- Research Article
- Open Access
- Published:
On the Existence of Solutions for Dynamic Boundary Value Problems under Barrier Strips Condition
Advances in Difference Equations volume 2011, Article number: 378686 (2011)
Abstract
By defining a new terminology, scatter degree, as the supremum of graininess functional value, this paper studies the existence of solutions for a nonlinear two-point dynamic boundary value problem on time scales. We do not need any growth restrictions on nonlinear term of dynamic equation besides a barrier strips condition. The main tool in this paper is the induction principle on time scales.
1. Introduction
Calculus on time scales, which unify continuous and discrete analysis, is now still an active area of research. We refer the reader to [1–5] and the references therein for introduction on this theory. In recent years, there has been much attention focused on the existence and multiplicity of solutions or positive solutions for dynamic boundary value problems on time scales. See [6–17] for some of them. Under various growth restrictions on nonlinear term of dynamic equation, many authors have obtained many excellent results for the above problem by using Topological degree theory, fixed-point theorems on cone, bifurcation theory, and so on.
In 2004, Ma and Luo [18] firstly obtained the existence of solutions for the dynamic boundary value problems on time scales

under a barrier strips condition. A barrier strip is defined as follows. There are pairs (two or four) of suitable constants such that nonlinear term
does not change its sign on sets of the form
, where
is a nonnegative constant, and
is a closed interval bounded by some pairs of constants, mentioned above.
The idea in [18] was from Kelevedjiev [19], in which discussions were for boundary value problems of ordinary differential equation. This paper studies the existence of solutions for the nonlinear two-point dynamic boundary value problem on time scales

where is a bounded time scale with
,
, and
. We obtain the existence of at least one solution to problem (1.2) without any growth restrictions on
but an existence assumption of barrier strips. Our proof is based upon the well-known Leray-Schauder principle and the induction principle on time scales.
The time scale-related notations adopted in this paper can be found, if not explained specifically, in almost all literature related to time scales. Here, in order to make this paper read easily, we recall some necessary definitions here.
A time scale is a nonempty closed subset of
; assume that
has the topology that it inherits from the standard topology on
. Define the forward and backward jump operators
by

In this definition we put ,
. Set
,
. The sets
and
which are derived from the time scale
are as follows:

Denote interval on
by
.
Definition 1.1.
If is a function and
, then the delta derivative of
at the point
is defined to be the number
(provided it exists) with the property that, for each
, there is a neighborhood
of
such that

for all . The function
is called
-differentiable on
if
exists for all
.
Definition 1.2.
If holds on
, then we define the Cauchy
-integral by

Lemma 1.3 (see [2, Theorem 1.16 (SUF)]).
If is
-differentiable at
, then

Lemma 1.4 (see [18, Lemma 3.2]).
Suppose that is
-differentiable on
, then
(i) is nondecreasing on
if and only if
,
(ii) is nonincreasing on
if and only if
.
Lemma 1.5 (see [4, Theorem 1.4]).
Let be a time scale with
. Then the induction principle holds.
Assume that, for a family of statements ,
, the following conditions are satisfied.
(1) holds true.
(2)For each with
, one has
.
(3)For each with
, there is a neighborhood
of
such that
for all
,
.
(4)For each with
, one has
for all
.
Then is true for all
.
Remark 1.6.
For , we replace
with
and
with
, substitute < for >, then the dual version of the above induction principle is also true.
By , we mean the Banach space of second-order continuous
-differentiable functions
equipped with the norm

where ,
,
. According to the well-known Leray-Schauder degree theory, we can get the following theorem.
Lemma 1.7.
Suppose that is continuous, and there is a constant
, independent of
, such that
for each solution
to the boundary value problem

