characteristics to improve the performance of the pro-
gressive deraining network. The transformer model has the ability to capture correlations
between features that are far apart and represent global features. This makes it highly ca-
pable of executing various complex tasks, including natural language processing [25] and
computer vision [26].

Transformer-based network models such as IPT [27], Uformer [28], SwinIR [29],
Restormer [30], and SDNet [31] have been used for low-level vision tasks. Chen et al. pro-
posed the pretrained image processing transformer (IPT) model, which combines multiple
head-tail structures and codec structures to solve low-level vision tasks. It has been trained
and verified on many datasets, and the results show that IPT outperforms CNN-based
models in multiple tasks such as image deraining, denoising, and quality enhancement,
demonstrating the advantages of Transformer in model performance. Uformer utilizes a
hierarchical codec framework similar to U-Net and uses nonoverlapping local windows to
calculate self-attention while integrating local feature enhancement modules to improve
the ability of Transformer models to process local information. In addition, some schol-
ars have introduced neural architecture search (NAS) methods in the image restoration
task [32, 33], which obtain deraining models through search networks with differentiable
parameters. Zhang et al. [34] proposed a hierarchical neural architecture search model
(HiNAS) for image denoising. This method uses a gradient-based network search algo-
rithm and creates a hierarchical search space with an adaptive perception field to obtain
a model with excellent performance. Quan et al. [35] proposed the CCN network, which
is the first work to use NAS in the image deraining task. The network searches for a rain
removal network and a raindrop removal network separately through NAS. It combines
the two networks in a cross-way to achieve the effect of removing rain and raindrops si-
multaneously. However, because rain and image contents are mixed in the RGB domain,
image details will inevitably be lost when rain is removed.

2.2 Wavelet transform-based image reconstruction
Over the past decades, wavelet-based methods have been explored in many computer
vision tasks, including image classification [36], face aging [37], style transfer [38], etc.
Among them, wavelet transforms are most widely used in low-level vision tasks, such
as image superresolution [39], image denoising [15], and image deblocking [40]. Re-
cently, some researchers have combined the wavelet transform with deep neural networks
in image processing tasks [41, 42]. Liu et al. [43] proposed a Multilevel Wavelet CNN
(MWCNN) network for image restoration. The network is a multilayered structure that
applies wavelet transforms to different frequency subbands of the image. The authors de-
signed a convolutional neural network that learns the coefficients of these wavelet trans-
forms to improve the quality of image recovery. This combination of wavelet transforms
and convolutional neural networks better preserves the structural information of the im-
age while reducing the noise. Demirel et al. [44] performed image superresolution by in-
terpolating the high-frequency subimage obtained from the discrete wavelet transform
(DWT) with the original image. Several researchers [22, 45] have demonstrated that deep
neural networks operating in the RGB domain are not successful in learning the trans-
formation from images containing rain to images free of rain. Initial investigations into
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rain removal typically employed decomposition [46] and filtering [22] techniques to iso-
late rain streaks from photos. Due to the more in-depth examination of rain removal jobs,
the conventional methods are no longer appropriate. Scholars have successfully employed
the wavelet transform to remove rain from images [47].

Unlike previous wavelet transform-based rain removal networks, the method proposed
in this study utilizes the wavelet transform to process the image high-frequency details
and low-frequency structures. It introduces novel frequency-aware enhancement block
(FAEB), frequency feature fusion block (FFFB), and spatial feature enhancement block
(SFEB). The streaks are removed while preserving the low-frequency information of the
image. In the high-frequency part, detailed enhancement is achieved by dense residuals
and low-frequency guidance, significantly improving model performance.

3 Method
In this study, our goal is to decompose the input image features into high- and low-
frequency features by a wavelet transform, preserve the high-frequency details of the im-
age, reconstruct the low-frequency structure of the image in the decomposed features, and
finally achieve the effect of removing the rain streaks in the restored image. Section 3.1 in-
troduces the overall structure of the Deep Wavelet Transform Network (DWTN). Then
Sect. 3.2 provides the Frequency Awareness Enhancement Block (FAEB) implementation
process. Then the design ideas and details of the frequency feature fusion block (FFFB)
and spatial feature enhancement block (SFEB) are discussed in Sects. 3.3 and 3.4. Finally,
the methods and loss functions for image reconstruction are introduced in Sect. 3.5.

This study proposes a deep wavelet transform network that is capable of removing rain
streaks from an image while preserving image details and reconstructing the image struc-
ture, as shown in Fig. 2. The network consists of four parts: a shallow feature extraction
network, frequency feature enhancement and cross-fusion network, spatial feature en-
hancement network, and image restoration network. To construct deep learning networks
with various parameter scales, we combine these four parts into one stage, and by stacking
multiple such stages the deep learning network can achieve various image rain removal
performances.

