Theory and Modern Applications

# Homoclinic solutions of some second-order non-periodic discrete systems

## Abstract

In this article, we discuss how to use a standard minimizing argument in critical point theory to study the existence of non-trivial homoclinic solutions of the following second-order non-autonomous discrete systems

${\mathrm{Î”}}^{2}{x}_{n-1}+A\mathrm{Î”}{x}_{n}-L\left(n\right){x}_{n}+âˆ‡W\left(n,{x}_{n}\right)=0,\phantom{\rule{1em}{0ex}}nâˆˆZ,$

without any periodicity assumptions. Adopting some reasonable assumptions for A and L, we establish that two new criterions for guaranteeing above systems have one non-trivial homoclinic solution. Besides that, in some particular case, for the first time the uniqueness of homoclinic solutions is also obtained.

MSC: 39A11.

## 1. Introduction

The theory of nonlinear discrete systems has widely been used to study discrete models appearing in many fields such as electrical circuit analysis, matrix theory, control theory, discrete variational theory, etc., see for example [1, 2]. Since the last decade, there have been many literatures on qualitative properties of difference equations, those studies cover many branches of difference equations, see [3â€“7] and references therein. In the theory of differential equations, homoclinic solutions, namely doubly asymptotic solutions, play an important role in the study of various models of continuous dynamical systems and frequently have tremendous effects on the dynamics of nonlinear systems. So, homoclinic solutions have extensively been studied since the time of PoincarÃ©, see [8â€“13]. Similarly, we give the following definition: if x n is a solution of a discrete system, x n will be called a homoclinic solution emanating from 0 if x n â†’ 0 as |n| â†’ +âˆž. If x n â‰  0, x n is called a non-trivial homoclinic solution.

For our convenience, let N, Z, and R be the set of all natural numbers, integers, and real numbers, respectively. Throughout this article, | Â· | denotes the usual norm in R N with N âˆˆ N, (Â·,Â·) stands for the inner product. For a, b âˆˆ Z, define Z(a) = {a, a + 1, ...}, Z(a, b) = {a, a + 1, ..., } when a â‰¤ b.

In this article, we consider the existence of non-trivial homoclinic solutions for the following second-order non-autonomous discrete system

${\mathrm{Î”}}^{2}{x}_{n-1}+A\mathrm{Î”}{x}_{n}-L\left(n\right){x}_{n}+âˆ‡W\left(n,{x}_{n}\right)=0$
(1.1)

without any periodicity assumptions, where A is an antisymmetric constant matrix, L(n) âˆˆ C 1(R, R NÃ—N) is a symmetric and positive definite matrix for all n âˆˆ Z, W(n, x n ) = a(n)V(x n ), and a: R â†’ R + is continuous and V âˆˆ C1(R N, R). The forward difference operator Î” is defined by Î”x n = x n+1 - x n and Î”2 x n = Î”(Î”x n ).

We may think of (1.1) as being a discrete analogue of the following second-order non-autonomous differential equation

${x}^{â€³}+A{x}^{\mathrm{â€²}}-L\left(t\right)x+{W}_{x}\left(t,x\right)=0$
(1.2)

(1.1) is the best approximations of (1.2) when one lets the step size not be equal to 1 but the variable's step size go to zero, so solutions of (1.1) can give some desirable numerical features for the corresponding continuous system (1.2). On the other hand, (1.1) does have its applicable setting as evidenced by monographs [14, 15], as mentioned in which when A = 0, (1.1) becomes the second-order self-adjoint discrete system

${\mathrm{Î”}}^{2}{x}_{n-1}-L\left(n\right){x}_{n}+âˆ‡W\left(n,{x}_{n}\right)=0,\phantom{\rule{1em}{0ex}}nâˆˆZ,$
(1.3)

which is in some way a type of the best expressive way of the structure of the solution space for recurrence relations occurring in the study of second-order linear differential equations. So, (1.3) arises with high frequency in various fields such as optimal control, filtering theory, and discrete variational theory and many authors have extensively studied its disconjugacy, disfocality, boundary value problem oscillation, and asymptotic behavior. Recently, Bin [16] studied the existence of non-trivial periodic solutions for asymptotically superquadratic and subquadratic system (1.1) when A = 0. Ma and Guo [17, 18] gave results on existence of homoclinic solutions for similar system (1.3). In this article, we establish that two new criterions for guaranteeing the above system have one non-trivial homoclinic solution by adopting some reasonable assumptions for A and L. Besides that, in some particular case, we obtained the uniqueness of homoclinic solution for the first time.

Now we present some basic hypotheses on L and W in order to announce our first result in this article.

(H 1) L(n) âˆˆ C 1(Z, R NÃ—N) is a symmetric and positive definite matrix and there exists a function Î±: Z â†’ R + such that (L(n)x, x) â‰¥ Î±(n)|x| 2 and Î±(n) â†’ + âˆž as |n| â†’ +âˆž;

(H 2) W(n, x) = a(n) |x| Î³, i.e., V(x) = |x| Î³, where a: Z â†’ R such that a(n 0) > 0 for some n 0 âˆˆ Z, 1 < Î³ < 2 is a constant.

Remark 1.1 From (H 1), there exists a constant Î² > 0 such that

$\left(L\left(n\right)x,x\right)â‰¥\mathrm{Î²}âˆ£x{âˆ£}^{2},\phantom{\rule{1em}{0ex}}âˆ€nâˆˆZ,\phantom{\rule{1em}{0ex}}xâˆˆ{R}^{N},$
(1.4)

and by (H 2), we see V(x) is subquadratic as |x| â†’ +âˆž and

$âˆ‡W\left(n,x\right)=\mathrm{Î³}a\left(n\right)âˆ£x{âˆ£}^{\mathrm{Î³}-2}x$
(1.5)

In addition, we need the following estimation on the norm of A. Concretely, we suppose that (H 3) A is an antisymmetric constant matrix such that $âˆ¥Aâˆ¥<\sqrt{\mathrm{Î²}}$, where Î² is defined in (1.4).

