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Abstract
This paper deals with the long-term behavior of nonlocal Schrödinger lattice systems
with multiplicative white noise and their Wong-Zakai approximate systems in
weighted spaces. We first prove the existence and uniqueness of tempered pullback
attractors for the original stochastic systems and the Wong-Zakai approximations.
Then, we establish the upper semicontinuity of these attractors for the Wong-Zakai
approximate systems as the step length of the Wiener shift approaches zero.
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1 Introduction
In this paper, we will consider the following nonautonomous stochastic Schrödinger lattice
system driven by multiplicative white noise:

⎧
⎨

⎩

iu̇n = –
∑

m∈Z
J(n – m)um – iλun + fn(un, t) + gn(t) + iun ◦ ω̇(t),

un(τ ) = uτ ,n,
(1.1)

and its Wong-Zakai approximations:

⎧
⎨

⎩

iu̇δ
n = –

∑

m∈Z
J(n – m)uδ

m – iλuδ
n + fn(uδ

n, t) + gn(t) + iuδ
nGδ(θtω),

uδ
n(τ ) = uδ

τ ,n,
(1.2)

where n ∈ Z, τ ∈ R, t > τ , δ ∈ R with δ �= 0, λ is a positive real constant, i is the unit of imag-
inary numbers, un are complex functions, the coupling parameters J(m) are real numbers
and satisfy J(m) = J(–m) for all positive integer m, fn are nonlinear functions with some
conditions, g(t) = (gn(t))n∈Z is a time-dependent sequence, Gδ(θtω) is a random variable
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defined in (4.2), and ω is a standard Wiener processes on a probability space (�,F , P).
The symbol ◦ is interpreted in the sense of Stratonovich’s integration.

Note that when J(m) are written as

J(m) =
2k∑

j=0

(
2k
j

)

(–1)jδm,j–k ,

where k is any positive integer, and δm,k is the Kronecker delta, system (1.1) can be changed
into the following stochastic system:

⎧
⎨

⎩

iu̇n = –�kun – iλun + fn(un, t) + gn(t) + iun ◦ ω̇(t),

un(τ ) = un,τ ,
(1.3)

where n ∈ Z, τ ∈ R, t > τ , �k = �◦ · · · ◦�, k times, and � is defined by �un = un+1 + un–1 –
2un.

Lattice dynamical systems, whose spatial structure is discrete, arise from various de-
velopments, such as neural networks with applications to image processing, brain sci-
ence, and others. The deterministic models have been discussed in [10, 27, 38], stochastic
models driven by additive white noise in [2, 39, 41], multiplicative white noise systems in
[19, 32, 34, 42, 44], and nonlinear white noise systems in [7, 8, 21, 33]. Furthermore, a kind
of lattice systems in weighted spaces were considered in [3, 4, 11–13, 20, 25, 30].

Nonlocal lattice systems arise naturally in a wide variety of applications. The dynam-
ics of DNA molecule has been described by nonlocal Schrödinger lattice systems in [24].
Later on, the long-term behavior for nonlocal Schrödinger lattice systems and their de-
lay systems were studied in [25] and [26], respectively. Recently, Chen et al. have proved
the existence of random attractors for nonlocal stochastic complex Ginzburg-Landau lat-
tice systems in [4]. At the same time, Wong-Zakai approximations of nonlocal stochastic
lattice systems have been investigated in [5]. These results have great significance in this
field.

Schrödinger lattice systems are widely applied in physics and biology, see, e.g., [14,
16–18]. Recently, Wang et al. [29] obtained the existence of weak pullback random at-
tractors for Schrödinger lattice systems with nonlinear noise. Jia et al. [15] studied the
existence and multiplicity of homoclinic solutions for Schrödinger lattice systems. Fur-
thermore, the existence of nontrivial solutions for stochastic Schrödinger lattice systems
has been studied in [40], and the existence of random uniform exponential attractors for
stochastic Schrödinger lattice systems with quasi-periodic forces has been studied in [42].
Other properties of solutions for Schrödinger lattice systems have been investigated in
[25, 26, 29, 43].

The Wong-Zakai approximation used in this paper was first proposed in [22, 28], where
the authors studied the chaotic behavior of the random system with Gδ(θtω). The work was
later extended in [3, 6, 9, 23, 35–37]. However, to our knowledge, the literature about the
Wong-Zakai approximations and random attractors for nonlocal stochastic Schrödinger
lattice systems with multiplicative white noise in weighted spaces is sparse. In this paper,
motivated by [4, 26, 37], we will consider the existence and uniqueness of tempered pull-
back attractors of Schrödinger lattice system (1.1) and the approximate system (1.2) in
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weighted space l2
η . Then, we establish the upper semicontinuity of these attractors when

the step length of the Wiener shift approaches zero.
This paper is organized as follows. In Sect. 2, we introduce some definitions and condi-

tions. In the next Section, we prove the existence and uniqueness of random attractors of
system (1.1). Section 4 is devoted to the study of the limiting behavior of Wong-Zakai ap-
proximations associated with system (1.1). In Sect. 5, we study the upper semicontinuity
of random attractors for the Wong-Zakai approximations.

2 Preliminaries
In this section, we recall some definitions and introduce some conditions for the stochastic
lattice system (1.1). First, we consider the canonical probability space (�,F , P), where

� = {ω ∈ C(R,R) : ω(0) = 0},

F is the Borel σ -algebra induced by the compact-open topology of �, and P is the corre-
sponding Wiener measure on (�,F ). Define the time shift by

θtω(·) = ω(· + t) – ω(t), ω ∈ � and t ∈R.

Then, (�,F , P, {θt}t∈R) is a metric dynamical system [1]. Additionally, there exists a
{θt}t∈R-invariant subset �̃ ⊆ � of full measure such that for each ω ∈ �̃,

ω(t)
t

→ 0 as t → ±∞. (2.1)

For the sake of convenience, we will abuse the notation slightly and write the space �̃ as
� in the sequel.

In the sequel, we use (X, d) and ‖ · ‖X to denote a complete separable metric space and
the norm of X. Initially, we introduce some fundamental concepts related to random dy-
namical systems.

Definition 2.1 A mapping 
 : R+ ×R×�×X→X is said to be a continuous cocycle on
X over R and (�,F , P, {θt}t∈R) if for all τ ∈ R, ω ∈ � and t, s ∈R

+, the following conditions
are satisfied:

(i) 
(·, τ , ·, ·) : R+ × � ×X →X is (B(R+) ×F ×B(X),B(X))-measurable;
(ii) 
(t, τ ,ω, ·) : X →X is continuous;
(iii) 
(0, τ ,ω, ·) is the identity on X;
(iv) 
(t + s, τ ,ω, ·) = 
(t, τ + s, θsω, ·) ◦ 
(s, τ ,ω, ·).

Definition 2.2 Let D = {D(τ ,ω) : τ ∈ R,ω ∈ �} be a family of non-empty subsets of X.
Then, D is called tempered if for every c > 0,

lim
t→–∞ ect‖D(τ + t, θtω)‖X = 0,

where ‖D‖X = sup{‖x‖X : x ∈ D}.
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In the sequel, we denote by D the collection of all families of tempered non-empty sub-
sets of X, i.e.,

D = {D = {D(τ ,ω) : τ ∈ R,ω ∈ �} : D is tempered in X}.

Definition 2.3 Let D be a collection of some families of non-empty subsets of X and
K = K(τ ,ω) : τ ∈ R, ω ∈ �} ∈ D. Then, K is called a D-pullback absorbing set for 
 if for
all τ ∈R, ω ∈ �, and for every D ∈D, there exists T = T(D, τ ,ω) > 0 such that


(t, τ – t, θ–tω, D(τ – t, θ–tω)) ⊆ K(τ ,ω) for all t ≥ T .

Definition 2.4 Let D be a collection of some families of non-empty subsets of X and
A = {A(τ ,ω) : τ ∈ R,ω ∈ �} ∈ D. Then, A is called a D-pullback attractor for 
 if the
following conditions are fulfilled:

(i) A is measurable, A(τ ,ω) is compact for all τ ∈R and ω ∈ �;
(ii) A is invariant, i.e., for every τ ∈R and ω ∈ �,


(t, τ ,ω,A(τ ,ω)) = A(τ + t, θtω), ∀t ≥ 0;

(iii) A attracts every member of D, i.e., for every D = {D(τ ,ω) : τ ∈ R,ω ∈ �} ∈ D and
for every τ ∈R and ω ∈ �,

lim
t→+∞ dX(
(t, τ – t, θ–tω, D(τ – t, θ–tω)),A(τ ,ω)) = 0,

where dX(X, Y ) = sup
x∈X

inf
y∈Y

‖x – y‖X.

Next, we introduce the weighted space lp
η . For η = (ηn)n∈Z with ηn > 0, 1 ≤ p < ∞, lp

η is
defined by

lp
η =

{
u = (un)n∈Z|un ∈C,

∑

n∈Z
ηn|un|p < +∞

}
.

Particularly, l2
η is a Hilbert space with the inner product and norm given by

(u, v)η =
∑

n∈Z
ηnunv̄n, ‖u‖2

η = (u, u)η, u, v ∈ l2
η.