3.1 Network architecture
In rain images, direct image recovery by deep learning network leads to loss of image detail
information as the rain streaks overlap with the image background. In addition, different

Figure 2 The DWTN architecture comprises four main components: the shallow feature extraction network,
the frequency feature enhancement and cross-fusion network, the spatial feature enhancement network, and
the image restoration network
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rain streaks are also mixed with the texture details of the image, which makes it very dif-
ficult to remove the rain streaks directly from the image. To solve this problem, in this
study the input image is decomposed into foreground rain streak images and background
images by the 2D Discrete Wavelet Transform (DWT). The image features at different
frequencies are extracted by an FAEB module. The FFFB module fuses the features at dif-
ferent frequencies. The image features without rain streaks are restored using 2D Inverse
Wavelet Transform (IWT) and SFEB, and finally, a clean image without rain streaks is
obtained using an image restoration network.

Specifically, given a degraded image Ir ∈R
3×H×W , DWTN first applies a 5 × 5 convolu-

tion layer to generate the shallow feature map X0 ∈ R
C×H×W , where C denotes the number

of channels, and H × W represents spatial locations. Then the shallow features generate
four components by 2D-DWT, which are low–low component (XLL), low–high compo-
nent (XLH ), high–low component (XHL), and high–high component (XHH ), where XLL can
be regarded as the structural information of the image; XLH , XHL, and XHH are the details
and edges of the image. In this process the input feature map X0 is first decomposed hori-
zontally using a high-pass filter and a low-pass filter to obtain the low-frequency compo-
nent XL ∈R

C×H× W
2 and the high-frequency component XH ∈R

C×H× W
2 . Then the features

[XL, XH] obtained in the previous step are decomposed vertically using high- and low-pass
filters to obtain the full components XDWT = [XLL, XLH , XHL, XHH ] ∈R

C× H
2 × W

2 of the input
feature map X0. Since the decomposition process uses interval sampling, the output fea-
ture width and height are half of the input features, as shown in Fig. 3.

After the wavelet transform, the FAEB module extracts features from XDWT separately,
e.g., XALL = fFAEBLL (XLL). Each FAEB module consists of N residual dense blocks (RDBs)
with activation function ReLU, and the size of output features is the same as that of input
features.

It has been demonstrated that the feature components obtained after using wavelet
transform are not independent but are latently correlated [18]. Therefore we use the FFFB
module to fuse different feature components according to the rules to obtain new feature
components. In this process, we first concatenate the three feature components of the in-
put based on the channels, e.g., XAcat = Concat

(
XAa , XAb , XAc

) ∈ R
3×C× H

2 × W
2 . Then XAcat

Figure 3 Procedure of 1-level 2D-DWT decomposition. (W ↓ 2) indicates that the width is halved, and
(H ↓ 2) indicates that the height is halved
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is passed into the FFFB module for feature fusion to obtain XAF ∈R
C× H

2 × W
2 . At this time,

XAF =
[
XAF_LL , XAF_LH , XAF_HL , XAF_HH

]
enhances the features that are advantageous for im-

age restoration and weakens those that are not advantageous for image restoration. Finally,
all the cross-fused feature components XAF are recovered to the complete image feature
map XIWT ∈R

C×H×W using 2D-IWT.
After the inverse wavelet transform, the image feature XIWT is passed into N SFEB mod-

ules to get XSEi =
[
XSE1 , XSE2 , . . . , XSEN

] ∈ R
C×H×W . The SFEB module implements spatial

enhancement of image features and fuses multiple enhanced image features through skip
connections XE = Add

(
XIWT + XSE1 + XSE2 + · · · + XSEN

)
.

Finally, the rain streak R = Conv (XSE) ∈R
3×H×W is obtained by a 5×5 convolution layer

in the image reconstruction network, and the reconstructed image Iclr is obtained using
the image degradation model Iclr = Ir – R.

3.2 Frequency awareness enhancement block
There are two main challenges to the single image rain removal task. Firstly, the rain streak
in the image foreground is mixed with the image background, making it difficult to sepa-
rate in the RGB domain. Therefore some scholars have proposed to convert the image data
in the RGB domain into frequency domain data, which is beneficial for image denoising
and reconstruction [48]. The reason is that high-frequency data contain rich information
about image edges and details, while low-frequency data contain structural information
about the image. Secondly, low-level visual tasks are usually used as pretasks for high-level
visual tasks, so it is necessary to use hardware-friendly model design methods.