Remark 1.2 In order to guarantee that (H 3) holds, it suffices to take A such that ||A|| is small enough.

Up until now, we can state our first main result.

Theorem 1.1 If (H 1)-(H 3) are hold, then (1.1) possesses at least one non-trivial homoclinic solution.

Substitute (H 2)' by (H 2) as follows

(H 2)' W(n, x) = a(n)V(x), where a: Z â†’ R such that a(n 1) > 0 for some n 1 âˆˆ Z and V âˆˆ C 1(R N, R), and V(0) = 0. Moreover, there exist constants M > 0, M 1 > 0, 1 < Î¸ < 2 and 0 < r â‰¤ 1 such that

$V\left(x\right)â‰¥Mâˆ£x{âˆ£}^{\mathrm{Î¸}},\phantom{\rule{1em}{0ex}}âˆ€xâˆˆ{R}^{N},\phantom{\rule{1em}{0ex}}âˆ£xâˆ£â‰¤r$
(1.6)

and

$âˆ£{V}^{\mathrm{â€²}}\left(x\right)âˆ£â‰¤{M}_{1},\phantom{\rule{1em}{0ex}}âˆ€xâˆˆ{R}^{N}.$
(1.7)

Remark 1.3 By V(0) = 0, V âˆˆ C 1(R N, R) and (1.7), we have

$âˆ£V\left(x\right)âˆ£=âˆ£{âˆ«}_{0}^{1}\left({V}^{\mathrm{â€²}}\left(\mathrm{Î¼}x\right),x\right)d\mathrm{Î¼}âˆ£â‰¤{M}_{1}âˆ£xâˆ£,$
(1.8)

which yields that V(x) is subquadratic as |x| â†’ +âˆž.

We have the following theorem.

Theorem 1.2 Assume that (H 1), (H 2)' and (H 3) are satisfied, then (1.1) possesses at least one non-trivial homoclinic solution. Moreover, if we suppose that V âˆˆ C 2(R N, R) and there exists constant Ï‰ with $0<\mathrm{Ï‰}<\mathrm{Î²}-\sqrt{\mathrm{Î²}}âˆ¥Aâˆ¥$ such that

$âˆ¥a\left(n\right){V}^{â€³}\left(x\right){âˆ¥}_{2}â‰¤\mathrm{Ï‰},\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}âˆ€nâˆˆZ,\phantom{\rule{1em}{0ex}}xâˆˆ{R}^{N},$
(1.9)

then (1.1) has one and only one non-trivial homoclinic solution.

The remainder of this article is organized as follows. After introducing some notations and preliminary results in Section 2, we establish the proofs of our Theorems 1.1 and 1.2 in Section 3.

## 2. Variational structure and preliminary results

In this section, we are going to establish suitable variational structure of (1.1) and give some lemmas which will be fundamental importance in proving our main results. First, we state some basic notations.

Letting

$E=\left\{xâˆˆS:\underset{nâˆˆZ}{âˆ‘}\phantom{\rule{2.77695pt}{0ex}}\left[\left(\mathrm{Î”}{{x}_{n}\right)}^{2}+\left(L\left(n\right){x}_{n},{x}_{n}\right)\right]<+\mathrm{âˆž}\right\},$

where

$S=\left\{x=\left\{{x}_{n}\right\}:{x}_{n}âˆˆ{R}^{N},nâˆˆZ\right\}$

and

$x=\left\{{{x}_{n}\right\}}_{nâˆˆZ}=\left\{â€¦,{x}_{-n},â€¦,{x}_{-1},{x}_{0},{x}_{1},â€¦,{x}_{n},â€¦\right\}.$

According to the definition of the space E, for all x, y âˆˆ E there holds

$\begin{array}{cc}\hfill \underset{nâˆˆZ}{âˆ‘}& \left[\left(\mathrm{Î”}{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left(L\left(n\right){x}_{n},{y}_{n}\right)\right]\hfill \\ \phantom{\rule{1em}{0ex}}=\underset{nâˆˆZ}{âˆ‘}\left[\left(\mathrm{Î”}{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left({L}^{\frac{1}{2}}\left(n\right){x}_{n},{L}^{\frac{1}{2}}\left(n\right){y}_{n}\right)\right]\hfill \\ \phantom{\rule{1em}{0ex}}â‰¤{\left(\underset{nâˆˆZ}{âˆ‘}\left(âˆ£\mathrm{Î”}{x}_{n}{âˆ£}^{2}+âˆ£{L}^{\frac{1}{2}}\left(n\right){x}_{n}{âˆ£}^{2}\right)\right)}^{\frac{1}{2}}â‹\dots {\left(\underset{nâˆˆZ}{âˆ‘}\left(âˆ£\mathrm{Î”}{y}_{n}{âˆ£}^{2}+âˆ£{L}^{\frac{1}{2}}\left(n\right){y}_{n}{âˆ£}^{2}\right)\right)}^{\frac{1}{2}}<+\mathrm{âˆž}.\hfill \end{array}$

Then (E, < Â·, Â· >) is an inner space with

$\phantom{\rule{2.77695pt}{0ex}}=\underset{nâˆˆZ}{âˆ‘}\left[\left(\mathrm{Î”}{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left(L\left(n\right){x}_{n},{y}_{n}\right)\right],\phantom{\rule{1em}{0ex}}âˆ€x,yâˆˆE$

and the corresponding norm

$âˆ¥x{âˆ¥}^{2}=\underset{nâˆˆZ}{âˆ‘}\left[\left(\mathrm{Î”}{{x}_{n}\right)}^{2}+\left(L\left(n\right){x}_{n},{x}_{n}\right)\right],\phantom{\rule{1em}{0ex}}âˆ€xâˆˆE.$

Furthermore, we can get that E is a Hilbert space. For later use, given Î² > 0, define ${l}^{\mathrm{Î²}}=\left\{x=\left\{{x}_{n}\right\}âˆˆS:\underset{nâˆˆZ}{âˆ‘}âˆ£{x}_{n}{âˆ£}^{\mathrm{Î²}}<+\mathrm{âˆž}\right\}$ and the norm

