 Research Article
 Open Access
 Published:
Oscillation for a Class of SecondOrder EmdenFowler Delay Dynamic Equations on Time Scales
Advances in Difference Equations volume 2010, Article number: 642356 (2010)
Abstract
By means of Riccati transformation technique, we establish some new oscillation criteria for the secondorder EmdenFowler delay dynamic equations on a time scale ; here is a quotient of odd positive integers with and as realvalued positive rdcontinuous functions defined on . Our results in this paper not only extend the results given in Agarwal et al. (2005), AkinBohner et al. (2007) and Han et al. (2007) but also unify the results about oscillation of the secondorder EmdenFowler delay differential equation and the secondorder EmdenFowler delay difference equation.
1. Introduction
The theory of time scales, which has recently received a lot of attention, was introduced by Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and discrete analysis (see Hilger [1]). Several authors have expounded on various aspects of this new theory; see the survey paper by Agarwal et al. [2] and references cited therein. A book on the subject of time scales, by Bohner and Peterson [3], summarizes and organizes much of the time scale calculus; we refer also to the last book by Bohner and Peterson [4] for advances in dynamic equations on time scales. For the notions used below, we refer to the next section that provides some basic facts on time scales extracted from Bohner and Peterson [3].
A time scale is an arbitrary closed subset of the reals, and the cases when this time scale is equal to the reals or to the integers represent the classical theories of differential and of difference equations. Not only does the new theory of the socalled dynamic equations unify the theories of differential equations and difference equations, but also it extends these classical cases to cases in between, for example, to the socalled difference equations when which has important applications in quantum theory and can be applied on different types of time scales like , and the space of the harmonic numbers.
Many other interesting time scales exist, and they give rise to plenty of applications, among them the study of population dynamic models which are discrete in season (and may follow a difference scheme with variable stepsize or often modeled by continuous dynamic systems), die out, say in winter, while their eggs are incubating or dormant, and then in season again, hatching gives rise to a nonoverlapping population (see Bohner and Peterson [3]).
In recent years, there has been much research activity concerning the oscillation and nonoscillation of solutions of various equations on time scales, and we refer the reader to AkinBohner and Hoffacker [5, 6], AkinBohner et al. [7], Bohner and Saker [8], Erbe [9], Erbe et al. [10], Li et al. [11], and Saker [12, 13]. However, there are few results dealing with the oscillation of the solutions of delay dynamic equations on time scales [14–29].
Following this trend, in this paper, we consider a secondorder nonlinear delay differential equation
For oscillation of the secondorder delay dynamic equations, Agarwal et al. [14] considered the secondorder delay dynamic equations on time scales
and established some sufficient conditions for oscillation of (1.2).
Zhang and Shanliang [29] studied the secondorder nonlinear delay dynamic equations on time scales
and the secondorder nonlinear dynamic equations on time scales
where and is continuous and nondecreasing , and for , and established the equivalence of the oscillation of (1.3) and (1.4). However, the results established in [29] are valid only when the graininess function is bounded which is a restrictive condition. Also the restriction is required.
Şahiner [23] considered the secondorder nonlinear delay dynamic equations on time scales
where is continuous, for and , and and obtained some sufficient conditions for oscillation of (1.5).
Han et al. [17] investigated the secondorder EmdenFowler delay dynamic equations on time scales
established some sufficient conditions for oscillation of (1.6), and extended the results given in [14].
Erbe et al. [28] considered the general nonlinear delay dynamic equations on time scales
where and are positive, realvalued rdcontinuous functions defined on , is rdcontinuous, and as , and satisfies for some positive constant , for all nonzero , and extended the generalized Riccati transformation techniques in the time scales setting to obtain some new oscillation criteria which improve the results given by Şahiner [23] and Zhang and Shanliang [29].
Clearly, (1.2), (1.3), (1.5), (1.6), and (1.7) are different from (1.1). To develop the qualitative theory of delay dynamic equations on time scales, in this paper, we consider the secondorder nonlinear delay dynamic equation on time scales (1.1).
As we are interested in oscillatory behavior, we assume throughout this paper that the given time scale is unbounded above, that is, it is a time scale interval of the form with .
We assume that is a quotient of odd positive integer, and are positive, realvalued rdcontinuous functions defined on and , is a rdcontinuous function such that and .