We further assume that weight ηn satisfies the following conditions:

∑

n∈Z
ηn < +∞, (2.2)

and

αm := sup
n∈Z

|ηn+m – ηn|
η1/2

n+mη1/2
n

< +∞, ∀m ≥ 1. (2.3)
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To obtain the existence of pullback random attractors for stochastic system (1.1) and the
approximate system (1.2) in l2

η , the interaction J(m) needs to decrease quickly enough to
ensure that

+∞∑

m=0

(1 + αm)|J(m)| < +∞, (2.4)

and

β = λ – 2
+∞∑

m=0

αm|J(m)| > 0. (2.5)

Moreover, for u = (un)n∈Z ∈ l2, we introduce the following operator on l2:

(Au)n =
∑

m∈Z
J(n – m)um.

Using Lemma 3.1 of [4], we have

‖Au‖2 ≤ 2|J(0)|2‖u‖2 + 8
( +∞∑

m=1

|J(m)|
)2‖u‖2,

which along with (2.4) implies that A is a bounded operator on l2.
Using the above notation, we can rewrite systems (1.1) and (1.2) in l2 as follows:

⎧
⎨

⎩

iu̇ = –Au – iλu + f (u, t) + g(t) + iu ◦ ω̇(t),

u(τ ) = uτ ,
(2.6)

and

⎧
⎨

⎩

iu̇δ = –Auδ – iλuδ + f (uδ , t) + g(t) + iuδGδ(θtω),

uδ(τ ) = uδ
τ ,

(2.7)

where t > τ , τ ∈R, u = (un)n∈Z, f (u, t) = (fn(un, t))n∈Z, g(t) = (gn(t))n∈Z.
For all n ∈ Z and z ∈C, we assume that fn(z, t) is Lipschitz continuous with respect to z,

i.e, there is a constant L > 0 such that for all z1, z2 ∈ C,

|fn(z1, t) – fn(z2, t)| ≤ L|z1 – z2|. (2.8)

We further assume that for all n ∈ Z and z ∈ C,

Imfn(z, t)z̄ = 0, and |fn(z, t)| ≤ h1,n(t)|z| + h2,n(t), (2.9)

where h1,n and h2,n are nonnegative, h1 = (h1,n(t))n∈Z ∈ L∞
loc(R, l∞), h2 = (h2,n(t))n∈Z ∈

L2
loc(R, l2

η).
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Example 2.1 Consider the real-valued function π : Z →R and assume that π = (πn)n∈Z ∈
lp for some 1 ≤ p ≤ ∞. Define f by fn(un, t) = πnun

1+t2 , for all n ∈ Z, u = (un)n∈Z ∈ l2
η and t ∈R.

A simple calculation shows that the function f (u, t) satisfies (2.8) and (2.9).

In this paper, we need the following conditions to derive uniform estimates of solutions,
for every τ ∈R,

∫ τ

–∞
e

1
2 βs‖g(s)‖2

ηds < +∞, (2.10)

and for any ζ > 0,

lim
r→–∞ eζ r

∫ 0

–∞
e

1
2 βs‖g(s + r)‖2

ηds = 0. (2.11)

It is clear that condition (2.11) is stronger than (2.10), and both conditions only impose
restrictions on g(ξ ) as ξ approaches –∞, not as ξ approaches +∞. As discussed in the
following section, condition (2.10) proves highly useful for constructing an absorbing set
of solutions in l2

η , while condition (2.11) plays a crucial role in ensuring the temperedness
of the absorbing set. In order to investigate the existence of tempered random attractors,
a tempered pullback absorbing set must be constructed. To guarantee the existence of
tempered absorbing sets, a temperedness condition needs to be imposed on g(ξ ) as given
by (2.11). Since the positive number ζ can vary arbitrarily, condition (2.11) roughly implies
that the growth rate of g(ξ ) should be subexponential in l2

η as ξ approaches –∞. In other
words, g(ξ ) could exhibit behavior similar to a polynomial of arbitrary order but not like
an exponential function as ξ approaches –∞. Extensive studies have been conducted on
tempered attractors for autonomous stochastic equations in [1].

3 Pullback attractors of lattice systems
In this section, we will show the existence and uniqueness of pullback attractors for
stochastic Schrödinger lattice system (2.6) in l2

η . To this end, we need to convert system
(2.6) into a pathwise deterministic one by v(t, τ ,ω) = e–ω(t)u(t, τ ,ω), where u is a solution
of system (2.6). Then, for t > τ and τ ∈R, v satisfies

⎧
⎨

⎩

iv̇ = –Av – iλv + e–ω(t)f (eω(t)v, t) + e–ω(t)g(t),

v(τ ) = vτ ,
(3.1)

where vτ = e–ω(τ )uτ . For every ω ∈ �, τ ∈ R and vτ ∈ l2, system (3.1) is a deterministic
equation and the nonlinearity in (3.1) is Lipschitz continuous. Therefore, given T > 0, one
can show that system (3.1) has a unique solution v(·, τ ,ω, vτ ) ∈ C([τ , τ + T), l2). Further-
more, one may find that v(·, τ ,ω, vτ ) is (F ,B(l2))-measurable in ω ∈ � and continuous in
vτ with respect to the norm of l2. As shown below, this local solution is actually defined
for all t > τ .

Lemma 3.1 Suppose that g ∈ L2
loc(R, l2) and (2.8)–(2.9) hold. For every τ ∈R, ω ∈ �, vτ ∈

l2 and T > 0, there exists M1 = M1(τ ,ω, T) > 0 such that for all t ∈ [τ , τ + T], the solution v
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of system (3.1) satisfies

‖v(t, τ ,ω, vτ )‖2 ≤ M1‖vτ‖2 + M1

∫ t

τ

‖g(s)‖2ds.

Proof By (3.1), we have

1
2

d
dt

‖v‖2 + Im
(

Av, v
)

+ λ‖v‖2 = e–ω(t)Im
(

f (eω(t)v, t), v
)

+ e–ω(t)Im
(

g(t), v
)

. (3.2)

Note that

Im
(

Av, v
)

= Im
{∑

n∈Z

( ∑

m∈Z
J(n – m)vm

)}
v̄n

= Im
{∑

n∈Z
J(0)|vn|2 +

∑

n∈Z

+∞∑

m=1

J(m)(vn–m + vn+m)v̄n

}

= Im
{∑

n∈Z
J(0)|vn|2 + 2

∑

n∈Z

+∞∑

m=1

J(m)Re
(
v̄n+mvn

)
}

= 0.

(3.3)

From (2.9), we get

e–ω(t)Im
(

f (eω(t)v, t), v
)

= 0. (3.4)

For the last term in (3.2), using Young’s inequality, we have

e–ω(t)
∣
∣
∣Im

(
g(t), v

)∣
∣
∣ ≤ λ

2
‖v‖2 +

1
2λ

e–2ω(t)‖g(t)‖2. (3.5)

It follows from (3.2)–(3.5) that

d
dt

‖v‖2 + λ‖v‖2 ≤ 1
λ

e–2ω(t)‖g(t)‖2. (3.6)

Multiplying (3.6) by eλt and then integrating over (τ , t) with t ∈ [τ , τ + T], we obtain

‖v(t, τ ,ω, vτ )‖2 ≤ e–λ(t–τ )‖vτ‖2 +
1
λ

∫ t

τ

e–λ(t–s)–2ω(s)‖g(s)‖2ds,

which along with the continuity of ω implies the desired estimates. �

Using Lemma 3.1, we find that the solution of system (3.1) is globally defined in l2, and
so is the solution of system (2.6). Then, we can define a mapping 
0 : R+ ×R×�× l2 → l2

associated with system (2.6). For every t ∈ R
+, τ ∈R and ω ∈ �, let


0(t, τ ,ω, uτ ) = u(t + τ , τ , θ–τω, uτ ) = eω(t)–ω(–τ )v(t + τ , τ , θ–τω, vτ ), (3.7)

where uτ = e–ω(–τ )vτ . We can derive that the mapping 
0 is a continuous cocycle over R
and (�,F , P, {θt}t∈R). In order to study the long-term behavior of stochastic system (2.6)
in the weighted space l2

η , we need to extend the continuous cocycle 
0 from l2 to l2
η . Next,

we obtain the Lipschitz continuity of solutions in l2
η as stated below.
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Lemma 3.2 Suppose that g1, g2 ∈ L2
loc(R, l2), (2.2)–(2.4) and (2.8)–(2.9) hold. Let v1 and v2

be the solutions of system (3.1) with g replaced by g1 and g2, respectively. For every τ ∈ R,
ω ∈ �, v1,τ , v2,τ ∈ l2 and T > 0, there exists a positive constant M2 = M2(τ ,ω, T) such that
for all t ∈ [τ , τ + T],

‖v1(t, τ ,ω, v1,τ ) – v2(t, τ ,ω, v2,τ )‖2
η

≤ eM2(t–τ )‖v1,τ – v2,τ‖2
η + M2

∫ t

τ

eM2(t–s)e–2ω(s)‖g1(s) – g2(s)‖2
ηds.

Proof Let V = v1 – v2. Using (3.1), we have

i
dV
dt

+ AV + iλV = e–ω(t)
(

f (eω(t)v1, t) – f (eω(t)v2, t)
)

+ e–ω(t)
(

g1(t) – g2(t)
)

,

which implies

d
dt

‖V‖2
η + 2Im

(
AV , V

)

η
+ 2λ‖V‖2

η =2e–ω(t)Im
(

f (eω(t)v1, t) – f (eω(t)v2, t), V
)

η

+ 2e–ω(t)Im
(

g1(t) – g2(t), V
)

η
.