$âˆ¥x{âˆ¥}_{{l}^{\mathrm{Î²}}}=\sqrt[\mathrm{Î²}]{\underset{nâˆˆZ}{âˆ‘}âˆ£{x}_{n}{âˆ£}^{\mathrm{Î²}}}=âˆ¥x{âˆ¥}_{\mathrm{Î²}}.$

Write l âˆž = {x = {x n } âˆˆ S: |x n | < +âˆž} and

$âˆ¥x{âˆ¥}_{{l}^{\mathrm{âˆž}}}=\underset{nâˆˆZ}{sup}âˆ£{x}_{n}âˆ£.$

Making use of Remark 1.1, there exists

$\mathrm{Î²}âˆ¥x{âˆ¥}_{{l}^{2}}^{2}=\mathrm{Î²}\underset{nâˆˆZ}{âˆ‘}âˆ£{x}_{n}{âˆ£}^{2}â‰¤\underset{nâˆˆZ}{âˆ‘}\left[\left(\mathrm{Î”}{{x}_{n}\right)}^{2}+\left(L\left(n\right){x}_{n},{x}_{n}\right)\right]=âˆ¥x{âˆ¥}^{2},$

then

$âˆ¥x{âˆ¥}_{{l}^{\mathrm{âˆž}}}â‰¤âˆ¥x{âˆ¥}_{{l}^{2}}â‰¤{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥xâˆ¥$
(2.1)

Lemma 2.1 Assume that L satisfies (H 1), {x (k)} âŠ‚ E such that x (k)â‡€ x. Then x (k)â‡€ x in l 2.

Proof Without loss of generality, we assume that x (k)â‡€ 0 in E. From (H 1) we have Î±(n) > 0 and Î±(n) â†’ +âˆž as n â†’ âˆž, then there exists D > 0 such that $|\frac{1}{\mathrm{Î±}\left(n\right)}|=\frac{1}{\mathrm{Î±}\left(n\right)}â‰¤\mathrm{Îµ}$ holds for any Îµ > 0 as |n| > D.

Let I = {n: |n| â‰¤ D, n âˆˆ Z} and ${E}_{I}=\left\{xâˆˆE:\underset{nâˆˆI}{âˆ‘}\left[\left(\mathrm{Î”}{{x}_{n}\right)}^{2}+L\left(n\right){x}_{n}â‹\dots {x}_{n}\right]<+\mathrm{âˆž}\right\}$, then E I is a 2DN-dimensional subspace of E and clearly x (k)â‡€ 0 in E I . This together with the uniqueness of the weak limit and the equivalence of strong convergence and weak convergence in E I , we have x (k)â†’ 0 in E I , so there has a constant k 0 > 0 such that

$\underset{nâˆˆI}{âˆ‘}âˆ£{x}_{n}^{\left(k\right)}{âˆ£}^{2}â‰¤\mathrm{Îµ},\phantom{\rule{1em}{0ex}}âˆ€kâ‰¥{k}_{0}.$
(2.2)

By (H 1), there have

$\begin{array}{cc}\hfill \underset{âˆ£nâˆ£>D}{âˆ‘}âˆ£{x}_{n}^{\left(k\right)}{âˆ£}^{2}& =\underset{âˆ£nâˆ£>D}{âˆ‘}\frac{1}{\mathrm{Î±}\left(n\right)}â‹\dots \mathrm{Î±}\left(n\right)âˆ£{x}_{n}^{\left(k\right)}{âˆ£}^{2}\hfill \\ â‰¤\mathrm{Îµ}\underset{âˆ£nâˆ£>D}{âˆ‘}\mathrm{Î±}\left(n\right)âˆ£{x}_{n}^{\left(k\right)}{âˆ£}^{2}â‰¤\mathrm{Îµ}\underset{âˆ£nâˆ£>D}{âˆ‘}\left(L\left(n\right){x}_{n}^{\left(k\right)},{x}_{n}^{\left(k\right)}\right)\hfill \\ â‰¤\mathrm{Îµ}\underset{âˆ£nâˆ£>D}{âˆ‘}\left[\left(\mathrm{Î”}{{x}_{n}^{\left(k\right)}\right)}^{2}+\left(L\left(n\right){x}_{n}^{\left(k\right)},{x}_{n}^{\left(k\right)}\right)\right]=\mathrm{Îµ}âˆ¥{x}^{\left(k\right)}{âˆ¥}^{2}.\hfill \end{array}$

Note that Îµ is arbitrary and ||x (k) || is bounded, then

$\underset{âˆ£nâˆ£>D}{âˆ‘}âˆ£{x}_{n}^{\left(k\right)}{âˆ£}^{2}â†’0,$
(2.3)

combing with (2.2) and (2.3), x (k)â†’ 0 in l 2 is true.

In order to prove our main results, we need following two lemmas.

Lemma 2.2 For any x(j) > 0, y(j) > 0, j âˆˆ Z there exists

$\underset{jâˆˆZ}{âˆ‘}x\left(j\right)y\left(j\right)â‰¤{\left(\underset{jâˆˆZ}{âˆ‘}{x}^{q}\left(j\right)\right)}^{\frac{1}{q}}â‹\dots {\left(\underset{jâˆˆZ}{âˆ‘}{y}^{s}\left(j\right)\right)}^{\frac{1}{s}},$

where q > 1, s > 1, $\frac{1}{q}+\frac{1}{s}=1$.

Lemma 2.3 [19] Let E be a real Banach space and F âˆˆ C 1(E, R) satisfying the PS condition. If F is bounded from below, then

$c=\underset{E}{inf}\phantom{\rule{2.77695pt}{0ex}}F$

is a critical point of F.