We shall also consider the two cases
By a solution of (1.1), we mean a nontrivial realvalued function satisfying (1.1) for . A solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory. Equation (1.1) is called oscillatory if all solutions are oscillatory. Our attention is restricted to those solutions of (1.1) which exist on some half line with for any .
We note that if , then , and (1.1) becomes the secondorder EmdenFowler delay differential equation
If , then and (1.1) becomes the secondorder EmdenFowler delay difference equation
In the case of , (1.1) is the prototype of a wide class of nonlinear dynamic equations called EmdenFowler superlinear dynamic equations, and if , then (1.1) is the prototype of dynamic equations called EmdenFowler sublinear dynamic equations. It is interesting to study (1.1) because the continuous version, that is, (1.10), has several physical applications—see, for example, [1] —and when is a discrete variable as in (1.11), (1.1) also has important applications.
Numerous oscillation and nonoscillation criteria have been established for equations as (1.10) and (1.11); see, for example, [1, 30–36] and references therein.
In this paper, we intend to use the Riccati transformation technique for obtaining several oscillation criteria for (1.1). Our results in this paper not only extend the results given in Agarwal et al. [14] and Han et al. [17] but also unify the oscillation of the secondorder EmdenFowler delay differential equation and the secondorder EmdenFowler delay difference equation. Applications to equations to which previously known criteria for oscillation are not applicable are given.
This paper is organized as follows: in Section 2, we present the basic definitions and the theory of calculus on time scales. In Section 3, we apply a simple consequence of Kellers chain rule, devoted to the proof of the sufficient conditions for oscillation of all solutions of (1.1). In Section 4, some applications and examples are considered to illustrate the main results.
2. Some Preliminaries
A time scale is an arbitrary nonempty closed subset of the real numbers . Since we are interested in oscillatory behavior, we suppose that the time scale under consideration is not bounded above, that is, it is a time scale interval of the form . On any time scale, we define the forward and backward jump operators by
A point is said to be leftdense if , rightdense if , leftscattered if , and rightscattered if . The graininess of the time scale is defined by .
For a function (the range of may actually be replaced by any Banach space), the (delta) derivative is defined by
if is continuous at and is rightscattered. If is not rightscattered, then the derivative is defined by
provided this limit exists.
A function is said to be rdcontinuous if it is continuous at each rightdense point and if there exists a finite left limit in all leftdense points. The set of rdcontinuous functions is denoted by .
is said to be differentiable if its derivative exists. The set of functions that are differentiable and whose derivative is rdcontinuous function is denoted by .
The derivative and the shift operator are related by the formula
Let be a realvalued function defined on an interval . We say that is increasing, decreasing, nondecreasing, and nonincreasing on if and imply , , , and , respectively. Let be a differentiable function on . Then is increasing, decreasing, nondecreasing, and nonincreasing on if , , , and for all , respectively.
We will make use of the following product and quotient rules for the derivative of the product and the quotient of two differentiable functions and
For and a differentiable function , the Cauchy integral of is defined by
The integration by parts formula reads
and infinite integrals are defined as
In case , we have
And in case , we have
3. Main Results
In this section, we give some new oscillation criteria for (1.1). Since we are interested in oscillatory behavior, we will suppose that the time scale under consideration is not bounded above, that is, it is a time scale interval of the form . In order to prove our main results, we will use the formula
where is delta differentiable and eventually positive or eventually negative, which is a simple consequence of Keller's chain rule (see Bohner and Peterson [3, Theorem ]). Also, we need the following auxiliary result.
Lemma 3.1 (Şahiner [23, Lemma ]).
Suppose that the following conditions hold:

(H_{1}) , where for some ;

(H_{2}) , and for .
Then, for each , there exists a constant , , such that
Lemma 3.2.
Assume that (1.8) holds. Furthermore, assume that , , and is an eventually positive solution of (1.1). Then, there exists a such that
Proof.
Suppose is an eventually positive solution of (1.1) such that and for all . In view of (1.1), we have
and so is an eventually decreasing function. We first show that is eventually positive. Indeed, the decreasing function is either eventually positive or eventually negative. Suppose that there exists an integer such that , then from (3.4) we have for , hence
which implies by (1.8) that
and this contradicts the fact that for all . Hence is eventually positive. So is eventually positive. Then is eventually increasing.