To solve the above two problems, we use 2D-DWT to decompose the rain image feature
X0 into multiple frequency components. We build a structurally consistent frequency-
aware feature enhancement (FAEB) network for each feature component to predict the
corresponding deraining feature

[
XALL , XALH , XAHL , XAHH

]
. The network mainly utilizes

hardware-friendly residual dense block (RDB) structures to optimize the learning of com-
plex features and backpropagation of gradients. RDB is a combination of residual network
structure [21] and dense network structure [49]. In residual network structure, introduc-
ing a forward feedback connection between the input and output can effectively alleviate
the problem of gradient disappearance caused by the increase of network depth, so that the
deeper network can still maintain good performance and efficiency. Residual networks are
suitable for image restoration because the similarity between low- and high-quality images
is very high, and the residuals between them are very sparse, so the model can get high-
quality images by learning only less information through residual networks. Each network
layer in a dense network accepts the outputs of all previous layers as additional inputs,
thus enabling feature taking, enhancing feature propagation, and reducing the number
of parameters. Consequently, RDBs are extensively employed for image restoration and
single-image superresolution (SISR) tasks [50].

The implementation of FAEB consists of three parts. The first is a set of RDB modules
with ReLU, a combination that improves the performance of image feature extraction and
prevents overfitting. The second is merging multiple RDB output features using a residual
structure XRDBmerg ∈R

C× H
2 × W

2 . Finally, 5 × 5 Conv+ReLU+Conv (CRC) is used to fuse the
merged image features to output more effective image features, e.g., XALL ∈ R

C× H
2 × W

2 , as
shown in Fig. 4. Suppose the input feature of FAEB is XLL. The mathematical description
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Figure 4 Architecture of frequency awareness enhancement block

of FAEB can be expressed as

Xi
RDB = ReLU

(
fRDBi

(
Xi–1

RDB
))

+ Xi–1
RDB, 1 ≤ i ≤ N ,

XRDBmerg = XLL +
N∑

i=1

Xi
RDB,

XALL = Conv
(
ReLU

(
Conv

(
XRDBmerg

)))
,

(1)

where fRDBi denotes the ith RDB operation, Xi–1
RDB denotes the input of the RDB operation

(if i = 1, then X0
RDB = XLL), XRDBmerg denotes the merging of the input of the FAEB and the

output of the RDB module using the residual structure, and XALL denotes the output of
the FAEB module.

The RDB implementation consists of a Dense Connected Layer (DCL), Local Feature Fu-
sion (LFF), and global residual structure. Suppose there are N DCL modules in the RDB
module, and the input feature of the RDB is XRDB_input ∈R

C×H×W . Through the concatena-
tion operation in the DCL, the output of the N th DCL module is XN

DCL ∈R
N×C×H×W . The

LFF obtains feature XLFF ∈R
C×H×W of the same size as the input feature through the con-

volution of 1×1. This operation not only fuses high-dimensional features of the output of
the last DCL but also reduces the number of channels of the features, which decreases the
parameters of the model and provides correct input for the subsequent residual structure.
The mathematical expression of RDB is described as follows:

Xi
DCL = Concat

(
Xi–1

DCL, ReLU
(
Conv

(
Xi–1

DCL
)))

,

XLFF = Conv1×1
(
XN

DCL
)

,

XRDB = XRDB_input + XLFF ,

(2)

where Xi
DCL denotes the output of each DCL module (when i = 1, the input of the DCL

module is the input of the RDB module), XLFF denotes the output of the LFF after a 1 × 1
convolution operation, and XRDB denotes the output of the RDB module obtained using
the residual structure.



Tao et al. Advances in Continuous and Discrete Models         (2024) 2024:42 Page 10 of 25

3.3 Frequency feature fusion block
2D-DWT divides the image features into four components: XLL, XLH , XHL, and XHH . Al-
though XLL and XHH maintain the low- and high-frequency information of the image,
respectively, XLH and XHL still keep a part of the high-frequency image detailed informa-
tion and a part of the low-frequency image structure information. Therefore the fusion of
feature components can strengthen the low-frequency information in XLL and the high-
frequency information in XHH . Some scholars [48] have proposed that feeding image fea-
tures directly into the CNN in image-denoising tasks is unreasonable. Because CNN is
fair for each feature channel, the distribution of feature channels can be considered as
the partition of image frequency, and the different channel weights respond to the other
model choices for image frequency. Therefore, when performing feature component fu-
sion, it is necessary to use the channel attention mechanism to assign different weights
to different channels so that the model can select the parts that are advantageous to the
image deraining task.

