Samko SG, Kilbas AA, Marichev OI: *Fractional Integrals and Derivatives: Theory and Applications*. Gordon and Breach Science, Yverdon, Switzerland; 1993:xxxvi+976.

MATH
Google Scholar

Hilfer R (Ed): *Applications of Fractional Calculus in Physics*. World Scientific, River Edge, NJ, USA; 2000:viii+463.

MATH
Google Scholar

Hilfer R, Metzler R, Blumen A, Klafter J (Eds): **Strange kinetics** In *Chemical Physics* 2002,**284**(1):1-541. 10.1016/S0301-0104(02)00801-7

Baleanu D, Güvenç ZB, Tenreiro Machad JA: *New Trends in Nanotechnology and Fractional Calculus Applications*. Springer, New York, NY, USA; 2010:xii+531.

Book
MATH
Google Scholar

Ortigueira M, Tenreiro-Machado JA, Trujillo JJ, Vinagre B (Eds): **Advances in fractional signals and systems** In *Journal of Signal Processing* 2011,**91**(3):349-606. 10.1016/j.sigpro.2010.08.002

Tenreiro-Machado JA, Luo A (Eds): **Discontinuous and fractional dynamical systems** In *Journal of Computational and Nonlinear Dynamics* 2008,**3**(2):1-125.

Naumkin PI, Shishmarëv IA: *Nonlinear Nonlocal Equations in the Theory of Waves, Translations of Mathematical Monographs*. *Volume 133*. American Mathematical Society, Providence, RI, USA; 1994:x+289.

MATH
Google Scholar

Lonseth AT: **Sources and applications of integral equations.** *SIAM Review* 1977,**19**(2):241-278. 10.1137/1019039

Article
MathSciNet
MATH
Google Scholar

Cheney M, Borden B: *Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics*. *Volume 79*. SIAM, Philadelphia, Pa, USA; 2009:xxiv+140.

MATH
Google Scholar

Baillie RT, King ML (Eds): **Fractional differencing and long memory processes** In *Journal of Econometrics* 1996,**73**(1):1-324. 10.1016/0304-4076(95)01731-3

Vázquez L: **A fruitful interplay: from nonlocality to fractional calculus.** In *Nonlinear Waves: Classical and Quantum Aspects*. Edited by: Abdullaev FKh, Konotop VV. Kluwer Academic Publishers, New York, NY, USA; 2004:129-133.

Google Scholar

Vázquez L, Usero D: **Nonlocal equations and fractional models.** *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales (España)* 2005,**99**(2):203-223.

MathSciNet
Google Scholar

Vázquez L, Evans WAB, Rickayzen G: **Numerical investigation of a non-local sine-Gordon model.** *Physics Letters A* 1994,**189**(6):454-459. 10.1016/0375-9601(94)91209-2

Article
Google Scholar

Alfimov GL, Usero D, Vázquez L:**On complex singularities of solutions of the equation**
**.** *Journal of Physics A* 2000,**33**(38):6707-6720. 10.1088/0305-4470/33/38/305

Article
MathSciNet
MATH
Google Scholar

Pipiras V, Taqqu MS: **Fractional calculus and its connections to fractional Brownian motion.** In *Theory and Applications of Long-Range Dependence*. Edited by: Doukhan P, Oppenheim G, Taqqu MS. Birkhäuser, Boston, Mass, USA; 2003:165-201.

Google Scholar

Magin RL: *Fractional Calculus and Bioengineering*. Begell House, New York, NY, USA; 2006.

Google Scholar

Leibniz GW: *Oeuvres Mathematiques de Leibniz. Correpondence de leibniz avec Huygens, van Zulichem et le Marquis de L'Hospital Part 1*. *Volume 2*. Libr. de A. Franck, Paris, France; 1853.

Google Scholar

Oldham KB, Spanier J: *The Fractional Calculus, Mathematics in Science and Engineering*. *Volume 11*. Academic Press, New York, NY, USA; 1974:xiii+234.