By (2.5), we get
From (3.4), (3.7), and , we can easily verify that is eventually negative. Therefore, we see that there is some such that (3.3) holds. The proof is complete.
Lemma 3.3.
Let and be differentiable on time scale with for all . Then we have
The proof is similar to that of AkinBohner et al. [7, Lemma ].
Theorem 3.4.
Assume that (1.8) holds, , and , . Define
If
then (1.1) is oscillatory on .
Proof.
Suppose that (1.1) has a nonoscillatory solution . We may assume without loss of generality that and for all . So by Lemma 3.2, (3.3) holds. Define the function by
Then, and using (2.5) we get
By Lemma 3.1, for each , there exists a constant , such that
note that , (3.1) and (3.3) imply
So,
Upon integration, we arrive at
which contradicts (4.3). The proof is complete.
Remark 3.5.
Theorem 3.4 includes results of AkinBohner et al. [7, Theorem ].
Putting that is, in Theorem 3.4, we obtain the following corollary.
Corollary 3.6.
Assume , . If
then (1.1) is oscillatory on .
Theorem 3.7.
Assume that (1.8) holds, , and , . Furthermore, assume that there exists a function such that
holds for all constants . Then (1.1) is oscillatory on .
Proof.
Suppose that (1.1) has a nonoscillatory solution . We may assume without loss of generality that and for all . So by Lemma 3.2, (3.3) holds. Define the function by
Then, using (2.5) we get
So, from (1.1) and Lemma 3.3, we have
By Lemma 3.1, for each , there exists a constant , such that
note that (3.1) and (3.3) imply
then
where if . If , we chose .
Therefore,
which contradicts (3.18). The proof is complete.
Remark 3.8.
Theorem 3.7 not only includes results of Agarwal et al. [14, Theorem ], AkinBohner et al. [7, Theorem ], and Han et al. [17, Theorem ], but also improves conditions of Agarwal et al. [14, Theorem ] and Han et al. [17, Theorem ].
From Theorem 3.7, we can obtain different conditions for oscillation of all solutions of (1.1) with different choices of .
For example, let . Now Theorem 3.4 yields the following results.
Corollary 3.9.
Assume that (1.8) holds, , and , . If
holds for all constants , then (1.1) is oscillatory on .
Sometimes the following criterion is easier to check than the one given in Corollary 3.6, but it follows easily from Corollary 3.6 as we always have for all .
Corollary 3.10.
Assume that (1.8) holds, , and , . If
holds for all constants , then (1.1) is oscillatory on .
Now, using Lemma 3.2, we can give some sufficient conditions when (1.9) holds, which guarantee that every solution of (1.1) oscillates or converges to zero in .
Theorem 3.11.
Assume that (1.9) holds, , and , and . Furthermore, assume that there exists a positive function such that (3.18) holds. If
then every solution of (1.1) is oscillatory or converges to zero on .
Theorem 3.12.
Assume that (1.8) holds, , and , . Furthermore, assume that there exists a function such that
holds for all constants . Then (1.1) is oscillatory on .
Proof.
We assume that (1.1) has a nonoscillatory solution such that and , for all . By Lemma 3.2, we obtain (3.3). We calculate
where and . By putting and , we find that
Now note that , (3.1) and (3.31) imply
So,
where we put if . If , we chose . Note . Now define the function by (3.19). Therefore, using (3.21), Lemma 3.1, for each , there exists a constant , such that
noting that (3.3) and (3.33), we obtain
where if . If , we chose . Upon integration, we arrive at
which contradicts (3.29). The proof is complete.
Remark 3.13.
Theorem 3.12 includes results of AkinBohner et al. [7, Theorem ] and Han et al. [17, Theorem ] and improves conditions of Han [17, Theorem ].
From Theorem 3.12, we can obtain different conditions for oscillation of all solutions of (1.1) with different choices of .
For example, let . Now Theorem 3.12 yields the following results.
Corollary 3.14.
Assume that (1.8) holds, , and , . If
holds for all constants , then (1.1) is oscillatory on .