## 3. Proofs of main results

In order to obtain the existence of non-trivial homoclinic solutions of (1.1) by using a standard minimizing argument, we will establish the corresponding variational functional of (1.1). Define the functional F: E â†’ R as follows

$\begin{array}{cc}\hfill F\left(x\right)& =\underset{nâˆˆZ}{âˆ‘}\left[\frac{1}{2}{\left(\mathrm{Î”}{x}_{n}\right)}^{2}+\frac{1}{2}\left(L\left(n\right){x}_{n},{x}_{n}\right)+\frac{1}{2}\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)-W\left(n,{x}_{n}\right)\right]\hfill \\ =\frac{1}{2}âˆ¥x{âˆ¥}^{2}+\frac{1}{2}\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)-\underset{nâˆˆZ}{âˆ‘}W\left(n,{x}_{n}\right).\hfill \end{array}$
(3.1)

Lemma 3.1 Under conditions of Theorem 1.1, we have F âˆˆ C 1(E, R) and any critical point of F on E is a classical solution of (1.1) with x Â±âˆž = 0.

Proof We first show that F: E â†’ R. By (1.4), (2.1), (H 2), and Lemma 2.2, we have

$\begin{array}{cc}\hfill 0& â‰¤\underset{nâˆˆZ}{âˆ‘}âˆ£W\left(n,{x}_{n}\right)âˆ£=\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right)âˆ£\phantom{\rule{0.3em}{0ex}}âˆ£{x}_{n}{âˆ£}^{\mathrm{Î³}}\hfill \\ â‰¤{\left(\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right){âˆ£}^{\frac{2}{2-\mathrm{Î³}}}\right)}^{\frac{2-\mathrm{Î³}}{2}}{\left(\underset{nâˆˆZ}{âˆ‘}âˆ£{x}_{n}{âˆ£}^{\mathrm{Î³}\frac{2}{\mathrm{Î³}}}\right)}^{\frac{\mathrm{Î³}}{2}}\hfill \\ =âˆ¥a\left(n\right){âˆ¥}_{\frac{2}{2-\mathrm{Î³}}}âˆ¥x{âˆ¥}_{2}^{\mathrm{Î³}}â‰¤{\mathrm{Î²}}^{-\frac{\mathrm{Î³}}{2}}âˆ¥a\left(n\right)âˆ¥\frac{2}{2-\mathrm{Î³}}âˆ¥x{âˆ¥}^{\mathrm{Î³}}\hfill \\ <+\mathrm{âˆž}\hfill \end{array}$
(3.2)

Combining (3.1) and (3.2), we show that F: E â†’ R.

Next we prove F âˆˆ C 1(E, R). Write ${F}_{1}\left(x\right)=\frac{1}{2}âˆ¥x{âˆ¥}^{2}+\frac{1}{2}\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)$, ${F}_{2}\left(x\right)=\underset{nâˆˆZ}{âˆ‘}W\left(n,{x}_{n}\right)$, it is obvious that F(x) = F 1(x) - F 2(x) and F 1(x) âˆˆ C 1(E, R). And by use of the antisymmetric property of A, it is easy to check

$<{F}_{1}^{\mathrm{â€²}}\left(x\right),y>=\underset{nâˆˆZ}{âˆ‘}\left[\left(\mathrm{Î”}{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left(A{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left(L\left(n\right){x}_{n},{y}_{n}\right)\right],\phantom{\rule{1em}{0ex}}âˆ€yâˆˆE.$
(3.3)

Therefore, it is sufficient to show that F 2(x) âˆˆ C 1(E, R).

Because of V(x) = |x| Î³, i.e., V âˆˆ C 1(R N, R), let us write Ï†(t) = F 2(x + th), 0 â‰¤ t â‰¤ 1, for all x, h âˆˆ E, there holds

$\begin{array}{cc}\hfill {\mathrm{Ï†}}^{\mathrm{â€²}}\left(0\right)& =\underset{tâ†’0}{\mathsf{\text{lim}}}\frac{\mathrm{Ï†}\left(t\right)-\mathrm{Ï†}\left(0\right)}{t}\hfill \\ =\underset{tâ†’0}{\mathsf{\text{lim}}}\frac{{F}_{2}\left(x+th\right)-{F}_{2}\left(x\right)}{t}\hfill \\ =\underset{tâ†’0}{\mathsf{\text{lim}}}\frac{1}{t}\underset{nâˆˆZ}{âˆ‘}\left[V\left(n,{x}_{n}+t{h}_{n}\right)-V\left(n,{x}_{n}\right)\right]\hfill \\ =\underset{tâ†’0}{\mathsf{\text{lim}}}\underset{nâˆˆZ}{âˆ‘}âˆ‡V\left(n,{x}_{n}+{\mathrm{Î¸}}_{n}t{h}_{n}\right)â‹\dots {h}_{n}\hfill \\ =\underset{nâˆˆZ}{âˆ‘}âˆ‡V\left(n,{x}_{n}\right)â‹\dots {h}_{n}\hfill \end{array}$

where 0 < Î¸ n < 1. It follows that F 2(x) is Gateaux differentiable on E.

Using (1.5) and (2.1), we get

$\begin{array}{ll}\hfill |âˆ‡W\left(n,{x}_{n}\right)|& =âˆ£\mathrm{Î³}a\left(n\right)âˆ£{x}_{n}{âˆ£}^{\mathrm{Î³}-2}{x}_{n}âˆ£\phantom{\rule{2.77695pt}{0ex}}=\mathrm{Î³}a\left(n\right)âˆ£{x}_{n}{âˆ£}^{\mathrm{Î³}-1}\phantom{\rule{2em}{0ex}}\\ â‰¤\mathrm{Î³}a\left(n\right)âˆ¥x{âˆ¥}_{{l}^{\mathrm{âˆž}}}^{\mathrm{Î³}-1}\phantom{\rule{2.77695pt}{0ex}}â‰¤\mathrm{Î³}a\left(n\right){\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥x{âˆ¥}^{\mathrm{Î³}-1}\phantom{\rule{2em}{0ex}}\\ =da\left(n\right)\phantom{\rule{2em}{0ex}}\end{array}$
(3.4)

where $d=\mathrm{Î³}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥x{âˆ¥}^{\mathrm{Î³}-1}$ is a constant. For any y âˆˆ E, using (2.1), (3.4) and lemma 2.2, it follows