Google Scholar

Miller KS, Ross B: *An Introduction to the Fractional Calculus and Fractional Differential Equations*. John Wiley & Sons, New York, NY, USA; 1993:xvi+366.

MATH
Google Scholar

Oustaloup A: *La Drivation Non Entiere. Theorie, Synthese et Applications*. Hermes Science, Stanmore, UK; 1995.

Google Scholar

Kiryakova V: *Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series*. *Volume 301*. Longman Scientific & Technical, Harlow, UK; 1994:x+388.

MATH
Google Scholar

Podlubny I: *Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, Mathematics in Science and Engineering*. *Volume 198*. Academic Press, San Diego, Calif, USA; 1999:xxiv+340.

MATH
Google Scholar

Rubin B: *Fractional Integrals and Potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics*. *Volume 82*. Longman, Harlow, UK; 1996:xiv+409.

Google Scholar

Bonilla B, Kilbas AA, Trujillo JJ: *Cálculo Fraccionario y Ecuaciones Diferenciales Fraccionarias*. Serv. de Publicaciones de la UNED, Madrid, Spain; 2003.

Google Scholar

Zaslavsky GM: **Chaos, fractional kinetics, and anomalous transport.** *Physics Reports* 2002,**371**(6):461-580. 10.1016/S0370-1573(02)00331-9

Article
MathSciNet
MATH
Google Scholar

Metzler R, Klafter J: **The random walk's guide to anomalous diffusion: a fractional dynamics approach.** *Physics Reports* 2000,**339**(1):77.

Article
MathSciNet
MATH
Google Scholar

Kilbas AA, Srivastava HM, Trujillo JJ: *Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies*. *Volume 204*. Elsevier Science B.V., Amsterdam, The Netherlands; 2006:xvi+523.

Google Scholar

Zaslavsky GM: *Hamiltonian Chaos and Fractional Dynamics*. Oxford University Press, Oxford, UK; 2008:xiv+421.

MATH
Google Scholar

Uchaikin VV: *Method of Fractional Derivatives*. Artishok-Press, Ulyanovsk, Russia; 2008.

Google Scholar

Lakshmikantham V, Leela S, Vasundhara-Devi J: *Theory of Fractional Dynamic Systems*. Cambridge Scientific Publishers, Cambridge, UK; 2009.

MATH
Google Scholar

Mainardi F: *Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models*. Imperial College Press, London, UK; 2010:xx+347.

Book
MATH
Google Scholar

Caponetto R, Dongola G, Fortuna L, Petras I: *Fractional Order Systems: Modeling and Control Applications*. World Scientific, Singapure; 2010.

Google Scholar

Tarasov VE: *Fractional Dynamics in Physics*. Higher Education Press and Springer, Berlin, Geramny; 2011.

Google Scholar

Klafter J, Lim SC, Metzler R (Eds): *Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media*. World Scientific, Singapore; 2011.

Google Scholar

Goldstein H: *Classical Mechanics*. Addison-Wesley Press, Cambridge, Mass, USA; 1951:xii+399.

Google Scholar

Dirac PAM: *The Principles of Quantum Mechanics*. Oxford University Press, Oxford, UK; 1958.

MATH
Google Scholar

Sokolov IM, Klafter J, Blumen A: **Fractional kinetics.** *Physics Today* 2002,**55**(11):48-54. 10.1063/1.1535007

Article
Google Scholar

Jiménez S, Pascual P, Aguierre C, Vázquez L: **A panoramic view of some perturbed nonlinear wave equations.** *International Journal of Bifurcation and Chaos* 2004,**14**(1):1-40. 10.1142/S0218127404009211

Article
MathSciNet
MATH
Google Scholar

Mendes RV, Vázquez L: **The dynamical nature of a backlash system with and without fluid friction.** *Nonlinear Dynamics* 2007,**47**(4):363-366. 10.1007/s11071-006-9035-y

Article
MATH
Google Scholar

Vázquez L: **Fractional diffusion equations with internal degrees of freedom.** *Journal of Computational Mathematics* 2003,**21**(4):491-494.