(3.8)

Note that

2Im
(

AV , V
)

η
= 2Im

∑

n∈Z
ηn

∑

m∈Z
J(m)Vn–mV̄n

= 2Im
{∑

n∈Z
J(0)ηn|Vn|2 +

∑

n∈Z
ηn

+∞∑

m=1

J(m)(Vn–m + Vn+m)V̄n

}

= 2Im
∑

n∈Z

+∞∑

m=1

J(m)ηnVn+mV̄n + 2Im
∑

n∈Z

+∞∑

m=1

J(m)ηn+mVnV̄n+m

= 2Im
∑

n∈Z

+∞∑

m=1

J(m)(ηn+m – ηn)V̄n+mVn,

which along with (2.3) implies that

2
∣
∣
∣Im

(
AV , V

)

η

∣
∣
∣ ≤ 2

∑

n∈Z

+∞∑

m=1

αm|J(m)|η1/2
n+mη1/2

n |Vn+m||Vn| ≤ 2
+∞∑

m=1

αm|J(m)|‖V‖2
η. (3.9)

Using (2.8), we have

2e–ω(t)
∣
∣
∣Im

(
f (eω(t)v1, t) – f (eω(t)v2, t), V

)

η

∣
∣
∣

≤ 2e–ω(t)
∑

n∈Z
ηn

∣
∣fn(eω(t)v1,n, t) – fn(eω(t)v2,n, t)

∣
∣
∣
∣V̄n

∣
∣ ≤ 2L‖V‖2

η.
(3.10)

As to the last term of (3.8), using Young’s inequality, we obtain

2e–ω(t)
∣
∣
∣Im

(
g1(t) – g2(t), V

)

η

∣
∣
∣ ≤ ‖V‖2

η + e–2ω(t)‖g1(t) – g2(t)‖2
η. (3.11)
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It follows from (3.8)–(3.11) that

d
dt

‖V‖2
η ≤

(
2

+∞∑

m=1

αm|J(m)| + 2L + 1
)
‖V‖2

η + e–2ω(t)‖g1(t) – g2(t)‖2
η,

which along with (2.4) and Gronwall’s inequality implies the desired estimates. �

Next, we will extend the continuous cocycle 
0 from l2 to l2
η .

Lemma 3.3 Suppose that g ∈ L2
loc(R, l2

η), (2.2)–(2.4) and (2.8)–(2.9) hold. Then, there exists
a continuous cocycle 
0 in l2

η over R and (�,F , P, {θt}t∈R) such that for every t ∈R
+, τ ∈R,

ω ∈ � and uτ ∈ l2, the value 
0(t, τ ,ω, uτ ) is the unique solution of system (2.6).

Proof Given τ ∈ R, ω ∈ �, T > 0 and (vτ , g) ∈ l2
η × L2((τ , τ + T), l2

η). l2 × L2((τ , τ + T), l2)

is dense in l2
η × L2((τ , τ + T), l2

η), then there is a sequence (vn, gn) ∈ l2 × L2((τ , τ +
T), l2) such that (vn, gn) → (vτ , g) in l2

η × L2((τ , τ + T), l2
η). Lemma 3.2 implies that

{v(·, τ , θ–τω, (vn, gn))}+∞
n=1 is a Cauchy sequence in C([τ , τ + T], l2

η), and hence lim
n→+∞ v(·, τ ,

θ–τω, (vn, gn)) exists in C([τ , τ + T], l2
η). Note that this limit is independent of the choice of

(vn, gn) by Lemma 3.2. Define a mapping φ: l2
η × L2((τ , τ + T), l2

η) → C([τ , τ + T], l2
η) by, for

every (vτ , g) ∈ l2
η × L2((τ , τ + T), l2

η), τ ∈R and ω ∈ �,

φ(τ ,ω, (vτ , g)) = lim
n→+∞ v(·, τ , θ–τω, (vn, gn)), (3.12)

where (vn, gn) ∈ l2 × L2((τ , τ + T), l2) with (vn, gn) → (vτ , g) in l2
η × L2((τ , τ + T), l2

η). By
Lemma 3.2, φ(τ ,ω, (vτ , g)) is Lipschitz continuous in (vτ , g) in l2

η × L2((τ , τ + T), l2
η). For

every t ≥ τ , we find that v(t, τ , θ–τω, (vn, gn)) is (F ,B(l2))-measurable and the embedding
l2 ↪→ l2

η is continuous. Then, v(t, τ , θ–τω, (vn, gn)) is (F ,B(l2
η))-measurable, which along

with (3.12) implies that φ(τ ,ω, (vτ , g))(t) is (F ,B(l2
η))-measurable for all t ≥ τ . We fix

g ∈ L2((τ , τ + T), l2
η) and define a map 
̃0 : R+ × R × � × l2

η → l2
η by, for every t ∈ R

+,
τ ∈R, ω ∈ � and vτ ∈ l2

η ,


̃0(t, τ ,ω, vτ ) = eω(t)–ω(–τ )φ(τ ,ω, (vτ , g))(t + τ ).

Therefore, 
̃0(t, τ ,ω, vτ ) is continuous in t ∈R
+ and in vτ ∈ l2

η . Using the measurability of
φ, we find that 
̃0(t, τ ,ω, vτ ) is measurable in ω ∈ �. Note that 
̃0 is a continuous cocycle
in l2

η over R and (�,F , P, {θt}t∈R). Actually, 
̃0 is an extension of 
0 to l2
η , and we will not

distinguish 
̃0 and 
0 from now on. Moreover, the uniqueness of 
0 is ensured by the
uniqueness of the solution of the system (2.6). This completes the proof. �

The next Lemma is concerned with the uniform estimates of the solutions for stochastic
system (2.6), which is necessary to prove the existence and uniqueness of pullback attrac-
tors.

Lemma 3.4 Suppose that (2.2)–(2.5) and (2.8)–(2.10) hold. For every τ ∈ R, ω ∈ � and
D = {D(τ ,ω) : τ ∈ R,ω ∈ �} ∈ D, there exists T = T(τ ,ω, D) > 0 such that for all t ≥ T , the
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solution u of system (2.6) satisfies

‖u(τ , τ – t, θ–τω, uτ–t)‖2
η +

λ

2

∫ 0

–t
eβs–2ω(s)‖u(s + τ , τ – t, θ–τω, uτ–t)‖2

ηds

≤ 4
λ

∫ 0

–∞
eβs–2ω(s)‖g(s + τ )‖2

ηds,

where uτ–t ∈ D(τ – t, θ–tω).

Proof Using (3.1), we have

1
2

d
dt

‖v‖2
η + Im

(
Av, v

)

η
+ λ‖v‖2

η = e–ω(t)Im
(

f (eω(t)v, t), v
)

η
+ e–ω(t)Im

(
g(t), v

)

η
. (3.13)

Similar to (3.9), we get

|Im(Av, v)η| ≤
∑

n∈Z

+∞∑

m=1

αm|J(m)|η1/2
n+mη1/2

n |vn+m||vn| ≤
+∞∑

m=1

αm|J(m)|‖v‖2
η. (3.14)

Using (2.9), we get

e–ω(t)Im
(

f (eω(t)v, t), v
)

η
= 0. (3.15)

For the last term in (3.13), using Young’s inequality, we have

e–ω(t)
∣
∣
∣Im

(
g(t), v

)

η

∣
∣
∣ ≤ λ

4
‖v‖2

η +
1
λ

e–2ω(t)‖g(t)‖2
η. (3.16)

It follows from (3.13)–(3.16) and (2.5) that

d
dt

‖v‖2
η +

λ

2
‖v‖2

η + β‖v‖2
η ≤ 2

λ
e–2ω(t)‖g(t)‖2

η,

which implies that for every ω ∈ � and t ∈R
+,

‖v(τ , τ – t,ω, vτ–t)‖2
η +

λ

2

∫ τ

τ–t
eβ(s–τ )‖v(s, τ – t,ω, vτ–t)‖2

ηds

≤ e–βt‖vτ–t‖2
η +

2
λ

∫ τ

τ–t
eβ(s–τ )–2ω(s)‖g(s)‖2

ηds.
(3.17)

Replacing ω by θ–τω in (3.17) and by

u(s, τ – t, θ–τω, uτ–t) = eω(s–τ )–ω(–τ )v(s, τ – t, θ–τω, vτ–t), (3.18)

we obtain for every ω ∈ �,

‖u(τ , τ – t, θ–τω, uτ–t)‖2
η +

λ

2

∫ τ

τ–t
eβ(s–τ )–2ω(s–τ )‖u(s, τ – t, θ–τω, uτ–t)‖2

ηds

≤ e–βt–2ω(–t)‖uτ–t‖2
η +

2
λ

∫ τ

τ–t
eβ(s–τ )–2ω(s–τ )‖g(s)‖2

ηds

≤ e–βt–2ω(–t)‖uτ–t‖2
η +

2
λ

∫ 0

–∞
eβs–2ω(s)‖g(s + τ )‖2

ηds.

(3.19)
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Using (2.1) and (2.10), we get

2
λ

∫ 0

–∞
eβs–2ω(s)‖g(s + τ )‖2

ηds < +∞. (3.20)

By uτ–t ∈ D(τ – t, θ–tω) ∈D, we find that

lim sup
t→+∞

e–βt–2ω(–t)‖uτ–t‖2
η ≤ lim sup

t→+∞
e–βt–2ω(–t)‖D(τ – t, θ–tω)‖2

η = 0,

which implies that there is a T = T(τ ,ω, D) > 0 such that for all t ≥ T ,

e–βt–2ω(–t)‖uτ–t‖2
η ≤ 2

λ

∫ 0

–∞
eβs–2ω(s)‖g(s + τ )‖2

ηds,

which along with (3.19) and (3.20) shows the desired estimate. �

The next step involves deriving uniform estimates on the tails of solutions as t → +∞,
which will play a crucial role in establishing the asymptotic compactness of solutions.