$\begin{array}{r}|\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{y}_{n}\right)|â‰¤\underset{nâˆˆZ}{âˆ‘}da\left(n\right)|{y}_{n}|\\ \phantom{\rule{1em}{0ex}}=d\underset{nâˆˆZ}{âˆ‘}a\left(n\right)|{y}_{n}|â‰¤d{\left(\underset{nâˆˆZ}{âˆ‘}{|a\left(n\right)|}^{2}\right)}^{\frac{1}{2}}{\left(\underset{nâˆˆZ}{âˆ‘}{|{y}_{n}|}^{2}\right)}^{\frac{1}{2}}\\ \phantom{\rule{1em}{0ex}}â‰¤d{âˆ¥a\left(n\right)âˆ¥}_{2}{\left(\underset{nâˆˆZ}{âˆ‘}\frac{1}{\mathrm{Î²}}\left(L\left(n\right){y}_{n},{y}_{n}\right)\right)}^{\frac{1}{2}}\\ \phantom{\rule{1em}{0ex}}â‰¤\frac{d}{\sqrt{\mathrm{Î²}}}{âˆ¥a\left(n\right)âˆ¥}_{2}âˆ¥yâˆ¥\end{array}$

thus the Gateaux derivative of F 2(x) at x is ${F}_{2}^{\mathrm{â€²}}\left(x\right)âˆˆE$ and

$<{F}_{2}^{\mathrm{â€²}}\left(x\right),y>=\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{y}_{n}\right),\phantom{\rule{1em}{0ex}}âˆ€x,yâˆˆE.$

For any y âˆˆ E and Îµ > 0, when ||y|| â‰¤ Î´, i.e., $âˆ£yâˆ£â‰¤{\mathrm{Î±}}^{-\frac{1}{2}}\mathrm{Î´}$ there exists Î´ > 0 such that

$âˆ£âˆ‡W\left(n,{x}_{n}+{y}_{n}\right)-âˆ‡W\left(n,{x}_{n}\right)âˆ£<\mathrm{Îµ}.$

is true. Therefore,

$\begin{array}{rcl}|<{F}_{2}^{\mathrm{â€²}}\left(x+y\right)-{F}_{2}^{\mathrm{â€²}}\left(x\right),h>|& =& |\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}+{y}_{n}\right)-âˆ‡W\left(n,{x}_{n}\right),{h}_{n}\right)|\\ â‰¤& \mathrm{Îµ}\underset{nâˆˆZ}{âˆ‘}|{h}_{n}|â‰¤\mathrm{Îµ}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥hâˆ¥,\end{array}$

that is

$âˆ¥{F}_{2}^{\mathrm{â€²}}\left(x+y\right)-{F}_{2}^{\mathrm{â€²}}\left(x\right)âˆ¥â‰¤\mathrm{Îµ}{\mathrm{Î²}}^{-\frac{1}{2}}.$

Note that Îµ is arbitrary, then ${F}_{2}^{\mathrm{â€²}}:Eâ†’{E}^{\mathrm{â€²}}$, $xâ†’{F}_{2}^{\mathrm{â€²}}\left(x\right)$ is continuous and F 2(x) âˆˆ C 1(E, R). Hence, F âˆˆ C 1(E, R) and for any x, h âˆˆ E, we have

$\begin{array}{cc}\hfill <{F}^{\mathrm{â€²}}\left(x\right),h>\phantom{\rule{2.77695pt}{0ex}}& =\phantom{\rule{2.77695pt}{0ex}}-\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{h}_{n}\right)\hfill \\ =\underset{nâˆˆZ}{âˆ‘}\left[\left(-{\left(\mathrm{Î”}{x}_{n-1}\right)}^{2}+\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)+\left(L\left(n\right){x}_{n},{x}_{n}\right)-âˆ‡W\left(n,{x}_{n}\right),{h}_{n}\right)\right]\hfill \end{array}$

that is

$<{F}^{\mathrm{â€²}}\left(x\right),x>=âˆ¥x{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{x}_{n}\right)$
(3.5)

Computing FrÃ©chet derivative of functional (3.1), we have

$\frac{\mathrm{âˆ‚}F\left(x\right)}{\mathrm{âˆ‚}x\left(n\right)}=-{\mathrm{Î”}}^{2}{x}_{n-1}-A\mathrm{Î”}{x}_{n}+L\left(n\right){x}_{n}-âˆ‡W\left(n,{x}_{n}\right),nâˆˆZ$

this is just (1.1). Then critical points of variational functional (3.1) corresponds to homoclinic solutions of (1.1)

Lemma 3.2 Suppose that (H 1), (H 2) in Theorem 1.1 are satisfied. Then, the functional (3.1) satisfies PS condition.

Proof Let {x (k)} kâˆˆN âŠ‚ E be such that {F(x (k))} kâˆˆN is bounded and {F' (x (k))} â†’ 0 as k â†’ +âˆž. Then there exists a positive constant c 1 such that

$âˆ£F\left({x}^{\left(k\right)}\right)âˆ£â‰¤{c}_{1},\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}âˆ¥{F}^{\mathrm{â€²}}\left({x}^{\left(k\right)}\right){âˆ¥}_{{E}^{\mathrm{â€²}}}â‰¤{c}_{1},\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}âˆ€kâˆˆN.$
(3.6)

Firstly, we will prove {x (k)} kâˆˆN is bounded in E. Combining (3.1), (3.5) and remark 1.1, there holds

$\begin{array}{cc}\hfill \left(1-\frac{\mathrm{Î¼}}{2}\right)âˆ¥{x}^{\left(k\right)}{âˆ¥}^{2}& =<{F}^{\mathrm{â€²}}\left({x}^{\left(k\right)}\right),{x}^{\left(k\right)}>-\mathrm{Î¼}F\left({x}^{\left(k\right)}\right)\hfill \\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}+\underset{nâˆˆZ}{âˆ‘}\left[\left(âˆ‡W\left(n,{x}_{n}^{\left(k\right)}\right),{x}_{n}^{\left(k\right)}\right)-\mathrm{Î¼}W\left(n,{x}_{n}^{\left(k\right)}\right)\right]\hfill \\ â‰¤<{F}^{\mathrm{â€²}}\left({x}^{\left(k\right)}\right),{x}^{\left(k\right)}>-\mathrm{Î¼}F\left({x}^{\left(k\right)}\right)\hfill \end{array}$

together with (3.6)