In this study, we propose a novel fusion mechanism for frequency feature components,
as shown in Fig. 5. In Fig. 5, we tried three feature fusion methods: Methods A, B, and C.
In Method A, in addition to considering that XLL, XLH , XHL, and XHH are latently related to

Figure 5 Fusion methods for frequency feature components and the architecture of the channel attention
block
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Table 1 The PSNR and SSIM results of various frequency feature fusion algorithms on the Rain200L
dataset. The color red signifies the highest level of performance

each other, the differences between the frequency feature components are also considered.
For example, XLL and XHH contain completely different information, so fusing XLL and XHH

would cause the generated frequency features to have incorrect information. Therefore,
when fusing frequency feature components, we only fuse the relevant frequency feature
components to enhance the information of the different frequency feature components.
Instead of fusing the feature components LH and HL, the feature components LH and HL
are obtained using the identity mapping in method B. In method C the feature components
LH and HL are discarded and replaced with a feature of the same shape as LH and HL,
which have zero values. In addition, based on the DWTN-S model, we evaluated the three
fusion methods separately on the Rain200L dataset, as shown in Table 1. The results show
that our proposed method A is more advantageous. The mathematical expression of FFFB
is described as follows:

XAcat = Concat
(
XAa , XAb , XAc

)
,

XAF = Conv1×1
(
fCAB

(
Conv

(
XAcat

)))
,

(3)

where XAa , XAb , and XAc denote the frequency feature components according to Method A
in Fig. 5, and these frequency feature components are concatenated according to the chan-
nel to obtain XAcat ∈R

3×C× H
2 × W

2 . Conv1×1 denotes the 1 ×1 convolution, fCAB denotes the
channel attention block, XAF ∈ R

C× H
2 × W

2 , and Conv denotes the fused frequency feature
components.

Channel Attention Block (CAB) To assign different weights to the channels of the
frequency feature components, we designed channel attention blocks based on ECA
[51]. Suppose that the concatenated frequency feature components are given by XAcat ∈
R

3×C× H
2 × W

2 , where C represents the number of channels in the feature map, and H and
W represent the height and width of the feature map, respectively. Firstly, the information
for each channel iC ∈R

C is obtained by Global Average Pooling (GAP). The mathematical
expression for GAP is as follows:

iC = GAP
(

XH×W
Acat_c

)
=

1
H × W

H∑

i=1

W∑

j=1

XAcat_c

(
i, j

)
, (4)

where XAcat_c

(
i, j

)
represents the feature value at position

(
i, j

)
of the feature map XAcat in

the C channel. GAP represents global average pooling.
Then we use the convolution operation Conv to get the information of the remapped

channels. Next, the activation function Sigmoid is employed to activate or inhibit the dif-
ferent channels to obtain the final channel weights Wc ∈ R

C×1×1. The mathematical ex-
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pression is as follows:

Wc = Sigmoid (Conv (ic)) . (5)

Finally, the channel weights Wc are elementwise multiplied with the input frequency
feature components to obtain the feature frequency components XAF ∈ R

C× H
2 × W

2 with
different channel weights. The mathematical expression is as follows:

XAF = Wc ⊗ XAcat . (6)

3.4 Spatial feature enhancement block
The goal of the single-image rain removal task is to recover a clear background from an im-
age containing rain streaks; however, mixing rain streaks with the background makes re-
covering image details and textures difficult. In this study, we utilized the frequency feature
fusion mechanism to enhance the feature channels advantageous for rain removal. How-
ever, detail and texture preservation in image restoration remain a challenge. Although
frequency feature fusion can enhance the necessary features for rain removal, it does not
offer enough resolution to effectively preserve image details and textures, mainly when
rain streaks are similar or overlap with background details. This can result in blurring or
losing details during rain removal.

Using the spatial attention mechanism enhances the model discernment of the signifi-
cance of various locations within the image by dynamically assigning weights to the spatial
attributes. More precisely, this feature allows the model to prioritize the crucial details and
textures hidden by the rain streak while reducing the impact of background noise or irrele-
vant information that is less important for removing the rain. This is achieved by assigning
greater importance to the areas of the image that are more relevant to rain removal [52].
This process enhances both the rain removal effect and the preservation of the original
texture and details of the image to a certain degree, resulting in a more authentic rain
removal effect, as depicted in Fig. 6.