Sometimes the following criterion is easier to check than the one given in Corollary 3.14, but it follows easily from Corollary 3.14 as we always have for all .
Corollary 3.15.
Assume that (1.8) holds, , and , . If
holds for all constants , then (1.1) is oscillatory on .
4. Applications
In this section, we give one example to illustrate our main results. To obtain the conditions for oscillation, we will use the following fact:
For more details, we refer the reader to [4, Theorem ].
AkinBohner et al. [7] considered the secondorder dynamic equations on time scales
where is a quotient of odd positive integer, and are positive, realvalued rdcontinuous functions defined on , and established some new oscillation criteria of (4.2).
Theorem 4.1 (AkinBohner et al. [7, Theorem ]).
Assume that (1.8) holds. If
then (4.2) is oscillatory on .
We note that (1.1) becomes (4.2) when , and Theorem 3.4 becomes Theorem 4.1, so Theorem 3.4 essentially includes results of AkinBohner et al. [7, Theorem ].
Example 4.2.
Consider the secondorder delay dynamic equations on time scales
where . By Corollary 3.10, we have
Let , then , pick , so for all . Therefore,
for all constants . Then (4.4) is oscillatory on .
References
Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(12):1856.
Agarwal RP, Bohner M, O'Regan D, Peterson A: Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 2002,141(12):126. 10.1016/S03770427(01)004320
Bohner M, Peterson A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Boston, Mass, USA; 2001:x+358.
Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, Mass, USA; 2003:xii+348.
AkinBohner E, Hoffacker J: Oscillation properties of an EmdenFowler type equation on discrete time scales. Journal of Difference Equations and Applications 2003,9(6):603612. 10.1080/1023619021000053575
AkinBohner E, Hoffacker J: Solution properties on discrete time scales. Journal of Difference Equations and Applications 2003,9(1):6375.
AkinBohner E, Bohner M, Saker SH: Oscillation criteria for a certain class of second order EmdenFowler dynamic equations. Electronic Transactions on Numerical Analysis 2007, 27: 112.
Bohner M, Saker SH: Oscillation of second order nonlinear dynamic equations on time scales. The Rocky Mountain Journal of Mathematics 2004,34(4):12391254. 10.1216/rmjm/1181069797
Erbe L: Oscillation results for secondorder linear equations on a time scale. Journal of Difference Equations and Applications 2002,8(11):10611071. 10.1080/10236190290015317
Erbe L, Peterson A, Saker SH: Oscillation criteria for secondorder nonlinear dynamic equations on time scales. Journal of the London Mathematical Society 2003,67(3):701714. 10.1112/S0024610703004228
Li T, Han Z, Sun S, Zhang C: Forced oscillation of secondorder nonlinear dynamic equations on time scales. Electronic Journal of Qualitative Theory of Differential Equations 2009, 60: 18.
Saker SH: Oscillation criteria of secondorder halflinear dynamic equations on time scales. Journal of Computational and Applied Mathematics 2005,177(2):375387. 10.1016/j.cam.2004.09.028
Saker SH: Oscillation of nonlinear dynamic equations on time scales. Applied Mathematics and Computation 2004,148(1):8191. 10.1016/S00963003(02)008299
Agarwal RP, Bohner M, Saker SH: Oscillation of second order delay dynamic equations. The Canadian Applied Mathematics Quarterly 2005,13(1):117.
Agarwal RP, O'Regan D, Saker SH: Oscillation criteria for secondorder nonlinear neutral delay dynamic equations. Journal of Mathematical Analysis and Applications 2004,300(1):203217. 10.1016/j.jmaa.2004.06.041
Bohner M: Some oscillation criteria for first order delay dynamic equations. Far East Journal of Applied Mathematics 2005,18(3):289304.
Han Z, Sun S, Shi B: Oscillation criteria for a class of secondorder EmdenFowler delay dynamic equations on time scales. Journal of Mathematical Analysis and Applications 2007,334(2):847858. 10.1016/j.jmaa.2007.01.004
Han Z, Shi B, Sun S: Oscillation criteria for secondorder delay dynamic equations on time scales. Advances in Difference Equations 2007, 2007:16.
Han ZL, Shi B, Sun SR: Oscillation of secondorder delay dynamic equations on time scales. Acta Scientiarum Naturalium Universitatis Sunyatseni 2007,46(6):1013.