$\left(1-\frac{\mathrm{Î¼}}{2}\right)\phantom{\rule{2.77695pt}{0ex}}âˆ¥{x}^{\left(k\right)}{âˆ¥}^{2}â‰¤{c}_{1}âˆ¥{x}^{\left(k\right)}âˆ¥+\mathrm{Î¼}{c}_{1}.$
(3.7)

Since 1 < Î¼ < 2, it is not difficult to know that {x (k)} kâˆˆN is a bounded sequence in E. So, passing to a subsequence if necessary, it can be assumed that x (k)â‡€ x in E. Moreover, by Lemma 2.1, we know x (k)â‡€ x in l 2. So for k â†’ +âˆž,

$<{F}^{\mathrm{â€²}}\left({x}^{\left(k\right)}\right)-{F}^{\mathrm{â€²}}\left(x\right),{x}^{\left(k\right)}-x>â†’0,$

and

$\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}^{\left(k\right)}\right)-âˆ‡W\left(n,{x}_{n}\right),{x}_{n}^{\left(k\right)}-{x}_{n}\right)â†’0.$

On the other hand, by direct computing, for k large enough, we have

$\begin{array}{c}<{F}^{\mathrm{â€²}}\left({x}^{\left(k\right)}\right)-{F}^{\mathrm{â€²}}\left(x\right),{x}^{\left(k\right)}-x>\\ \phantom{\rule{1em}{0ex}}=âˆ¥{x}^{\left(k\right)}-x{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}^{\left(k\right)}\right)-âˆ‡W\left(n,{x}_{n}\right),{x}_{n}^{\left(k\right)}-{x}_{n}\right).\end{array}$

It follows that

$âˆ¥{x}^{\left(k\right)}-xâˆ¥â†’0,$

that is the functional (3.1) satisfies PS condition.

Up until now, we are in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1 By (3.1), we have, for every m âˆˆ R \ {0} and x âˆˆ E \ {0},

$\begin{array}{cc}\hfill F\left(mx\right)& =\frac{{m}^{2}}{2}âˆ¥x{âˆ¥}^{2}+\frac{{m}^{2}}{2}\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)-\underset{nâˆˆZ}{âˆ‘}W\left(n,m{x}_{n}\right)\hfill \\ =\frac{{m}^{2}}{2}âˆ¥x{âˆ¥}^{2}+\frac{{m}^{2}}{2}\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)\phantom{\rule{2.77695pt}{0ex}}-\phantom{\rule{2.77695pt}{0ex}}âˆ£m{âˆ£}^{\mathrm{Î³}}\underset{nâˆˆZ}{âˆ‘}a\left(n\right)âˆ£{x}_{n}{âˆ£}^{\mathrm{Î³}}\hfill \\ â‰¥\frac{{m}^{2}}{2}âˆ¥x{âˆ¥}^{2}-\frac{{m}^{2}}{2}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥Aâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥x{âˆ¥}^{2}-\phantom{\rule{2.77695pt}{0ex}}{\mathrm{Î²}}^{-\frac{\mathrm{Î³}}{2}}âˆ£m{âˆ£}^{\mathrm{Î³}}âˆ¥a\left(n\right){âˆ¥}_{\frac{2-\mathrm{Î³}}{2}}âˆ¥x{âˆ¥}^{\mathrm{Î³}}.\hfill \end{array}$
(3.8)

Since 1 < Î³ < 2 and $âˆ¥Aâˆ¥<\sqrt{\mathrm{Î²}}$, (3.8) implies that F(mx) â†’ +âˆž as |m| â†’ +âˆž. Consequently, F(x) is a functional bounded from below. By Lemma 2.3, F(x) possesses a critical value c = inf xâˆˆE F(x), i.e., there is a critical point x âˆˆ E such that

$F\left(x\right)=c,\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}{F}^{\mathrm{â€²}}\left(x\right)=0.$

On the other side, by (H 2), there exists Î´ 0 > 0 such that a(n) > 0 for any n âˆˆ [n 0 - Î´ 0, n 0 + Î´ 0]. Take c 0 âˆˆ R N \ {0} and let y âˆˆ E be given by

${y}_{n}=\left\{\begin{array}{cc}\hfill {c}_{0}sin\left[\frac{2\mathrm{Ï€}}{2{\mathrm{Î´}}_{0}}\left(n-{n}_{1}\right)\right],\hfill & \hfill nâˆˆ\left[{n}_{0}-{\mathrm{Î´}}_{0},{n}_{0}+{\mathrm{Î´}}_{0}\right]\hfill \\ \hfill 0,\hfill & \hfill nâˆˆZ\\left[{n}_{0}-{\mathrm{Î´}}_{0},{n}_{0}+{\mathrm{Î´}}_{0}\right]\hfill \end{array}\right\$

Then, by (3.1), we obtain that

$F\left(my\right)=\frac{{m}^{2}}{2}âˆ¥y{âˆ¥}^{2}+\frac{{m}^{2}}{2}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥Aâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥y{âˆ¥}^{2}-âˆ£m{âˆ£}^{\mathrm{Î³}}\underset{n={n}_{0}-{\mathrm{Î´}}_{0}}{\overset{{n}_{0}+{\mathrm{Î´}}_{0}}{âˆ‘}}a\left(n\right)âˆ£{y}_{n}{âˆ£}^{\mathrm{Î³}},$

which yields that F(my) < 0 for |m| small enough since 1 < Î³ < 2, i.e., the critical point x âˆˆ E obtained above is non-trivial.

Although the proof of the first part of Theorem 1.2 is very similar to the proof of Theorem 1.1, for readers' convenience, we give its complete proof.