We implement SFEB based on SGE Attention [53]. Specifically, given an input feature
XIWT ∈ R

C×H×W , the RDB module is first used to extract the multilevel fusion feature
XIWTR ∈R

C×H×W of the input feature XIWT . The latter is then fed into the spatial attention
mechanism SGE to obtain the spatial feature-enhanced XSE ∈R

3×C×H×W . The mathemat-

Figure 6 The spatial attention mechanism assigns distinct weights to each position of the input features. The
recalibrated image features are obtained by multiplying the spatial features and weights of the input
characteristics. As depicted in the diagram, the improved texture characteristics hold more significance
compared to the spatial characteristics prior to augmentation
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Figure 7 Architecture of the spatial feature enhancement block

ical expression is as follows:

XIWTR = fRDB (XIWT ) ,

XSE = fSGE
(
XIWTR

)
,

(7)

where fRDB denotes the RDB operation, and fSGE denotes the spatial attention module SGE.

Spatial attention block As the rain streaks are mixed with the image background, it is
possible for subfeatures that represent the details of the image texture to be distributed in
each layer of the image features. Still, spatially, these features are affected by the rain streak
noise, resulting in these features needing to be correctly localized and recognized. Unlike
other spatial attention mechanisms [54] that use a global spatial model, SGE attention
groups image features in channel dimensions. It computes attention weights for features
within each group, which allows SGE to produce more detailed spatial weights, alleviating
the problem of spatial mixing of rain patterns with the image background, as shown in
Fig. 7.

Specifically, given an input feature XIWTR ∈ R
C×H×W , XIWTR is first grouped on the chan-

nel to obtain XIWTG ∈ R
G×(C//G)×H×W , where G is the number of groups. Then GAP is

used on XIWTG to get the semantic vector XIWTS ∈ R
G×1×H×W for the whole space. Next,

the similarity XIWTSim ∈R
G×(C//G)×H×W between XIWTS and XIWTG is computed using ele-

ment multiplication, and XIWTSim is normalized to obtain the spatial attentional weight
XIWTW ∈ R

G×1×H×W . Finally, XIWTW is multiplied by the elements of XIWTR to get the
weighted feature XSE ∈R

C×H×W . The mathematical expression is as follows:

XIWTG = fGrouping
(
XIWTR

)
,

XIWTS = fGAP
(
XIWTG

)
,

XIWTSim = XIWTS ⊗ XIWTG ,

XIWTW = BN
(
Reshape1

(
Sum

(
XIWTSim

)))
,

XSE = XIWTG ⊗ Sigmoid
(
Reshape2

(
XIWTW

))
,

(8)

where fGrouping denotes the grouping operation, fGAP represents the GAP operation, Sum
denotes summing the input features by channel, Reshape1 indicates changing the input
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feature with shape (G × 1 × H × W ) to (G × H × W ), Sigmoid denotes the activation
function, and Reshape2 denotes changing the input feature with shape (G × H × W ) to
(G × 1 × H × W ).

3.5 Image reconstruction network and loss function
Within the image reconstruction network, we employ a straightforward convolution op-
eration to carry out the process of remapping image features and restoring the image. The
mathematical expression is as stated:

R = Conv (BN (Conv (XSE))) . (9)

In single-image deraining tasks, L1 and L2 losses are usually used to optimize the net-
work, but these loss functions are pixel-level losses. In this study, we want the restored
image to be consistent with human evaluation, so we combine the peak signal-to-noise
ratio (PSNR) loss with the structural similarity (SSIM) loss and add the edge loss [9]. The
loss function we propose consists of the composite loss function LPS , which is based on
the PSNR and SSIM loss, and the edge loss function Ledge. The LPSNR in the composite loss
function is used to measure the difference between the Iclr of the clear image after rain re-
moval and the IGT of the real image. The higher the value, the closer the quality of the
derained image is to that of the original image. LSSIM measures the structural similarity
between the derained and original images. The closer the value of SSIM to 1, the more sim-
ilar the structure of the images. A tiny constant ε is used to avoid a zero denominator. The
loss function that combines SSIM and PSNR can effectively balance structural similarity
and overall image signal differences in the image deraining task. Using this combination,
the model retains the visual effect of the derained image and ensures that the recovered
image is as similar as possible in structure to the original image. The edge loss function
Ledge measures the edge difference between the derained and original images. In the image
deraining task, edge information is very important for visual effects, and maintaining edge
details can prevent image blurring. Therefore an edge loss term is introduced so that the
model can better preserve the edges and details of the image, thereby improving the visual
image quality after rain removal. The final loss function L (Iclr , IGT ) combines the LPS and
Ledge loss functions, which can simultaneously optimize the global image structural simi-
larity and local edge details so that the model can remove rain streaks while preserving the
natural feel and details of the image. At the same time, this loss function also improves the
robustness of the rain removal model so that it can better handle rain streaks of different
types and intensities and improve the overall image quality. The mathematical expression
is as follows:

LPS (Iclr , IGT ) =
1 – LSSIM (Iclr , IGT )

LPSNR (Iclr , IGT ) + ε
,

Ledge (Iclr , IGT ) =
√

‖�(Iclr) – �(IGT )‖2 + ω2,

L (Iclr , IGT ) = LPS (Iclr , IGT ) + λLedge (Iclr , IGT ) ,

(10)

where LSSIM ∈ [–1, 1] denotes the SSIM loss, and as the image restoration quality gets
higher, LSSIM gets closer to 1; LPSNR ∈ [0,∞) denotes the PSNR loss, and as the image
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restoration quality gets higher, LPSNR loss gets closer to ∞; � denotes the Laplace opera-
tion, ε is a constant that ensures that the denominator of LPS does not have a zero, and ω

is also a constant.

4 Experiments
This section provides a comprehensive evaluation of the performance of DWTN. First,
we describe the data sets and performance metrics used in the comparative experiments.
Next, we introduce the experimental setup, which is closely related to the experimental
results. Then we quantitatively and qualitatively evaluate the performance of our proposed
DWTN model using different data. At the same time, we use ablation experiments to verify
the functions of various functional modules in the model. Finally, we also use DWTN as
a pretask for the target detection task to show that DWTN can significantly improve the
performance of advanced visual tasks.

4.1 Dataset and evaluation metrics
Synthetic datasets Yang et al. [5] collected two rain streak datasets, Rain200H and
Rain200L, which are widely used to evaluate single-image rain removal tasks. Rain200H
and Rain200L contain 1800 synthetic images for training and 200 pairs for testing, re-
spectively. Rain200H mainly contains dense rain streaks, whereas the Rain200L dataset
is relatively sparse compared to Rain200H. Yang et al. [55] collected a rain streak dataset
called Rain800. The dataset consists of 800 pairs of rain images and corresponding clean
images, of which 700 pairs of data are used for the training set, and the remaining 100
pairs are used for the test set. A larger rain streak dataset named Rain1400 was collected
by Fu et al. [22] named Rain1400. Each clean image in this dataset corresponds to 14 rain
images of different types. The training set contains 900 clean images, whereas the test set
contains 100 clean images.

Real-world datasets To validate the effectiveness of the deraining model in the real
world, Li et al. [56] and Wang et al. [57] collected real-world-based rain image datasets
MPID and SPA, respectively. The MPID dataset contains 185 rain images, whereas the
SPA dataset contains 146.

Evaluation metrics During experiments involving synthetic data, we evaluate the per-
formance of the DWTN using two metrics: the peak signal-to-noise ratio (PSNR) [58]
and the structural similarity index (SSIM) [59]. We evaluate the image luminance channel
results, relying on previous research findings [60], as the human visual system is highly re-
sponsive to image brightness. Furthermore, because of the unavailability of ground truth
for real-world rain images, we used the no-reference image quality measures NIQE [61]
and BRISQUE [62] to evaluate the effectiveness of DWTN on real-world datasets.

A higher PSNR value indicates better image recovery from rainy images, as expressed
mathematically in equation (11). The value of SSIM is in the range of [–1, 1]; when the
value of SSIM is close to 1, the restored image is closer to the rain-free image, as expressed
mathematically in equation (12).

PSNR (I, G) = 20 × log10

(
MAXI√

MSE (I, G)

)
, (11)
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where I represents the derained image, G represents the ground truth (GT) image,
MSE (I, G) denotes the mean square error between the derained image and the GT im-
age, and MAXI denotes the maximum pixel value of the image.

SSIM (I, G) =
(2μIμG + C1) (2σIσG + C2)(
μ2

I + μ2
G + C1

) (
σ 2

I σ 2
G + C2

) , (12)

where I represents the image after rain removal, G represents the GT image, μI , μG, σI ,
and σG denote the mean and standard deviation of the input image, and C1 and C2 are
constants used to prevent division by zero.

4.2 Implementation and training details
We implemented the proposed end-to-end single-image dewatering model DWTN using
Pytorch 1.8 and did not use pretrained weights. We trained and inferred the model on
a single NVIDIA GTX 3090. During training, we optimized the model using the Adam
optimizer [63] with an initial learning rate of 1e–3 during training and a cosine annealing
algorithm [64] to update the learning rate, thereby improving the training efficiency of the
model. To adapt to different sizes of input images, we randomly cropped the images into
128 × 128 patches as the input to the model. In addition, we also use random flipping [65]
of the images to increase the diversity of the input data.