Lemma 3.5 Suppose that (2.2)–(2.5) and (2.8)–(2.10) hold. For every τ ∈ R, ω ∈ �, D =
{D(τ ,ω) : τ ∈R,ω ∈ �} ∈D and ε > 0, there exist T = T(τ ,ω, D, ε) > 0 and N = N(τ ,ω, ε) >
0 such that for all t ≥ T , the solution u of system (2.6) satisfies

∑

|n|≥N

ηn|un(τ , τ – t, θ–τω, uτ–t)|2 ≤ ε,

where uτ–t ∈ D(τ – t, θ–tω).

Proof Let ϑ be a smooth function satisfying 0 ≤ ϑ(s) ≤ 1 for s ≥ 0 and

ϑ(s) =

{
0, 0 ≤ s ≤ 1,
1, s ≥ 2.

Let k be a fixed positive integer, which will be specified later, and set y = (yn)n∈Z with
yn = ϑ( |n|

k )vn. Using (3.1), we have

d
dt

∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 = –2λ

∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 – 2Im

(
Av, y

)

η

+ 2e–ω(t)Im
(

f (eω(t)v, t), y
)

η
+ 2e–ω(t)Im

(
g(t), y

)

η

= –2λ
∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 +

3∑

i=1

Ki.

(3.21)
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The subsequent procedure entails the individual estimation of Ki (i = 1, 2, 3). First, we
estimate K1 as follows:

(
Av, y

)

η
=

∑

n∈Z
ϑ

( |n|
k

)
ηn

∑

m∈Z
J(m)vn–mv̄n

= J(0)
∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 +

∑

n∈Z

+∞∑

m=1

J(m)ϑ
( |n|

k

)
ηnvn+mv̄n

+
∑

n∈Z

+∞∑

m=1

J(m)ϑ
( |n + m|

k

)
ηn+mvnv̄n+m.

Then,

Im
(

Av, y
)

η
= Im

∑

n∈Z

+∞∑

m=1

J(m)
(
ϑ

( |n + m|
k

)
ηn+m – ϑ

( |n|
k

)
ηn

)
v̄n+mvn

= I1 + I2,

(3.22)

where

I1 = Im
∑

n∈Z

+∞∑

m=1

J(m)
(
ϑ

( |n + m|
k

)
– ϑ

( |n|
k

))
ηn+mv̄n+mvn,

and

I2 = Im
∑

n∈Z

+∞∑

m=1

J(m)ϑ
( |n|

k

)
(ηn+m – ηn)v̄n+mvn.

By the definition of ϑ(s), for any n ∈ Z and m ∈N
+, there exists a constant c0 > 0 such that

∣
∣
∣ϑ

( |n + m|
k

)
– ϑ

( |n|
k

)∣
∣
∣ ≤ m

k
c0 and

∣
∣
∣ϑ

( |n + m|
k

)
– ϑ

( |n|
k

)∣
∣
∣ ≤ 2. (3.23)

It follows from (2.3) that for all n ∈ Z and m ≥ 1,

η1/2
n+m ≤ (2 + αm)η1/2

n ,

which along with (3.23) shows that for any l > 1,

|I1| ≤
∑

n∈Z

+∞∑

m=1

|J(m)|
∣
∣
∣ϑ

( |n + m|
k

)
– ϑ

( |n|
k

)∣
∣
∣ηn+m|vn+m||vn|

≤ c0

k

l∑

m=1

m(2 + αm)|J(m)|
∑

n∈Z
η1/2

n+mη1/2
n |vn+m||vn|

+ 2
+∞∑

m=l+1

(2 + αm)|J(m)|
∑

n∈Z
η1/2

n+mη1/2
n |vn+m||vn|

≤ c0

k

l∑

m=1

m(2 + αm)|J(m)|‖v‖2
η + 2

+∞∑

m=l+1

(2 + αm)|J(m)|‖v‖2
η.

(3.24)
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Using (2.3), we get

|I2| ≤
+∞∑

m=1

αm|J(m)|
∑

n∈Z
ϑ

( |n|
k

)
η1/2

n+mη1/2
n |vn+m||vn|

≤ 1
2

+∞∑

m=1

αm|J(m)|
(∑

n∈Z
ϑ

( |n|
k

)
ηn+m|vn+m|2 +

∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2

)
,

which along with (3.23) implies that for any l > 1,

|I2| ≤
+∞∑

m=1

αm|J(m)|
∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2

+
1
2

l∑

m=1

αm|J(m)|
∑

n∈Z
ηn+m

∣
∣
∣ϑ

( |n + m|
k

)
– ϑ

( |n|
k

)∣
∣
∣|vn+m|2

+
1
2

+∞∑

m=l+1

αm|J(m)|
∑

n∈Z
ηn+m

∣
∣
∣ϑ

( |n + m|
k

)
– ϑ

( |n|
k

)∣
∣
∣|vn+m|2

≤
+∞∑

m=1

αm|J(m)|
∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 +

c0

2k

l∑

m=1

mαm|J(m)|‖v‖2
η

+
+∞∑

m=l+1

αm|J(m)|‖v‖2
η.

(3.25)

For any l > 1, it follows from (3.24)–(3.25) and (3.22) that

|K1| ≤2
+∞∑

m=1

αm|J(m)|
∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 +

3c0

k

l∑

m=1

m(2 + αm)|J(m)|‖v‖2
η

+ 6
+∞∑

m=l+1

(2 + αm)|J(m)|‖v‖2
η.

(3.26)

Second, we estimate K2. From (2.9), we obtain

K2 = 2e–ω(t)Im
∑

n∈Z
ϑ

( |n|
k

)
ηnfn

(
eω(t)vn, t

)
v̄n = 0. (3.27)

Lastly, we estimate K3. Using Young’s inequality, we have

|K3| ≤ 2e–ω(t)
∑

n∈Z
ϑ

( |n|
k

)
ηn|gn(t)||vn|

≤ λ
∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 +

1
λ

e–2ω(t)
∑

n∈Z
ϑ

( |n|
k

)
ηn|gn(t)|2.

(3.28)
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Then, it follows from (3.21), (3.26)–(3.28) and (2.5) that for l > 1,

d
dt

∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2 + β

∑

n∈Z
ϑ

( |n|
k

)
ηn|vn|2

≤ 3c0

k

l∑

m=1

m(2 + αm)|J(m)|‖v‖2
η + 6

+∞∑

m=l+1

(2 + αm)|J(m)|‖v‖2
η

+
1
λ

e–2ω(t)
∑

|n|≥k

ηn|gn(t)|2,

which implies that for t ∈R
+, τ ∈R, ω ∈ � and l > 1,

∑

n∈Z
ϑ

( |n|
k

)
ηn|vn(τ , τ – t,ω, vτ–t)|2 – e–βt

∑

n∈Z
ϑ

( |n|
k

)
ηn|vτ–t,n|2

≤ 3c0

k

l∑

m=1

m(2 + αm)|J(m)|
∫ τ

τ–t
eβ(s–τ )‖v(s, τ – t,ω, vτ–t)‖2

ηds

+ 6
+∞∑

m=l+1

(2 + αm)|J(m)|
∫ τ

τ–t
eβ(s–τ )‖v(s, τ – t,ω, vτ–t)‖2

ηds

+
1
λ

∫ τ

τ–t
eβ(s–τ )e–2ω(s)

∑

|n|≥k

ηn|gn(s)|2ds.

(3.29)

Using (3.18) and (3.29), we get

∑

n∈Z
ϑ

( |n|
k

)
ηn|un(τ , τ – t, θ–τω, uτ–t)|2

≤ e–βt–2ω(–t)
∑

n∈Z
ϑ

( |n|
k

)
ηn|uτ–t,n|2 +

1
λ

∫ 0

–∞
eβs–2ω(s)

∑

|n|≥k

ηn|gn(s + τ )|2ds

+
3c0

k

l∑

m=1

m(2 + αm)|J(m)|
∫ 0

–t
eβs–2ω(s)‖u(s + τ , τ – t, θ–τω, uτ–t)‖2

ηds

+ 6
+∞∑

m=l+1

(2 + αm)|J(m)|
∫ 0

–t
eβs–2ω(s))‖u(s + τ , τ – t, θ–τω, uτ–t)‖2

ηds

=
4∑

i=1

Li.

(3.30)

According to uτ–t ∈ D(τ – t, θ–tω) ∈ D and (2.1), there exists T1 = T1(τ ,ω, D, ε) > 0 such
that for all t ≥ T1,

L1 ≤ ε

4
. (3.31)

Using (3.20), we find that there exists N1 = N1(τ ,ω, ε) > 0 such that for all k ≥ N1,

L2 ≤ ε

4
. (3.32)
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Furthermore, it follows from (2.4) and Lemma 3.4 that there are T2 = T2(τ ,ω, D, ε) > 0 and
N2 = N2(τ ,ω, ε) > 0 such that for all t ≥ T2 and k ≥ N2,

L3 ≤ ε

4
. (3.33)

Using (2.4) and Lemma 3.4, we can choose l = l(ε) large enough and t ≥ T2,

L4 ≤ ε

4
. (3.34)

Let N(τ ,ω, ε) = max{N1, N2} and T(τ ,ω, D, ε) = max{T1, T2}. It follows from (3.30)–
(3.34) that for all t ≥ T and k ≥ N ,

∑

|n|≥2k

ηn|un(τ , τ – t, θ–τω, uτ–t)|2 ≤
∑

n∈Z
ϑ

( |n|
k

)
ηn|un(τ , τ – t, θ–τω, uτ–t)|2 ≤ ε.