Then the boundary value problem (1.2) has at least one solution in .
Proof.
The proof is the same as [18, Theorem 4.1].
2. Existence Theorem
To state our main result, we introduce the definition of scatter degree.
Definition 2.1.
For a time scale , define the right direction scatter degree (RSD) and the left direction scatter degree (LSD) on
by

respectively. If , then we call
(or
) the scatter degree on
.
Remark 2.2.
-
(1)
If
, then
. If
, then
. If
and
, then
. (2) If
is bounded, then both
and
are finite numbers.
Theorem 2.3.
Let be continuous. Suppose that there are constants
,
, with
,
satisfying
-
(H1)
,
,
-
(H2)
for
,
for
,
where

Then problem (1.2) has at least one solution in .
Remark 2.4.
Theorem 2.3 extends [19, Theorem 3.2] even in the special case . Moreover, our method to prove Theorem 2.3 is different from that of [19].
Remark 2.5.
We can find some elementary functions which satisfy the conditions in Theorem 2.3. Consider the dynamic boundary value problem

where is bounded everywhere and continuous.
Suppose that , then for

It implies that there exist constants ,
, satisfying (H1) and (H2) in Theorem 2.3. Thus, problem (2.3) has at least one solution in
.
Proof of Theorem 2.3.
Define as follows:

For all , suppose that
is an arbitrary solution of problem

We firstly prove that there exists , independent of
and
, such that
.
We show at first that

Let ,
. We employ the induction principle on time scales (Lemma 1.5) to show that
holds step by step.
-
(1)
From the boundary condition
and the assumption of
,
holds.
-
(2)
For each
with
, suppose that
holds, that is,
. Note that
; we divide this discussion into three cases to prove that
holds.
Case 1.
If , then from Lemma 1.3, Definition 2.1, and (H1) there is

Similarly, .
Case 2.
If , then similar to Case 1 we have

Suppose to the contrary that , then

which contradicts (H2). So .
Case 3.
If , similar to Case 2, then
holds.
Therefore, is true.
-
(3)
For each
, with
, and
holds, then there is a neighborhood
of
such that
holds for all
,
by virtue of the continuity of
.
-
(4)
(4)For each
, with
, and
is true for all
, since
implies that
(2.11)we only show that
and
.
Suppose to the contrary that . From

, and the continuity of
, there is a neighborhood
of
such that

So ,
. Combining with
,
, we have from (H2),
,
,
. So from Lemma 1.4

This contradiction shows that . In the same way, we claim that
.
Hence, ,
, holds. So

From Definition 1.2 and Lemma 1.3, we have for

There are, from and (2.7),

for . In addition,

Thus,

that is,

Moreover, by the continuity of , the equation in (2.6), (2.7) and the definition of

where is defined in (2.2). Now let
. Then, from (2.15), (2.20), and (2.21),

Note that from (2.19) we have

that is, ,
. So
is also an arbitrary solution of problem

According to (2.22) and Lemma 1.7, the dynamic boundary value problem (1.2) has at least one solution in .
3. An Additional Result
Parallel to the definition of delta derivative, the notion of nabla derivative was introduced, and the main relations between the two operations were studied in [7]. Applying to the dual version of the induction principle on time scales (Remark 1.6), we can obtain the following result.
Theorem 3.1.
Let be continuous. Suppose that there are constants
,
, with
,
satisfying
-
(S1)
,
,
-
(S2)
for
,
for
,
where

Then dynamic boundary value problem

has at least one solution.
Remark 3.2.
According to Theorem 3.1, the dynamic boundary value problem related to the nabla derivative