By adjusting the number of modules included in the model, DWTN can derive three
models with different parameter sizes: DWTN-S, DWTN-M, and DWTN-L. The differ-
ence between DWTN-S and DWTN-M is that the FAEB of the DWTN-S model contains
two RDB+ReLU modules, whereas the FAEB of DWTN-M contains three RDB+ ReLU
modules. DWTN-L consists of two DWTN-M models with the computation of the loss
function added in the middle position of the network, which results in image deraining
from coarse to fine images, as shown in Fig. 8.

4.3 Comparison with the state-of-the-arts
We compared DTWN-S, DTWN-M and DTWN-L with the state-of-the-art methods:
HiNAS [34], HCT-FFN [66], RCDNet [67], DRT [68], MANAS [69], HINet [32], Tran-
sWeather [70], Uformer [28], and CMFNet [71], and the code for all the methods was
obtained from open-source code provided in the paper. All source code was rerun on the

Figure 8 The architecture of DWTN-L. This network connects 2 DWTN-M in series and achieves better
performance image deraining model by 2 times Loss computation
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benchmark dataset. Table 2 shows the qualitative evaluation of different methods in terms
of both PSNR and SSIM. The results demonstrate that our DTWN approach substantially
benefits PSNR and SSIM measures. The Rain200L, Rain200H, and Rain800 datasets were
used to evaluate the state-of-the-art performance. DTWN achieved the highest ranking in
SSIM metrics and the second-highest PSNR metrics on the Rain1400 dataset. The quan-
titative analysis findings confirm the DTWN model efficiency in removing rain from a
single image.

Furthermore, we conducted a comparison of two metrics, parameter size and frames
per second (FPS), which have a direct correlation with the lightweight nature of the
model. The results demonstrate that our proposed DTWN model exhibits superior per-
formance regarding model inference speed compared to other models with similar pa-
rameter sizes. Additionally, DTWN-L outperforms the other comparison models in both
inference speed and performance when the model parameters are smaller than those of
the different models. Thus by amalgamating various assessment measures the overall ef-
ficacy of DWTN surpasses that of the thirteen aforementioned comparative models.

Results on synthetic datasets Fig. 9 shows the qualitative evaluation of thirteen rain re-
moval methods on four samples from the Rain200L dataset. We can see in the figure that
using HiNAS to remove the rain streaks leads to an overall distortion of the image col-
ors, and the model has a weak ability to restore the image details, which affects the effec-
tiveness of the image in removing the rain. HCT-FFN removes most of the streaks, but
the image edge information is missing, so the recovered image is incomplete. Although
RCDNet and CMFNet can remove some of the rain streaks, they produce artifacts when
dealing with dense rain streaks, which affects the derain effect of the model. MANAS is
a derain model designed based on NAS, which can remove most of the rain streaks but
cannot remove the thicker or thinner rain streaks, which makes many rain streaks remain
after deraining the image. HiNet and MPRNet have strong derain ability, but some image
details are lost. TransWeather and Uformer are multitasking image restoration models,
but the single-task performance differs from the performance of state-of-the-art models.
CMFNet achieves a more realistic rain streak removal capability, but it cannot remove
the thicker rain streaks, which is an unsatisfactory rain removal effect. Compared to these
state-of-the-art (SOTA) methods, our proposed DWTN can remove rain streaks with dif-
ferent densities. In addition, the rain removal results of DWTN show more vivid colors
and more detailed structural information, which are more advantageous than other rain
removal methods.

The results demonstrate that our DWTN can generate rain-free images that are both
more realistic and significantly sharper. The color red signifies the highest level of perfor-
mance, whereas the color blue symbolizes the second position.

Results on real-world dataset The MPID and SPA datasets were evaluated using the no-
reference image quality measures NIQE and BRISQUE, both quantitatively and qualita-
tively. Table 3 displays the evaluation metrics for multiple models on the MPID and SPA
datasets. The deraining results of several approaches on three real rainy day samples are
depicted in Fig. 10. Similarly to the results in Fig. 9, rain streaks remain in the images af-
ter deraining using CMFNet. DRT, HCT-FFN, and HiNAS failed to remove all the rain
streaks, and the reconstructed images are missing a lot of details. In real environment de-
raining, MANAS cannot remove the rain streaks, and the structural information of the
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Figure 9 Qualitative comparisons of different rain removal models on the Rain200L dataset: (a) the input rain
image, (b) HiNAS, (c) HCT-FFN, (d) RCDNet, (e) DRT, (f ) MANAS, (g) HiNet, (h) MPRNet, (i) TransWeather, (j)
Uformer, (k) CMFNet, (l) the DWTN-S, (m) the DWTN-M, and (j) DWTN-L are images after deraining. The results
demonstrate that our DWTN can generate rain-free images that are both more realistic and significantly
sharper. The color red signifies the highest level of performance, whereas the color blue symbolizes the
second position

image is missing. RCDNet has made an error in processing the image texture. Compared
with DWTN-S and DWTN-M, DWTN-L has the strongest deraining ability, which re-
moves the rain streaks and preserves a lot of detailed information in the image recon-
struction.