This concludes the proof. �

Next, we show that stochastic system (2.6) has a tempered D-pullback absorbing set as
stated below.

Lemma 3.6 Suppose that (2.2)–(2.5) and (2.8)–(2.11) hold. Then, the continuous cocycle

0 associated with system (2.6) has a closed measurable D-pullback absorbing set K0 ∈D,
which is given by, for each τ ∈ R and ω ∈ �,

K0(τ ,ω) = {u ∈ l2
η : ‖u‖2

η ≤ R0(τ ,ω)}, (3.35)

where R0(τ ,ω) is given by

R0(τ ,ω) =
4
λ

∫ 0

–∞
eβs–2ω(s)‖g(s + τ )‖2

ηds. (3.36)

Proof Note that K0 given by (3.35) is a closed random set in l2
η . Using Lemma 3.4 and (3.7),

we obtain that for every τ ∈ R, ω ∈ �, and D ∈ D, there exists T3 = T3(τ ,ω, D) > 0 such
that for all t ≥ T3,


0(t, τ – t, θ–tω, D(τ – t, θ–tω)) ⊆ K0(τ ,ω).

This implies that K0 pullback attracts all elements in D. Next, we prove that K0(τ ,ω) is
tempered. Given ζ > 0, τ ∈R and ω ∈ �, we have

e2ζ r‖K0(τ + r, θrω)‖2
η ≤ e2ζ rR0(τ + r, θrω)

=
4e2ζ r

λ

∫ 0

–∞
eβs–2θrω(s)‖g(s + τ + r)‖2

ηds

=
4e2ζ r

λ

∫ 0

–∞
eβs+2(ω(r)–ω(r+s))‖g(s + τ + r)‖2

ηds.
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Let 0 < α < min{ β

4 , ζ

2 }. By (2.1), for each ω ∈ �, there exists T4 = T4(ω) < 0 such that for all
r ≤ T4 and s < 0,

|ω(r)| ≤ –αr, |ω(r + s)| ≤ –α(r + s).

Then, we have for each τ ∈R and ω ∈ �,

lim sup
r→–∞

e2ζ r‖K0(τ + r, θrω)‖2
η ≤ 4e(2ζ–4α)r

λ

∫ 0

–∞
e(β–2α)s‖g(s + τ + r)‖2

ηds

≤ 4e(2ζ–4α)r

λ

∫ 0

–∞
e

β
2 s‖g(s + τ + r)‖2

ηds

≤ 4e(2ζ–4α)r

λ
e– βτ

2

∫ τ

–∞
e

β
2 s‖g(s + r)‖2

ηds,

which along with (2.10) and (2.11) implies that

lim sup
r→–∞

eζ r‖K0(τ + r, θrω)‖η = 0.

On the other hand, it is evident that, for each τ ∈ R, R0(τ , ·) : � → R is (F ,B(R))-
measurable. Consequently, K0(τ ,ω) is a closed measurable D-pullback absorbing set for

0 in D. This completes the proof. �

We are now ready to present the existence and uniqueness of D-pullback attractors for

0.

Theorem 3.1 Suppose that (2.2)–(2.5) and (2.8)–(2.11) hold. Then, the continuous cocycle

0 associated with system (2.6) has a unique D-pullback attractor A0 = {A0(τ ,ω) : τ ∈
R,ω ∈ �} ∈D in l2

η .

Proof The key observation is that Lemma 3.6 demonstrates the existence of a closed mea-
surable D-pullback absorbing set K0 for 
0, while Lemma 3.5 implies that 
0 is asymptot-
ically null in l2

η with respect to D. As a result, the existence and uniqueness of D-pullback
attractors A0 can be immediately deduced from Theorem 3.6 in [3]. This completes the
proof. �

4 Wong-Zakai approximation of lattice system
In this section, we propose a Wong-Zakai approximation of solutions for nonautonomous
stochastic Schrödinger system (2.6) by system (2.7). Given δ �= 0, define a random variable
Gδ by

Gδ(ω) =
ω(δ)

δ
, for all ω ∈ �. (4.1)

Using (4.1), we get

Gδ(θtω) =
ω(t + δ) – ω(t)

δ
and

∫ t

0
Gδ(θsω)ds =

∫ t+δ

t

ω(s)
δ

ds +
∫ 0

δ

ω(s)
δ

ds, (4.2)
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which together with the continuity of ω implies that for all t ∈R,

lim
δ→0

∫ t

0
Gδ(θsω)ds = ω(t). (4.3)

From [23], we find that this convergence is uniform on a finite interval as stated below.

Lemma 4.1 Let τ ∈R, ω ∈ � and T > 0. Then, for every ε > 0, there exists δ̃ = δ̃(ε, τ ,ω, T) >
0 such that for all 0 < |δ| < δ̃ and t ∈ [τ , τ + T],

∣
∣
∣

∫ t

0
Gδ(θsω)ds – ω(t)

∣
∣
∣ < ε.

By Lemma 4.1, for all 0 < |δ| < δ̃ and t ∈ [τ , τ + T], there exist c1 = c1(τ ,ω, T) > 0 and
δ̃ = δ̃(τ ,ω, T) > 0 such that

∣
∣
∣

∫ t

0
Gδ(θsω)ds

∣
∣
∣ ≤ c1. (4.4)

From (4.3), we see that Gδ(θtω) is an approximation of the white noise in a sense. Denote
by

vδ(t, τ ,ω, vδ
τ ) = e–

∫ t
0 Gδ (θsω)dsuδ(t, τ ,ω, uδ

τ ) with vδ
τ = e–

∫ τ
0 Gδ (θsω)dsuδ

τ . (4.5)

Then, we get from (2.7) and (4.5) that

⎧
⎨

⎩

i dvδ

dt + Avδ + iλvδ = e–
∫ t

0 Gδ (θsω)dsf (uδ , t) + e–
∫ t

0 Gδ (θsω)dsg(t), t > τ ,

vδ(τ ) = vδ
τ .

(4.6)

System (4.6) is a deterministic functional equation and the nonlinearity in (4.6) is Lips-
chitz continuous from l2 to l2. Therefore, for every τ ∈ R, ω ∈ � and vδ

τ ∈ l2, system (4.6)
has a unique solution vδ(·, τ ,ω, vδ

τ ) ∈ C([τ , τ + T), l2). As shown below, this local solution is
actually defined for all t > τ . In addition, we find that vδ(·, τ ,ω, vδ

τ ) is (F ,B(l2))-measurable
in ω ∈ � and continuous in vδ

τ with respect to the norm of l2. Similar to Lemmas 3.1–3.4,
we know for every δ �= 0, equation (1.2) defines a continuous cocycle 
δ in l2

η . Given t ∈R
+,

τ ∈R, ω ∈ � and uδ
τ ∈ l2

η , let


δ(t, τ ,ω, uδ
τ ) = uδ(t + τ , τ , θ–τω, uδ

τ ) = e
∫ t+τ

0 Gδ (θs–τ ω)dsvδ(t + τ , τ , θ–τω, vδ
τ ).

Lemma 4.2 Suppose that (2.2)–(2.5) and (2.8)–(2.10) hold. For every τ ∈ R, ω ∈ � and
T > 0, there exist δ̃ = δ̃(τ ,ω, T) > 0, M3 = M3(τ ,ω, T) > 0 such that for all 0 < |δ| < δ̃ and
t ∈ [τ , τ + T], the solution vδ of system (4.6) satisfies

‖vδ(t, τ ,ω, vδ
τ )‖2

η +
∫ t

τ

‖vδ(s, τ ,ω, vδ
τ )‖2

ηds ≤ M3‖vδ
τ‖2

η + M3

∫ t

τ

‖g(s)‖2
ηds.
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Proof Using (4.6), we obtain for every ω ∈ �,

1
2

d
dt

∑

n∈Z
ηn|vδ

n|2 + Im
∑

n∈Z
ηn(Avδ)nv̄δ

n + λ
∑

n∈Z
ηn|vδ

n|2

= e–
∫ t

0 Gδ (θsω)dsIm
∑

n∈Z
ηnfn(uδ

n, t)v̄δ
n + e–

∫ t
0 Gδ (θsω)dsIm

∑

n∈Z
ηngn(t)v̄δ

n.
(4.7)

From (2.9), we have

e–
∫ t

0 Gδ (θsω)dsIm
∑

n∈Z
ηnfn(uδ

n, t)v̄δ
n = 0. (4.8)

Similar to (3.9), we obtain

∣
∣
∣Im

∑

n∈Z
ηn(Avδ)nv̄δ

n

∣
∣
∣ ≤

+∞∑

m=1

αm|J(m)|‖vδ‖2
η. (4.9)

As to the last term of (4.7), we get

e–
∫ t

0 Gδ (θsω)ds
∣
∣
∣Im

∑

n∈Z
ηngn(t)v̄δ

n

∣
∣
∣ ≤ λ

4
∑

n∈Z
ηn|vδ

n|2 +
1
λ

e–2
∫ t

0 Gδ (θsω)ds
∑

n∈Z
ηn|gn(t)|2. (4.10)

It follows from (4.7)–(4.10) and (2.5) that

d
dt

∑

n∈Z
ηn|vδ

n|2 +
λ

2
∑

n∈Z
ηn|vδ

n|2 + β
∑

n∈Z
ηn|vδ

n|2 ≤ 2
λ

e–2
∫ t

0 Gδ (θsω)ds
∑

n∈Z
ηn|gn(t)|2. (4.11)

Multiplying (4.11) by eβt and then integrating over (τ , t) with t ≥ τ , we obtain

‖vδ(t, τ ,ω, vδ
τ )‖2

η +
λ

2

∫ t

τ

eβ(s–t)‖vδ(s, τ ,ω, vδ
τ )‖2

ηds

≤ e–β(t–τ )‖vδ
τ‖2

η +
2
λ

∫ t

τ

eβ(s–t)e–2
∫ s

0 Gδ (θlω)dl‖g(s)‖2
ηds,

(4.12)

which together with (4.4) completes the proof. �

Next, we establish uniform estimates of the solutions for stochastic system (2.7) in the
following lemma.