Lemma 3.3 Under the conditions of Theorem 1.2, it is easy to check that

$<{F}^{\mathrm{â€²}}\left(x\right),y>\phantom{\rule{2.77695pt}{0ex}}=\underset{nâˆˆZ}{âˆ‘}\left[\left(\mathrm{Î”}{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left(A{x}_{n},\mathrm{Î”}{y}_{n}\right)+\left(L\left(n\right){x}_{n},{y}_{n}\right)-\left(âˆ‡W\left(n,{x}_{n}\right),{y}_{n}\right)\right]$
(3.9)

for all x, y âˆˆ E. Moreover, F(x) is a continuously FrÃ©chet differentiable functional defined on E, i.e., F âˆˆ C 1(E, R) and any critical point of F(x) on E is a classical solution of (1.1) with x Â±âˆž = 0.

Proof By (1.8) and (2.1), we have

$\begin{array}{cc}\hfill 0& â‰¤\underset{nâˆˆZ}{âˆ‘}âˆ£W\left(n,{x}_{n}\right)âˆ£=\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right)âˆ£\phantom{\rule{2.77695pt}{0ex}}â‹\dots \phantom{\rule{2.77695pt}{0ex}}âˆ£V\left({x}_{n}\right)âˆ£â‰¤{M}_{1}\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right)âˆ£â‹\dots âˆ£{x}_{n}âˆ£\hfill \\ â‰¤{M}_{1}{\left(\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right){âˆ£}^{2}\right)}^{\frac{1}{2}}â‹\dots {\left(\underset{nâˆˆZ}{âˆ‘}âˆ£{x}_{n}{âˆ£}^{2}\right)}^{\frac{1}{2}}={M}_{1}âˆ¥a{âˆ¥}_{2}âˆ¥x{âˆ¥}_{2}\hfill \\ â‰¤{\mathrm{Î²}}^{-\frac{1}{2}}{M}_{1}âˆ¥a{âˆ¥}_{2}âˆ¥xâˆ¥,\hfill \end{array}$

which together with (3.1) implies that F: E â†’ R. In the following, according to the proof of Lemma 3.1, it is sufficient to show that for any y âˆˆ E,

$\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{y}_{n}\right),\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}âˆ€xâˆˆE$

is bounded. Moreover, By (1.8), (2.1), and Lemma 2.2, there holds

$\begin{array}{cc}\hfill âˆ£\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{y}_{n}\right)âˆ£& â‰¤\underset{nâˆˆZ}{âˆ‘}âˆ£âˆ‡W\left(n,{x}_{n}\right)âˆ£â‹\dots âˆ£{y}_{n}âˆ£\hfill \\ â‰¤{M}_{1}\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right)âˆ£â‹\dots âˆ£{x}_{n}âˆ£â‹\dots âˆ£{y}_{n}âˆ£\hfill \\ â‰¤{M}_{1}âˆ¥a{âˆ¥}_{2}âˆ¥x{âˆ¥}_{2}âˆ¥y{âˆ¥}_{2}\hfill \\ â‰¤{M}_{1}{\mathrm{Î²}}^{-1}âˆ¥a{âˆ¥}_{2}âˆ¥xâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥yâˆ¥\hfill \end{array}$

which implies that $\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right),{y}_{n}\right)$ is bounded for any x, y âˆˆ E.

Using Lemma 2.1, the remainder is similar to the proof of Lemma 3.1, so we omit the details of its proof.

Lemma 3.4 Under the conditions of Theorem 1.2, F(x) satisfies the PS condition.

Proof From the proof of Lemma 3.2, we see that it is sufficient to show that for any sequence {x (k)} kâˆˆN âŠ‚ E such that {F(x (k))} kâˆˆN is bounded and F' (x (k)) â†’ 0 as k â†’ +âˆž, then {x (k)} kâˆˆN is bounded in E.

In fact, since {F(x (k))} kâˆˆN is bounded, there exists a constant C 2 > 0 such that

$âˆ£F\left({x}^{\left(k\right)}\right)âˆ£â‰¤{C}_{2},\phantom{\rule{1em}{0ex}}âˆ€kâˆˆN.$
(3.10)

Making use of (1.8), (3.1), (3.15), and Lemma 2.2, we have

$\begin{array}{cc}\hfill \frac{1}{2}âˆ¥{x}^{\left(k\right)}{âˆ¥}^{2}& =F\left({x}^{\left(k\right)}\right)-\frac{1}{2}\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}^{\left(k\right)},\mathrm{Î”}{x}_{n}^{\left(k\right)}\right)+\underset{nâˆˆZ}{âˆ‘}W\left(n,{x}_{n}^{\left(k\right)}\right)\hfill \\ â‰¤{C}_{2}+\frac{1}{2}{\mathrm{Î²}}^{-\frac{1}{4}}âˆ¥Aâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥{x}^{\left(k\right)}{âˆ¥}^{2}+{M}_{1}\underset{nâˆˆZ}{âˆ‘}âˆ£a\left(n\right)âˆ¥{x}_{n}^{\left(k\right)}âˆ£\hfill \\ â‰¤{C}_{2}+\frac{1}{2}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥Aâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥{x}^{\left(k\right)}{âˆ¥}^{2}+{M}_{1}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥a{âˆ¥}_{2}âˆ¥{x}^{\left(k\right)}âˆ¥,\hfill \end{array}$

which implies that {x (k)} k ÃŽN is bounded in E, since $âˆ¥Aâˆ¥<\sqrt{\mathrm{Î²}}$.

Combining Lemma 2.1, the remainder is just the repetition of the proof of Lemma 3.2, we omit the details of its proof.

With the aid of above preparations, now we will give the proof of Theorem 1.2.