MathSciNet
MATH
Google Scholar

Vázquez L, Vilela Mendes R: **Fractionally coupled solutions of the diffusion equation.** *Applied Mathematics and Computation* 2003,**141**(1):125-130. 10.1016/S0096-3003(02)00326-0

Article
MathSciNet
MATH
Google Scholar

Kilbas AA, Pierantozzi T, Trujillo JJ, Vázquez L: **On the solution of fractional evolution equations.** *Journal of Physics A* 2004,**37**(9):3271-3283. 10.1088/0305-4470/37/9/015

Article
MathSciNet
MATH
Google Scholar

Pierantozzi T, Vázquez L: **An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like.** *Journal of Mathematical Physics* 2005,**46**(11):113512, 12.

Article
MathSciNet
MATH
Google Scholar

Vázquez L: **Una panorámica del Cálculo Fraccionario y sus aplicaciones.** *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales* 2004,**98**(1):17-26.

Google Scholar

Turchetti G, Usero D, Vázquez L: **Hamiltonian systems with fractional time derivative.** *Tamsui Oxford Journal of Mathematical Sciences* 2002,**18**(1):31-44.

MathSciNet
MATH
Google Scholar

Rabei EM, Nawafleh KI, Hijjawi RS, Muslih SI, Baleanu D: **The Hamilton formalism with fractional derivatives.** *Journal of Mathematical Analysis and Applications* 2007,**327**(2):891-897. 10.1016/j.jmaa.2006.04.076

Article
MathSciNet
MATH
Google Scholar

West BJ, Bologna M, Grigolini P: *Physics of Fractal Operators*. Springer, New York, NY, USA; 2003:x+354.

Book
Google Scholar

Mandelbrot BB: *The Fractal Geometry of Nature*. W. H. Freeman, San Francisco, Calif, USA; 1982:v+460.

Google Scholar

Rocco A, West BJ: **Fractional calculus and the evolution of fractal phenomena.** *Physica A* 1999,**265**(3):535-546. 10.1016/S0378-4371(98)00550-0

Article
Google Scholar

Berry MV: **Difractals.** *Journal of Physics A* 1979, **12:** 781-797. 10.1088/0305-4470/12/6/008

Article
Google Scholar

Jaggard DL: **On fractal electrodymanics.** In *Recent Advances in Electromagnetic Theory*. Edited by: Kritikos HN, Jaggard DL. Springer, Berlin, Germany; 1990:183-224.

Chapter
Google Scholar

Konotop VV, Fei Z, Vázquez L: **Wave interaction with a fractal layer.** *Physical Review E* 1993,**48**(5):4044-4048. 10.1103/PhysRevE.48.4044

Article
Google Scholar

Engheta N: **Fractional paradigm in electromagnetic theory.** In *Frontiers in Electromagnetism*. Edited by: Werner DH, Mittra R. IEEE Press, New York, NY, USA; 2000:523-552.

Google Scholar

Vázquez L, Velasco Cebrián MP: **Aplicación del Cálculo Fraccionario a los procesos de relajación.** *Memorias de la Real Academia de Ciencias Exactas, Físicas y Naturales* 2009, **23:** 105-115.

Google Scholar

Sun QP, Hwang KC: **Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys-II. Study of the individual phenomena.** *Journal of the Mechanics and Physics of Solids* 1993,**41**(1):19-33. 10.1016/0022-5096(93)90061-J

Article
MATH
Google Scholar

Tanaka K: **A thermo-mechanical sketch of shape memory effect: one-dimensional tensile behavior.** *Res Mechanica* 1986,**18**(3):251-263.

Google Scholar

Liang C, Rogers CA: **One-dimensional thermo-mechanical constitutive relations for shape memory materials.** *Journal of Intelligent Material Systems and Structures* 1990,**1**(2):207-218. 10.1177/1045389X9000100205

Article
Google Scholar

Brinson LC: **One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable.** *Journal of Intelligent Material Systems and Structures* 1993,**4**(2):229-242. 10.1177/1045389X9300400213

Article
Google Scholar