Han Z, Li T, Sun S, Zhang C: Oscillation for secondorder nonlinear delay dynamic equations on time scales. Advances in Difference Equations 2009, 2009:13.
Han Z, Li T, Sun S, Zhang C: Oscillation behavior of third order neutral EmdenFowler delay dynamic equations on time scales. Advances in Difference Equations 2010, 2010:23.
Li T, Han Z, Sun S, Yang D: Existence of nonoscillatory solutions to secondorder neutral delay dynamic equations on time scales. Advances in Difference Equations 2009, 2009:10.
Şahiner Y: Oscillation of secondorder delay differential equations on time scales. Nonlinear Analysis: Theory, Methods & Applications 2005,63(5–7):e1073e1080.
Saker SH: Oscillation of secondorder nonlinear neutral delay dynamic equations on time scales. Journal of Computational and Applied Mathematics 2006,187(2):123141. 10.1016/j.cam.2005.03.039
Sun SR, Han ZL, Zhang CH: Oscillation criteria of secondorder EmdenFowler neutral delay dynamic equations on time scales. Journal of Shanghai Jiaotong University 2008,42(12):20702075.
Sun S, Han Z, Zhang C: Oscillation of secondorder delay dynamic equations on time scales. Journal of Applied Mathematics and Computing 2009,30(12):459468. 10.1007/s1219000801856
Sun Y, Han Z, Li T, Zhang G: Oscillation criteria for secondorder quasilinear neutral delay dynamic equations on time scales. Advances in Difference Equations 2010, 2010:14.
Erbe L, Peterson A, Saker SH: Oscillation criteria for secondorder nonlinear delay dynamic equations. Journal of Mathematical Analysis and Applications 2007,333(1):505522. 10.1016/j.jmaa.2006.10.055
Zhang BG, Shanliang Z: Oscillation of secondorder nonlinear delay dynamic equations on time scales. Computers & Mathematics with Applications 2005,49(4):599609. 10.1016/j.camwa.2004.04.038
Erbe L: Oscillation criteria for second order nonlinear delay equations. Canadian Mathematical Bulletin 1973,67(16):4956. 10.4153/CMB19730111
Agarwal RP, Shieh SL, Yeh CC: Oscillation criteria for secondorder retarded differential equations. Mathematical and Computer Modelling 1997,26(4):111. 10.1016/S08957177(97)001416
Chen SZ, Erbe LH: Riccati techniques and discrete oscillations. Journal of Mathematical Analysis and Applications 1989,142(2):468487. 10.1016/0022247X(89)900152
Chen SZ, Erbe LH: Oscillation and nonoscillation for systems of selfadjoint secondorder difference equations. SIAM Journal on Mathematical Analysis 1989,20(4):939949. 10.1137/0520063
Ohriska J: Oscillation of second order delay and ordinary differential equation. Czechoslovak Mathematical Journal 1984,34(109)(1):107112.
Thandapani E, Ravi K, Graef JR: Oscillation and comparison theorems for halflinear secondorder difference equations. Computers & Mathematics with Applications 2001,42(67):953960. 10.1016/S08981221(01)002115
Zhang Z, Chen J, Zhang C: Oscillation of solutions for secondorder nonlinear difference equations with nonlinear neutral term. Computers & Mathematics with Applications 2001,41(12):14871494. 10.1016/S08981221(01)001134
Acknowledgments
This research is supported by the Natural Science Foundation of China (60774004, 60904024), China Postdoctoral Science Foundation funded project (20080441126, 200902564), Shandong Postdoctoral funded project (200802018), and supported by the Natural Science Foundation of Shandong (Y2008A28, ZR2009AL003), also supported by the Fund of Doctoral Program Research of University of Jinan (B0621, XBS0843).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Sun, S., Han, Z., Zhao, P. et al. Oscillation for a Class of SecondOrder EmdenFowler Delay Dynamic Equations on Time Scales. Adv Differ Equ 2010, 642356 (2010). https://doi.org/10.1155/2010/642356
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/642356
Keywords
 Delay Differential Equation
 Nonoscillatory Solution
 Oscillation Criterion
 Continuous Dynamic System
 Nonlinear Dynamic Equation