Lemma 4.3 Suppose that (2.2)–(2.5)and (2.8)–(2.10) hold. For every δ �= 0, τ ∈ R, ω ∈ �,
and D = {D(τ ,ω) : τ ∈ R,ω ∈ �} ∈ D, there exists T = T(τ ,ω, D, δ) > 0 such that for all
t ≥ T , the solution uδ of system (2.7) satisfies

‖uδ(τ , τ – t, θ–τω, uδ
τ–t)‖2

η +
λ

2

∫ 0

–t
eβs+2

∫ 0
s Gδ (θlω)dl‖uδ(s + τ , τ – t, θ–τω, uδ

τ–t)‖2
ηds

≤ Rδ(τ ,ω),

where uδ
τ–t ∈ D(τ – t, θ–tω), and Rδ(τ ,ω) is determined by

Rδ(τ ,ω) =
4
λ

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θlω)dl‖g(s + τ )‖2

ηds. (4.13)
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Proof For every τ ∈R, t ∈R
+ and ω ∈ �, it follows from (4.12) that

‖vδ(τ , τ – t, θ–τω, vδ
τ–t)‖2

η +
λ

2

∫ τ

τ–t
eβ(s–τ )‖vδ(s, τ – t, θ–τω, vδ

τ–t)‖2
ηds

≤ e–βt‖vδ
τ–t‖2

η +
2
λ

∫ τ

τ–t
eβ(s–τ )+2

∫ 0
s Gδ (θl–τ ω)dl‖g(s)‖2

ηds,
(4.14)

which along with (4.5) shows that

‖uδ(τ , τ – t, θ–τω, uδ
τ–t)‖2

η +
λ

2

∫ 0

–t
eβs+2

∫ 0
s Gδ (θlω)dl‖uδ(s + τ , τ – t, θ–τω, uδ

τ–t)‖2
ηds

≤ e–βt+2
∫ 0

–t Gδ (θlω)dl‖uδ
τ–t‖2

η +
2
λ

∫ 0

–t
eβs+2

∫ 0
s Gδ (θlω)dl‖g(s + τ )‖2

ηds. (4.15)

Using (4.1) and the ergodic theory, we get

lim
s→±∞

1
s

∫ s

0
Gδ(θlω)dl = E(Gδ(ω)) = 0. (4.16)

From (2.10) and (4.16), we obtain

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θlω)dl‖g(s + τ )‖2

ηds < +∞. (4.17)

Since uδ
τ–t ∈ D(τ – t, θ–tω) and D ∈D, we find that there exists T5 = T5(τ ,ω, D, δ) > 0 such

that for all t ≥ T5,

e–βt+2
∫ 0

–t Gδ (θlω)dl‖uδ
τ–t‖2

η ≤ 2
λ

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θlω)dl‖g(s + τ )‖2

ηds,

which together with (4.15) and (4.17) concludes the proof. �

Lemma 4.4 Suppose that (2.2)–(2.5) and (2.8)–(2.11) hold. Then, the continuous cocycle

δ associated with system (2.7) has a closed measurable D-pullback absorbing set Kδ =
{Kδ(τ ,ω) : τ ∈R,ω ∈ �} ∈D, where for every τ ∈R and ω ∈ �,

Kδ(τ ,ω) = {uδ ∈ l2
η : ‖uδ‖2

η ≤ Rδ(τ ,ω)}, (4.18)

where Rδ(τ ,ω) is given by (4.13). Additionally, we have for every τ ∈R and ω ∈ �,

lim
δ→0

Rδ(τ ,ω) = R0(τ ,ω), (4.19)

where R0(τ ,ω) is given by (3.36).

Proof Note that Kδ given by (4.18) is a closed measurable random set in l2
η . Given τ ∈ R,

ω ∈ �, and D ∈D, it follows from Lemma 4.3 that there exists T6 = T6(τ ,ω, D, δ) such that
for all t ≥ T6,


δ(t, τ – t, θ–tω, D(τ – t, θ–tω)) ⊆ Kδ(τ ,ω),
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which implies that Kδ pullback attracts all elements in D. Next, we prove Kδ(τ ,ω) is tem-
pered. Given ζ > 0, τ ∈R and ω ∈ �, we have

e2ζ r‖Kδ(τ + r, θrω)‖2
η ≤ e2ζ rRδ(τ + r, θrω)

=
4e2ζ r

λ

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θl+rω)dl‖g(s + τ + r)‖2

ηds

=
4e2ζ r

λ

∫ 0

–∞
eβs+2

∫ r
s+r Gδ (θlω)dl‖g(s + τ + r)‖2

ηds.

Using (4.2), we have

2
∫ 0

s
Gδ(θlω)dl = –2

∫ s+δ

s

ω(l)
δ

dl + 2
∫ δ

0

ω(l)
δ

dl. (4.20)

Since lim
δ→0

∫ δ

0
ω(r)
δ

dr = 0, there exists δ1 = δ1(ω) > 0 such that for all 0 < |δ| < δ1

2
∣
∣
∣

∫ δ

0

ω(l)
δ

dl
∣
∣
∣ ≤ 1. (4.21)

Let 0 < α < min{ β

2 , ζ }. Similarly, there exists l1 between s and s + δ such that
∫ s+δ

s
ω(l)
δ

dl =
ω(l1), which along with (2.1) implies that there exists T7 = T7(ω) < 0 such that for all s ≤ T7

and |δ| ≤ 1,

2
∣
∣
∣

∫ s+δ

s

ω(l)
δ

dl
∣
∣
∣ ≤ α – αs. (4.22)

Let δ2 = min{δ1, 1}. From (4.20)–(4.22), we get for all 0 < |δ| < δ2 and s ≤ T7,

2
∣
∣
∣

∫ 0

s
Gδ(θlω)dl

∣
∣
∣ < α – αs + 1. (4.23)

According to (4.4), there exist δ̃ = δ̃(ω) ∈ (0, δ2) and c2(ω) > 0 such that for all 0 < |δ| < δ̃

and T7 ≤ s ≤ 0,

2
∣
∣
∣

∫ 0

s
Gδ(θlω)dl

∣
∣
∣ ≤ c2(ω),

which along with (4.23) implies that for all 0 < |δ| < δ̃ and s ≤ 0,

2
∣
∣
∣

∫ 0

s
Gδ(θlω)dl

∣
∣
∣ ≤ α – αs + c3(ω), (4.24)

where c3(ω) = 1 + c2(ω). Using (4.24), we find that for all 0 < |δ| < δ̃, s ≤ 0 and r ≤ 0,

2
∣
∣
∣

∫ r

s+r
Gδ(θlω)dl

∣
∣
∣ ≤ 2

∣
∣
∣

∫ 0

s+r
Gδ(θlω)dl

∣
∣
∣ + 2

∣
∣
∣

∫ 0

r
Gδ(θlω)dl

∣
∣
∣ ≤ 2α + 2c3 – αs – 2αr.
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Consequently, we have for each τ ∈R and ω ∈ �,

e2ζ r‖Kδ(τ + r, θrω)‖2
η ≤ 4e2α+2c3

λ
e(2ζ–2α)r

∫ 0

–∞
e(β–α)s‖g(s + τ + r)‖2

ηds

≤ 4e2α+2c3

λ
e(2ζ–2α)r

∫ 0

–∞
e

β
2 s‖g(s + τ + r)‖2

ηds

≤ 4e2α+2c3– βτ
2

λ
e(2ζ–2α)r

∫ τ

–∞
e

β
2 s‖g(s + r)‖2

ηds,

which along with (2.10) and (2.11) implies that

lim sup
r→–∞

eζ r‖Kδ(τ + r, θrω)‖η = 0.

The convergence of (4.19) can be obtained by Lebesgue’s dominated convergence as in
[23]. This concludes the proof. �

Lemma 4.5 Suppose that (2.2)–(2.5) and (2.8)–(2.10) hold. For every τ ∈ R, ω ∈ � and
ε > 0, there exist δ̃ = δ̃(ω) > 0, T = T(τ ,ω, ε) > 0 and N = N(τ ,ω, ε) > 0 such that for all
t ≥ T and 0 < |δ| < δ̃, the solution uδ of system (2.7) satisfies

∑

|n|≥N

ηn|uδ
n(τ , τ – t, θ–τω, uδ

τ–t)|2 ≤ ε,

where uδ
τ–t ∈ Kδ(τ – t, θ–tω) with Kδ defined by (4.18).

