- Research Article
- Open Access
- Published:
Further Extending Results of Some Classes of Complex Difference and Functional Equations
Advances in Difference Equations volume 2010, Article number: 404582 (2010)
Abstract
The main purpose of this paper is to present some properties of the meromorphic solutions of complex difference equation of the form , where
and
are two finite index sets,
are distinct, nonzero complex numbers,
and
are small functions relative to
is a rational function in
with coefficients which are small functions of
. We also consider related complex functional equations in the paper.
1. Introduction and Main Results
Let be a meromorphic function in the complex plane. We assume that the reader is familiar with the standard notations and results in Nevanlinna's value distribution theory of meromorphic functions such as the characteristic function
, proximity function
, counting function
, the first and second main theorems (see, e.g., [1–4]). We also use
to denote the counting function of the poles of
whose every pole is counted only once. The notation
denotes any quantity that satisfies the condition:
as
possibly outside an exceptional set of
of finite linear measure. A meromorphic function
is called a small function of
if and only if
Recently, a number of papers (see, e.g., [5–9]) focusing on Malmquist type theorem of the complex difference equations emerged. In 2000, Ablowitz et al. [5] proved some results on the classical Malmquist theorem of the complex difference equations in the complex differential equation by utilizing Nevanlinna theory. They obtained the following two results.
Theorem A.
If the second-order difference equation

with polynomial coefficients (
) and
(
), admits a transcendental meromorphic solution of finite order, then
Theorem B.
If the second-order difference equation

with polynomial coefficients (
) and
(
), admits a transcendental meromorphic solution of finite order, then
One year later, Heittokangas et al. [7] extended the above two results to the case of higher-order difference equations of more general type. They got the following.
Theorem C.
Let . If the difference equation

with the coefficients of rational functions (
) and
(
) admits a transcendental meromorphic solution of finite order, then
Theorem D.
Let . If the difference equation

with the coefficients of rational functions (
) and
(
) admits a transcendental meromorphic solution of finite order, then
Laine et al. [9] and Huang and Chen [8], respectively, generalized the above results. They obtained the following theorem.
Theorem E.
Let be distinct, nonzero complex numbers, and suppose that
is a transcendental meromorphic solution of the difference equation

with coefficients (
) and
(
), which are small functions relative to
where
is a collection of all subsets of
. If the order
is finite, then
.
In the same paper, Laine et al. also obtained Tumura-Clunie theorem about difference equation.
Theorem F.
Suppose that are distinct, nonzero complex numbers and that
is a transcendental meromorphic solution of

where the coefficients are nonvanishing small functions relative to
and where
and
are relatively prime polynomials in
over the field of small functions relative to
. Moreover, we assume that
,

and that, without restricting generality, is a monic polynomial. If there exists
such that for all
sufficiently large,

where , then either the order
, or

where is a small meromorphic function relative to
.
Remark 1.1.
Huang and Chen [8] proved that the Theorem F remains true when the left hand side of (1.6) is replaced by the left hand side of (1.5), meanwhile, the condition (1.8) would be replaced by a corresponding form.
Moreover, Laine et al. [9] also gave the following result.
Theorem G.
Suppose that is a transcendental meromorphic solution of

where is a polynomial of degree
is a collection of all subsets of
. Moreover, we assume that the coefficients
are small functions relative to
and that
Then

where
In this paper, we consider a more general class of complex difference equations. We prove the following results, which generalize the above related results.
Theorem 1.2.
Let be distinct, nonzero complex numbers and suppose that
is a transcendental meromorphic solution of the difference equation

with coefficients , and
are small functions relative to
where
and
are two finite index sets, denote

If the order is finite, then
Corollary 1.3.
Let be distinct, nonzero complex numbers and suppose that
is a transcendental meromorphic solution of the difference equation

with coefficients and
, which are small functions relative to
where
is a finite index set, denote