has at least one solution. Here is bounded everywhere and continuous.
References
Agarwal RP, Bohner M: Basic calculus on time scales and some of its applications. Results in Mathematics 1999,35(1-2):3-22.
Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, Mass, USA; 2001:x+358.
Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, Mass, USA; 2003:xii+348.
Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1-2):18-56.
Kaymakcalan B, Lakshmikantham V, Sivasundaram S: Dynamic Systems on Measure Chains, Mathematics and Its Applications. Volume 370. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1996:x+285.
Agarwal RP, O'Regan D: Triple solutions to boundary value problems on time scales. Applied Mathematics Letters 2000,13(4):7-11. 10.1016/S0893-9659(99)00200-1
Atici FM, Guseinov GS: On Green's functions and positive solutions for boundary value problems on time scales. Journal of Computational and Applied Mathematics 2002,141(1-2):75-99. Special issue on "Dynamic equations on time scales", edited by R. P. Agarwal, M. Bohner and D. O'Regan 10.1016/S0377-0427(01)00437-X
Bohner M, Luo H: Singular second-order multipoint dynamic boundary value problems with mixed derivatives. Advances in Difference Equations 2006, 2006:-15.
Chyan CJ, Henderson J: Twin solutions of boundary value problems for differential equations on measure chains. Journal of Computational and Applied Mathematics 2002,141(1-2):123-131. Special issue on "Dynamic equations on time scales", edited by R. P. Agarwal, M. Bohner and D. O'Regan 10.1016/S0377-0427(01)00440-X
Erbe L, Peterson A, Mathsen R: Existence, multiplicity, and nonexistence of positive solutions to a differential equation on a measure chain. Journal of Computational and Applied Mathematics 2000,113(1-2):365-380. 10.1016/S0377-0427(99)00267-8
Gao C, Luo H: Positive solutions to nonlinear first-order nonlocal BVPs with parameter on time scales. Boundary Value Problems 2011, 2011:-15.
Henderson J:Multiple solutions for
order Sturm-Liouville boundary value problems on a measure chain. Journal of Difference Equations and Applications 2000,6(4):417-429. 10.1080/10236190008808238
Li W-T, Sun H-R: Multiple positive solutions for nonlinear dynamical systems on a measure chain. Journal of Computational and Applied Mathematics 2004,162(2):421-430. 10.1016/j.cam.2003.08.032
Luo H, Ma R: Nodal solutions to nonlinear eigenvalue problems on time scales. Nonlinear Analysis: Theory, Methods & Applications 2006,65(4):773-784. 10.1016/j.na.2005.09.043
Sun H-R:Triple positive solutions for
-Laplacian
-point boundary value problem on time scales. Computers & Mathematics with Applications 2009,58(9):1736-1741. 10.1016/j.camwa.2009.07.083
Sun J-P, Li W-T: Existence and nonexistence of positive solutions for second-order time scale systems. Nonlinear Analysis: Theory, Methods & Applications 2008,68(10):3107-3114. 10.1016/j.na.2007.03.003
Wang D-B, Sun J-P, Guan W: Multiple positive solutions for functional dynamic equations on time scales. Computers & Mathematics with Applications 2010,59(4):1433-1440. 10.1016/j.camwa.2009.12.019
Ma R, Luo H: Existence of solutions for a two-point boundary value problem on time scales. Applied Mathematics and Computation 2004,150(1):139-147. 10.1016/S0096-3003(03)00204-2
Kelevedjiev P: Existence of solutions for two-point boundary value problems. Nonlinear Analysis: Theory, Methods & Applications 1994,22(2):217-224. 10.1016/0362-546X(94)90035-3
Acknowledgments
H. Luo was supported by China Postdoctoral Fund (no. 20100481239), the NSFC Young Item (no. 70901016), HSSF of Ministry of Education of China (no. 09YJA790028), Program for Innovative Research Team of Liaoning Educational Committee (no. 2008T054), and Innovation Method Fund of China (no. 2009IM010400-1-39). Y. An was supported by 11YZ225 and YJ2009-16 (A06/1020K096019).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Luo, H., An, Y. On the Existence of Solutions for Dynamic Boundary Value Problems under Barrier Strips Condition. Adv Differ Equ 2011, 378686 (2011). https://doi.org/10.1155/2011/378686
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2011/378686
Keywords
- Nonlinear Term
- Growth Restriction
- Bifurcation Theory
- Dynamic Boundary
- Degree Theory