Proof Let ϑ be the function defined in Lemma 3.5 and y = (yn)n∈Z with yn = ϑ( |n|
k )vδ

n. From
(4.6), we have

d
dt

∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2

= –2λ
∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2 – 2Im
(

Avδ , y
)

η

+ 2e–
∫ t

0 Gδ (θsω)dsIm
(

f (uδ , t), y
)

η
+ 2e–

∫ t
0 Gδ (θsω)dsIm

(
g(t), y

)

η

= –2λ
∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2 +
3∑

i=1

Mi.

(4.25)

The next step involves separate estimation of Mi (i = 1, 2, 3). Using the same calculations
as in (3.24)–(3.26), we have

|M1| ≤2
+∞∑

m=1

αm|J(m)|
∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2 +
3c0

k

l∑

m=1

m(2 + αm)|J(m)|‖vδ‖2
η

+ 6
+∞∑

m=l+1

(2 + αm)|J(m)|‖vδ‖2
η.

(4.26)
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From (2.9), we have

M2 = 2e–
∫ t

0 Gδ (θsω)dsIm
(

f (uδ , t), y
)

η
= 0. (4.27)

For the last term of (4.25), we have

|M3| ≤ 2e–
∫ t

0 Gδ (θsω)ds
∑

n∈Z
ϑ

( |n|
k

)
ηn|gn(t)||vδ

n|

≤ λ

2
∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2 +
2
λ

e–2
∫ t

0 Gδ (θsω)ds
∑

n∈Z
ϑ

( |n|
k

)
ηn|gn(t)|2.

(4.28)

Then, it follows from (4.25)–(4.28) and (2.5) that

d
dt

∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2 + β
∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n|2

≤ 3c0

k

l∑

m=1

m(2 + αm)|J(m)|‖vδ‖2
η + 6

+∞∑

m=l+1

(2 + αm)|J(m)|‖vδ‖2
η

+
2
λ

e–2
∫ t

0 Gδ (θsω)ds
∑

|n|≥k

ηn|gn(t)|2.

(4.29)

Given t ∈R
+, τ ∈R and ω ∈ �, integrating (4.29) over (τ – t, τ ), we have

∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

n(τ , τ – t,ω, vδ
τ–t)|2 – e–βt

∑

n∈Z
ϑ

( |n|
k

)
ηn|vδ

τ–t,n|2

≤ 3c0

k

l∑

m=1

m(2 + αm)|J(m)|
∫ τ

τ–t
eβ(s–τ )‖vδ(s, τ – t,ω, vδ

τ–t)‖2
ηds

+ 6
+∞∑

m=l+1

(2 + αm)|J(m)|
∫ τ

τ–t
eβ(s–τ )‖vδ(s, τ – t,ω, vδ

τ–t)‖2
ηds

+
2
λ

∫ τ

τ–t
eβ(s–τ )+2

∫ 0
s Gδ (θlω)dl

∑

|n|≥k

ηn|gn(s)|2ds.

(4.30)

Replace ω in the above inequality by θ–τω, then (4.5) and (4.30) yield that

∑

n∈Z
ϑ

( |n|
k

)
ηn|uδ

n(τ , τ – t, θ–τω, uδ
τ–t)|2

≤ e–βt+2
∫ 0

–t Gδ (θlω)dl
∑

n∈Z
ϑ

( |n|
k

)
ηn|uδ

τ–t,n|2

+
3c0

k

l∑

m=1

m(2 + αm)|J(m)|
∫ 0

–t
eβs+2

∫ 0
s Gδ (θlω)dl‖uδ(s + τ , τ – t, θ–τω, uδ

τ–t)‖2
ηds

+ 6
+∞∑

m=l+1

(2 + αm)|J(m)|
∫ 0

–t
eβs+2

∫ 0
s Gδ (θlω)dl‖uδ(s + τ , τ – t, θ–τω, uδ

τ–t)‖2
ηds

+
2
λ

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θlω)dl

∑

|n|≥k

ηn|gn(s + τ )|2ds
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=
4∑

i=1

Ni. (4.31)

Assuming uτ–t ∈ Kδ(τ – t, θ–tω), we get

N1 ≤ e–βt+2
∫ 0

–t Gδ (θlω)dl 4
λ

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θl–tω)dl‖g(s + τ – t)‖2

ηds

≤ e–βt+2
∫ 0

–t Gδ (θlω)dl 4
λ

∫ –t

–∞
eβ(s+t)+2

∫ –t
s Gδ (θlω)dl‖g(s + τ )‖2

ηds.
(4.32)

According to (4.24), there exists δ̃ > 0 such that for all 0 < |δ| < δ̃, s ≤ 0 and t ≥ 0,

2
∣
∣
∣

∫ –t

s
Gδ(θlω)dl

∣
∣
∣ ≤ 2

∣
∣
∣

∫ 0

s
Gδ(θlω)dl

∣
∣
∣ + 2

∣
∣
∣

∫ 0

–t
Gδ(θlω)dl

∣
∣
∣ ≤ β

4
+ 2c3 +

β

8
t –

β

8
s, (4.33)

which along with (4.32) shows that for all 0 < |δ| < δ̃,

N1 ≤ 4e–βt+2
∫ 0

–t Gδ (θlω)dl

λ

∫ –t

–∞
eβ(s+t)+2

∫ –t
s Gδ (θlω)dl‖g(s + τ )‖2

ηnds

≤ 4e
–βt

8 + 3β
8 +3c3

λ

∫ –t

–∞
e

β
2 s‖g(s + τ )‖2

ηds → 0 as t → +∞.

(4.34)

Thus, there exists T8 = T8(τ ,ω, ε) > 0 such that for all t ≥ T8 and 0 < |δ| < δ̃,

N1 ≤ ε

4
. (4.35)

According to Lemma 4.3 and (4.24), there exists T9 = T9(τ ,ω) > 0 such that for all t ≥ T9

and 0 < |δ| < δ̃,

∫ 0

–t
eβs+2

∫ 0
s Gδ (θlω)dl‖uδ(s + τ , τ – t, θ–τω, uδ

τ–t)‖2
ηds

≤ 8
λ2

∫ 0

–∞
eβs+2

∫ 0
s Gδ (θlω)dl‖g(s + τ )‖2

ηds

≤ 8e
β
8 +c3

λ2

∫ 0

–∞
e

β
2 s‖g(s + τ )‖2

ηds,

(4.36)

which along with (2.10) implies that there exists N3 = N3(τ ,ω, ε) > 0 such that for all k ≥
N3, t ≥ T9 and 0 < |δ| < δ̃,

N2 ≤ ε

4
. (4.37)

Using (2.4) and (4.36), we can choose l = l(ε) large enough such that for all t ≥ T9 and
0 < |δ| < δ̃,

N3 ≤ ε

4
. (4.38)
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From (2.10) and (4.24), we find that there exists N4 = N4(τ ,ω, ε) > 0 such that for all k ≥ N4

and 0 < |δ| < δ̃,

N4 ≤ 2
λ

e
β
8 +c3

∫ 0

–∞
e

β
2 s

∑

|n|≥k

ηn|gn(s + τ )|2ds ≤ ε

4
. (4.39)

Let N = max{N3, N4} and T = max{T8, T9}. It follows from (4.31) and (4.35)–(4.39) that for
all t ≥ T , k ≥ N and 0 < |δ| < δ̃,

∑

|n|≥2k

ηn|uδ
n(τ , τ – t, θ–τω, uδ

τ–t)|2 ≤
∑

n∈Z
ϑ

( |n|
k

)
ηn|uδ

n(τ , τ – t, θ–τω, uδ
τ–t)|2 ≤ ε.

This concludes the proof. �

As a consequence of Lemmas 4.3–4.5, we obtain the existence and uniqueness of pull-
back attractors for system (2.7) as stated below.

Theorem 4.1 Suppose that (2.2)–(2.5) and (2.8)–(2.11) hold. Then, there exists δ̃ = δ̃(ω) >
0 such that for any 0 < |δ| < δ̃, the continuous cocycle 
δ associated with system (2.7) has a
unique D-pullback attractor Aδ = {Aδ(τ ,ω) : τ ∈ R,ω ∈ �} ∈D in l2

η .

Proof The proof is quite similar to Theorem 3.1, and the details are left to the reader. �

For the attractor Aδ of 
δ , we show the uniform compactness in the following theorem.

Theorem 4.2 Suppose that (2.2)–(2.5) and (2.8)–(2.11) hold. For every τ ∈ R and ω ∈ �,
there exists δ̃ = δ̃(ω) > 0 such that

⋃

0<|δ|<δ̃

Aδ(τ ,ω) is precompact in l2
η .