If the order is finite, then
Remark 1.4.
In Corollary 1.3, if we take

then Corollary 1.3 becomes Theorem E. Therefore, Theorem 1.2 is a generalization of Theorem E.
Example 1.5.
Let Then it is easy to check that
solves the following difference equation:

Example 1.6.
Let It is easy to check that
satisfies the difference equation

In above two examples, we both have and
Therefore, the estimations in Theorem 1.2 and Corollary 1.3 are sharp.
Theorem 1.7.
Suppose that are distinct, nonzero complex numbers and that
is a transcendental meromorphic solution of

where the coefficients are nonvanishing small functions relative to
and
and
are relatively prime polynomials in
over the field of small functions relative to
,
and
are two finite index sets, denote

Moreover, we assume that ,

and that, without restricting generality, is a monic polynomial. If there exists
such that for all
sufficiently large,


where , then either the order
, or

where is a small meromorphic function relative to
.
If the left hand side of (1.19) in Theorem 1.7 is replaced by the left hand side of (1.14) in Corollary 1.3, then (1.23) implies (1.22). Since we have

by the fundamental property of counting function. Therefore, we get the following result easily.
Corollary 1.8.
Suppose that are distinct, nonzero complex numbers and that
is a transcendental meromorphic solution of

where the coefficients are nonvanishing small functions relative to
and
and
are relatively prime polynomials in
over the field of small functions relative to
,
is a finite index set, denote

Moreover, we assume that ,

and that, without restricting generality, is a monic polynomial. If there exists
such that for all
sufficiently large,

where , then either the order
, or

where is a small meromorphic function relative to
.
Finally, we give a result corresponding to Theorem G.
Theorem 1.9.
Let be distinct, nonzero complex numbers and suppose that
is a transcendental meromorphic solution of

where is a polynomial of degree
,
and
are two finite index sets. Denote

Moreover, we assume that the coefficients and
are small functions relative to
and that
Then

where
2. Main Lemmas
In order to prove our results, we need the following lemmas.
Lemma 2.1 (see [10]).
Let be a meromorphic function. Then for all irreducible rational functions in
,

such that the meromorphic coefficients satisfy

one has

Lemma 2.2 (see [11]).
Let be distinct meromorphic functions and

Then

where and
are two finite index sets, and
(
).
Remark 2.3.
If we suppose that and
hold for all
, and denote
and
then we have the following estimation by the proof of Lemma 2.2

Lemma 2.4 (see [6]).
Let be a meromorphic function with order
and let
be a fixed nonzero complex number, then for each
one has

Lemma 2.5 (see [12]).
Let be a meromorphic function and let
be given by

where are small meromorphic functions relative to
. Then either

or

Let be a nonconstant meromorphic function and let
,
be two polynomials in
with meromorphic coefficients small relative to
. If
and
have no common factors of positive degree in
over the field of small functions relative to
, then

Lemma 2.7 (see [14]).
Let be a transcendental meromorphic function, and
be a nonconstant polynomial of degree
. Given
denote
and
. Then given
and
one has

for all large enough.
Lemma 2.8 (see [15]).
Let be positive and bounded in every finite interval, and suppose that
holds for all
large enough, where
and
are real constants. Then

where .
3. Proof of Theorems
Proof of Theorem 1.2.
We assume that is a meromorphic solution of finite order of (1.12). It follows from Lemmas 2.1, 2.2, and 2.4 that for each

This yields the asserted result.
Proof of Theorem 1.7.
Suppose is a transcendental meromorphic solution of (1.19) and the second alternative of the conclusion is not true. Then according to Lemmas 2.5 and 2.6, we get

Thus, we have

Now assuming the order , then we have
and

for all . By using Lemmas 2.1 and 2.2, we conclude that

It follows from this that

We prove the following inequality by induction:

The case has been proved. We assume that above inequality holds when
. Next, we prove that inequality (3.7) holds for
We have