4.4 Ablation study
To confirm the efficiency of DWTN, we conducted ablation experiments on DWTN-S
utilizing PSNR and SSIM metrics on the Rain200L dataset to assess the usefulness of var-
ious modules. The benchmark models were derived by excluding the FAEB, FFFB, and
SFEB components. The training technique employed by the benchmark model is identi-
cal to that of the DWTN-S model and utilizes the loss function depicted in Eq. (10). The
outcomes of the ablation trials are presented in Table 4 and Fig. 11.
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Table 3 This study evaluates the NIQE and BRISQUE results of multiple rain removal techniques on
two real datasets. The color red represents the highest level of performance, whereas the color blue
signifies the second-highest level

Figure 11 is drawn using the MulimgViewer tool [72] and illustrates the contribution
of each component in the DWTN to the rain streak removal. The FAEB module mainly
focuses on the rain streak feature extraction, so both the structural and detailed informa-
tion of the recovered image is missing when the FAEB does not use the RDB, as shown
in Fig. 11(c). The FFFB module mainly extracts different types of rain streaks through the
reasonable feature fusion mechanism and the channel attention mechanism. Extracting
different types of streaks makes the structural information of the recovered image better
preserved, as shown in Fig. 11(d). The SFEB module, on the other hand, mainly uses the
spatial attention mechanism to extract more texture information of the image, so that the
detailed information of the recovered image can be better restored, as shown in Fig. 11(e).
In summary, DWTN gives full play to the potential of each module, which ultimately has
a significant advantage over the previous SOTA single-image derain method.

4.5 Application
To demonstrate that our DWTN can improve the performance of high-level vision appli-
cations, we first performed the deraining operation using the deraining model on the rain
images in the RID dataset. Then we used YOLOv5 to perform object detection on 100
sets of images in the RID dataset, and the detection results are shown in Fig. 12. As we
can see from the figure, the confidence and accuracy of object detection after deraining is
significantly improved compared to that before the deraining operation.

5 Conclusions
This paper presents the development of a rain removal model named DWTN, designed
explicitly for vision measuring systems using a single image approach. DWTN employs
wavelet transforms to break down the image features into four distinct components with
varying characteristics. Each feature component is then individually processed using
FAEB while simultaneously extracting the beneficial features for removing rain using the
dense residual module. Afterward, we combined the various feature components using the
FFFB module based on the specified rules. We employed the channel attention method to
enhance the image background characteristics and reduce the prominence of the fore-
ground streaks. Subsequently, the feature components are obtained by applying the in-
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Figure 10 Performing qualitative comparisons on real-world images captured during rainy conditions. It has
been noted that DWTN can provide visually appealing images with realistic colors and fewer artifacts caused
by rain. The color red signifies the highest level of performance, whereas the color blue symbolizes the
second position

Table 4 Ablation experiments with local search networks on the synthetic dataset Rain200L

Variants FAEB FFFB SFEB PSNR SSIM

V0 w/o w/o w/o 37.14 0.980
V1 � w/o w/o 38.04 0.983
V2 � � w/o 38.28 0.984
V3 � � � 38.29 0.984
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Figure 11 Results of the visual ablation experiments. (a) Rainy image, (b) result of the V0 network, (c) result of
the V1 network, (d) result of the V2 network, (e) result of the V3 network, (f ) clear image

Figure 12 Results from visual ablation experiments. The study investigates three primary components: (a)
The result of object recognition in a real-world image captured during rainy weather; (b) the object detection
results after applying our proposed DWTN to remove rain from the image; (c) the mean confidence and
accuracy of target detection using YOLOv5 after employing seven different rain removal models on a dataset
that includes 100 images

verse wavelet transform to the image, and the texture details of the image are enhanced
using SFEB. A straightforward image reconstruction network is employed to restore the
image affected by rain. This work involves a comprehensive experimental assessment of
the performance of DWTN in comparison to thirteen advanced rain removal models. The
evaluation is performed on four artificially generated datasets and two datasets derived
from real-world scenarios. The testing results thoroughly showcase the cutting-edge ca-
pabilities of DWTN.
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