Proof Let δ̃ = δ̃(ω) be the same number in Theorem 4.1. For every ε > 0, one can get that
⋃

0<|δ|<δ̃

Aδ(τ ,ω) has a finite covering of balls of radius less than ε. Denote by

B(τ ,ω) = {uδ ∈ l2
η : ‖uδ‖2

η ≤ R(τ ,ω)},

where R(τ ,ω) is defined by

R(τ ,ω) =
4e

β
8 +c3

λ

∫ 0

–∞
e

β
2 s‖g(s + τ )‖2

ηds. (4.40)

Using (4.13) and (4.24), we get for all 0 < |δ| < δ̃,

Rδ(τ ,ω) ≤ R(τ ,ω). (4.41)

Using (4.40)–(4.41), for all 0 < |δ| < δ̃, τ ∈ R and ω ∈ �, we obtain Kδ(τ ,ω) ⊆ B(τ ,ω).
Therefore, for every τ ∈ R and ω ∈ �,

⋃

0<|δ|<δ̃

Aδ(τ ,ω) ⊆
⋃

0<|δ|<δ̃

Kδ(τ ,ω) ⊆ B(τ ,ω). (4.42)
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By Lemma 4.5, there exist T10 = T10(τ ,ω, ε) > 0 and N5 = N5(τ ,ω, ε) > 0 such that for all
t ≥ T10 and 0 < |δ| < δ̃,

∑

|n|≥N5

ηn|uδ
n(τ , τ – t, θ–τω, uδ

τ–t)|2 ≤ ε

4 (4.43)

for any uδ
τ–t ∈ Kδ(τ – t, θ–tω). Using (4.43) and the invariance of Aδ , we obtain

∑

|n|≥N5

ηn|un|2 ≤ ε

4
, for all u = (un)n∈Z ∈

⋃

0<|δ|<δ̃

Aδ(τ ,ω). (4.44)

We find that (4.42) implies the set {(un)|n|<N5 : u ∈ ⋃

0<|δ|<δ̃

Aδ(τ ,ω)} is bounded in a finite di-

mensional space and hence is precompact. This along with (4.44) shows that
⋃

0<|δ|<δ̃

Aδ(τ ,ω)

has a finite covering of balls of radius less than ε in l2
η . This completes the proof. �

5 Upper semicontinuity of pullback attractors
In this section, we will study the limiting of solutions for nonlocal stochastic Schrödinger
lattice system (2.7) as δ → 0.

Lemma 5.1 Suppose that (2.2)–(2.5) and (2.8)–(2.10) hold. Let u and uδ be the solutions
of (2.6) and (2.7), respectively. For every τ ∈ R, ω ∈ �, T > 0 and ε ∈ (0, 1), there exist
δ̃ = δ̃(τ ,ω, T , ε) > 0 and M4 = M4(τ ,ω, T) > 0 such that for all t ∈ [τ , τ + T] and 0 < |δ| < δ̃,

‖uδ(t, τ ,ω, uδ
τ ) – u(t, τ ,ω, uτ )‖2

η

≤ M4‖uδ
τ – uτ‖2

η + M4ε
(
‖uτ‖2 + ‖uδ

τ‖2 +
∫ t

τ

‖g(s)‖2
ηds

)
.

Proof Let ṽ = vδ – v, where v and vδ are the solutions of (3.1) and (4.6), respectively. Using
(3.1) and (4.6), we get

1
2

d
dt

‖ṽ‖2
η + Im

(
Aṽ, ṽ

)

η
+ λ‖ṽ‖2

η =
(
e–

∫ t
0 Gδ (θsω)ds – e–ω(t))Im

(
g(t), ṽ

)

η

+ Im
(

e–
∫ t

0 Gδ (θsω)dsf (e
∫ t

0 Gδ (θsω)dsvδ , t) – e–ω(t)f (eω(t)v, t), ṽ
)

η
.

(5.1)

Note that

Im
(

e–
∫ t

0 Gδ (θsω)dsf (e
∫ t

0 Gδ (θsω)dsvδ , t) – e–ω(t)f (eω(t)v, t), ṽ
)

η

= Im
∑

n∈Z
ηn

(
e–

∫ t
0 Gδ (θsω)dsfn(e

∫ t
0 Gδ (θsω)dsvδ

n, t) – e–ω(t)fn(eω(t)vn, t)
) ¯̃vn

= Im
∑

n∈Z
ηne–

∫ t
0 Gδ (θsω)ds

(
fn(e

∫ t
0 Gδ (θsω)dsvδ

n, t) – fn(e
∫ t

0 Gδ (θsω)dsvn, t)
) ¯̃vn

+ Im
∑

n∈Z
ηn

(
e–

∫ t
0 Gδ (θsω)ds – e–ω(t)

)
fn(e

∫ t
0 Gδ (θsω)dsvn, t) ¯̃vn

+ Im
∑

n∈Z
ηne–ω(t)

(
fn(e

∫ t
0 Gδ (θsω)dsvn, t) – fn(eω(t)vn, t)

) ¯̃vn.

(5.2)
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According to (4.3)–(4.4) and Lemma 4.1, for every ε ∈ (0, 1), there exists δ3 = δ3(τ ,ω, T , ε) >
0 such that for all 0 < |δ| < δ3 and t ∈ [τ , τ + T],

∣
∣
∣e–

∫ t
0 Gδ (θsω)ds – e–ω(t)

∣
∣
∣ < ε and

∣
∣
∣e

∫ t
0 Gδ (θsω)ds–ω(t) – 1

∣
∣
∣ < ε. (5.3)

From (2.8)–(2.9) and (5.2)–(5.3), for all 0 < |δ| < δ3 and t ∈ [τ , τ + T], we get
∣
∣
∣Im

(
e–

∫ t
0 Gδ (θsω)dsf (e

∫ t
0 Gδ (θsω)dsvδ , t) – e–ω(t)f (eω(t)v, t), ṽ

)

η

∣
∣
∣

≤ L
∑

n∈Z
ηn|ṽn|2 + ε

∑

n∈Z
ηn

(
e
∫ t

0 Gδ (θsω)dsh1,n(t)|vn| + h2,n(t)
)|ṽn| + εLe–ω(t)

∑

n∈Z
ηn|vn||ṽn|

≤ L‖ṽ‖2
η +

ε

2
e
∫ t

0 Gδ (θsω)ds‖h1(t)‖L∞‖v‖2
η +

ε

2
e
∫ t

0 Gδ (θsω)ds‖h1(t)‖L∞‖ṽ‖2
η +

ε

2
‖h2(t)‖2

η

+
ε

2
‖ṽ‖2

η +
ε

2
Le–ω(t)‖v‖2

η +
ε

2
Le–ω(t)‖ṽ‖2

η. (5.4)

Using (5.3), we get for all 0 < |δ| < δ3 and t ∈ [τ , τ + T],

∣
∣
∣
(
e–

∫ t
0 Gδ (θsω)ds – e–ω(t))Im

(
g(t), ṽ

)

η

∣
∣
∣ ≤ 1

2
ε‖ṽ‖2

η +
1
2
ε‖g(t)‖2

η. (5.5)

Similar to (3.9), we have

∣
∣
∣Im

(
Aṽ, ṽ

)

η

∣
∣
∣ ≤ 2

+∞∑

m=1

αm|J(m)|‖ṽ‖2
η. (5.6)

Then, according to (5.1) and (5.4)–(5.6), there exists c4 > 0 such that for all 0 < |δ| < δ3 and
t ∈ [τ , τ + T]

d
dt

‖ṽ‖2
η ≤ c4‖ṽ‖2

η + c4ε(‖v‖2
η + ‖vδ‖2

η + ‖g(t)‖2
η + ‖h2(t)‖2

η),

which implies that

‖ṽ(t)‖2
η ≤ ec4(t–τ )‖ṽ(τ )‖2

η + c4εec4(t–τ )
∫ t

τ

(‖v‖2
η + ‖vδ‖2

η + ‖g(s)‖2
η + ‖h2(s)‖2

η)ds.

(5.7)

Then, using (5.7), Lemma 3.1 and Lemma 4.2, we find that there exist δ4 ∈ (0, δ3) and
c5 = c5(τ ,ω, T) > 0 such that for all 0 < |δ| < δ4 and t ∈ [τ , τ + T]

‖vδ(t, τ ,ω, vδ
τ ) – v(t, τ ,ω, vτ )‖2

η

≤ ec4(t–τ )‖vδ
τ – vτ‖2

η + c5εec4(t–τ )
(
‖vτ‖2

η + ‖vδ
τ‖2

η +
∫ t

τ

‖g(s)‖2
ηds

)
.

(5.8)

Notice that, for all t ∈ [τ , τ + T],

uδ(t, τ ,ω, uδ
τ ) – u(t, τ ,ω, uτ ) =e

∫ t
0 Gδ (θsω)ds

(
vδ(t, τ ,ω, vδ

τ ) – v(t, τ ,ω, vτ )
)

+
(

e
∫ t

0 Gδ (θsω)ds – eω(t)
)

v(t, τ ,ω, vτ ),
(5.9)
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where vδ
τ = e–

∫ τ
0 Gδ (θsω)dsuδ

τ and vτ = e–ω(τ )uτ . Then (5.3) and (5.8)–(5.9) imply the desired
estimates. �

Finally, we establish the upper semicontinuity of random attractors as δ → 0.

Theorem 5.1 Suppose that (2.2)–(2.5) and (2.8)–(2.11) hold. Then, for every τ ∈ R and
ω ∈ �,

lim
δ→0

dl2η (Aδ(τ ,ω),A0(τ ,ω)) = 0.

Proof Let δn → 0 and uδn
τ → uτ in l2

η . Then, using Lemma 5.1, for all τ ∈ R, t ≥ 0 and
ω ∈ �, we obtain


δn (t, τ ,ω, uδn
τ ) → 
0(t, τ ,ω, uτ ) in l2

η. (5.10)

Using (4.18)–(4.19), for all τ ∈ R and ω ∈ �, we find that

lim
δ→0

‖Kδ(τ ,ω)‖2
η ≤ R0(τ ,ω). (5.11)

Then, (5.10)–(5.11), Theorem 4.2 and Theorem 3.1 in [31] imply the desired result. �
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