Noting that thus we have

and so

This implies that

It follows from (3.7) that

Let be large enough such that

Since

we have for any

thus for each

for large enough holds. We now fix
and let
, thus

Finally, let and we conclude that the order
Therefore, we get a contradiction and the assertion follows.
Proof of Theorem 1.9.
We assume is a transcendental meromorphic solution of (1.31). Denoting again
According to the last assertion of Lemmas 2.7 and 2.2, we get that

Since holds for
large enough for
we may assume
to be large enough to satisfy

outside a possible exceptional set of finite linear measure. By the standard idea of removing the exceptional set (see [4, page 5]), we know that whenever

holds for all large enough. Denote
, thus inequality (3.20) may be written in the form

By Lemma 2.8, we have

where

Denoting now , thus we obtain the required form. Theorem 1.9 is proved.
References
Cherry W, Ye Z: Nevanlinna's Theory of Value Distribution, Springer Monographs in Mathematics. Springer, Berlin, Germany; 2001:xii+201.
Hayman WK: Meromorphic Functions, Oxford Mathematical Monographs. Clarendon Press, Oxford, UK; 1964:xiv+191.
He YZ, Xiao XZ: Algebroid Functions and Ordinary Differential Equations. Science Press, Beijing, China; 1988.
Laine I: Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics. Volume 15. Walter de Gruyter, Berlin, Germany; 1993:viii+341.
Ablowitz MJ, Halburd R, Herbst B: On the extension of the Painlevé property to difference equations. Nonlinearity 2000,13(3):889-905. 10.1088/0951-7715/13/3/321
Chiang Y-M, Feng S-J:On the Nevanlinna characteristic of
and difference equations in the complex plane. Ramanujan Journal 2008,16(1):105-129. 10.1007/s11139-007-9101-1
Heittokangas J, Korhonen R, Laine I, Rieppo J, Tohge K: Complex difference equations of Malmquist type. Computational Methods and Function Theory 2001,1(1):27-39.
Huang Z-B, Chen Z-X: Meromorphic solutions of some complex difference equations. Advances in Difference Equations 2009, 2009:-10.
Laine I, Rieppo J, Silvennoinen H: Remarks on complex difference equations. Computational Methods and Function Theory 2005,5(1):77-88.
Mohon'ko AZ: The Nevanlinna characteristics of certain meromorphic functions. Teorija Funkciĭ, Funkcional'nyĭ Analiz i ih Priloženija 1971, (14):83-87.
Mohon'ko AZ, Mohon'ko VD: Estimates of the Nevanlinna characteristics of certain classes of meromorphic functions, and their applications to differential equations. Sibirskiĭ Matematičeskiĭ Žurnal 1974, 15: 1305-1322.
Weissenborn G: On the theorem of Tumura and Clunie. The Bulletin of the London Mathematical Society 1986,18(4):371-373. 10.1112/blms/18.4.371
Shidlovskii AB: Transcendental Numbers, de Gruyter Studies in Mathematics. Volume 12. Walter de Gruyter, Berlin, Germany; 1989:xx+466.
Goldstein R: Some results on factorisation of meromorphic functions. Journal of the London Mathematical Society 1971,4(2):357-364. 10.1112/jlms/s2-4.2.357
Goldstein R: On meromorphic solutions of certain functional equations. Aequationes Mathematicae 1978,18(1-2):112-157. 10.1007/BF01844071
Acknowledgments
The authors would like to thank the anonymous referees for their valuable comments and suggestions. The research was supported by NSF of China (Grant no. 10871089).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Zhang, Jj., Liao, Lw. Further Extending Results of Some Classes of Complex Difference and Functional Equations. Adv Differ Equ 2010, 404582 (2010). https://doi.org/10.1155/2010/404582
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/404582
Keywords
- Difference Equation
- Meromorphic Function
- Monic Polynomial
- Meromorphic Solution
- Small Function