Proof of Theorem 1.2 By(1.8), (2.1), (3.1), and Lemma 2.2, we have, for every m âˆˆ R \ {0} and x âˆˆ E \ {0},

$\begin{array}{cc}\hfill F\left(mx\right)& =\frac{{m}^{2}}{2}âˆ¥x{âˆ¥}^{2}+\frac{{m}^{2}}{2}\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n},\mathrm{Î”}{x}_{n}\right)-\underset{nâˆˆZ}{âˆ‘}W\left(n,m{x}_{n}\right)\hfill \\ â‰¥\frac{{m}^{2}}{2}âˆ¥x{âˆ¥}^{2}-\frac{{m}^{2}}{2}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥Aâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥x{âˆ¥}^{2}-{\mathrm{Î²}}^{-\frac{1}{2}}{M}_{1}âˆ£mâˆ£\phantom{\rule{2.77695pt}{0ex}}âˆ¥a\left(n\right){âˆ¥}_{2}âˆ¥xâˆ¥,\hfill \end{array}$

which yields that F(mx) â†’ +âˆž as |m| â†’ +âˆž, since $âˆ¥Aâˆ¥<\sqrt{\mathrm{Î²}}$. Consequently, F(x) is a functional bounded from below. By Lemmas 2.3 and 3.4, F(x) possesses a critical value c = inf xâˆˆE F(x), i.e., there is a critical point x âˆˆ E such that

$F\left(x\right)=c,\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}{F}^{\mathrm{â€²}}\left(x\right)=0.$

In the following, we show that the critical point x obtained above is non-trivial. From (H 2)', there exists Î´ 1 > 0 such that a(n) > 0 for any n âˆˆ [n 1 - Î´ 1, n 1 + Î´ 1]. Take c 1 âˆˆ R N with 0 < |c1 | = r where r is defined in (H 2)' and let y âˆˆ E be given by

${y}_{n}=\left\{\begin{array}{cc}\hfill {c}_{1}sin\left[\frac{2\mathrm{Ï€}}{2{\mathrm{Î´}}_{1}}\left(n-{n}_{1}\right)\right],\hfill & \hfill nâˆˆ\left[{n}_{1}-{\mathrm{Î´}}_{1},{n}_{1}+{\mathrm{Î´}}_{1}\right]\hfill \\ \hfill 0,\hfill & \hfill nâˆˆZ\\left[{n}_{1}-{\mathrm{Î´}}_{1},{n}_{1}+{\mathrm{Î´}}_{1}\right]\hfill \end{array}\right\$

Then, for every n âˆˆ Z, |y| â‰¤ r â‰¤ 1. By (1.6), (2.1), and (3.1), we obtain that

$F\left(my\right)â‰¤\frac{{m}^{2}}{2}âˆ¥y{âˆ¥}^{2}+\frac{{m}^{2}}{2}{\mathrm{Î²}}^{-\frac{1}{2}}âˆ¥Aâˆ¥\phantom{\rule{2.77695pt}{0ex}}âˆ¥y{âˆ¥}^{2}-Mâˆ£m{âˆ£}^{\mathrm{Î¸}}\underset{n={n}_{1}-{\mathrm{Î´}}_{1}}{\overset{{n}_{1}+{\mathrm{Î´}}_{1}}{âˆ‘}}a\left(n\right)âˆ£{y}_{n}{âˆ£}^{\mathrm{Î¸}},$

which yields that F(my) < 0 for |m| small enough since 1 < Î¸ < 2, i.e., the critical point x âˆˆ E obtained above is non-trivial.

Finally, we show that if (1.9) is true, then (1.1) has one and only one non-trivial homoclinic solution. On the contrary, assuming that (1.1) has at least two distinct homoclinic solutions x and y, by Lemma 3.3, we have

$\begin{array}{c}0\phantom{\rule{1em}{0ex}}=\phantom{\rule{1em}{0ex}}\left({F}^{\mathrm{â€²}}\left(x\right)-{F}^{\mathrm{â€²}}\left(y\right),x-y\right)=âˆ¥x-y{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}-A{y}_{n},\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}\right)\\ \phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}+\underset{nâˆˆZ}{âˆ‘}\left(âˆ‡W\left(n,{x}_{n}\right)-âˆ‡W\left(n,{y}_{n}\right),{x}_{n}-{y}_{n}\right).\end{array}$

According to (1.9), with Lemma 2.2, we have

$\begin{array}{cc}\hfill 0& =\left({F}^{\mathrm{â€²}}\left(x\right)-{F}^{\mathrm{â€²}}\left(y\right),x-y\right)\hfill \\ =âˆ¥x-y{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}-A{y}_{n},\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}\right)+\underset{nâˆˆZ}{âˆ‘}\left(a{V}^{\mathrm{â€²}}\left({x}_{n}\right)-a{V}^{\mathrm{â€²}}\left({y}_{n}\right),{x}_{n}-{y}_{n}\right)\hfill \\ â‰¥âˆ¥x-y{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}-A{y}_{n},\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}\right)-\underset{nâˆˆZ}{âˆ‘}\phantom{\rule{0.3em}{0ex}}\left[a\frac{{V}^{\mathrm{â€²}}\left({x}_{n}\right)-{V}^{\mathrm{â€²}}\left({y}_{n}\right)}{âˆ£{x}_{n}-{y}_{n}âˆ£}âˆ£{x}_{n}-{y}_{n}{âˆ£}^{2}\right]\hfill \\ =âˆ¥x-y{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}-A{y}_{n},\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}\right)-\underset{nâˆˆZ}{âˆ‘}a{V}^{â€³}\left(z\right)âˆ£{x}_{n}-{y}_{n}{âˆ£}^{2}\hfill \\ â‰¥âˆ¥x-y{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}-A{y}_{n},\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}\right)\phantom{\rule{2.77695pt}{0ex}}-âˆ¥a{V}^{â€³}\left(z\right){âˆ¥}_{2}âˆ¥{x}_{n}-{y}_{n}{âˆ¥}_{2}^{2}\hfill \\ â‰¥âˆ¥x-y{âˆ¥}^{2}-\underset{nâˆˆZ}{âˆ‘}\left(A{x}_{n}-A{y}_{n},\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}\right)-\mathrm{Ï‰}\frac{1}{\mathrm{Î²}}âˆ¥{x}_{n}-{y}_{n}{âˆ¥}^{2}\hfill \\ â‰¥âˆ¥x-y{âˆ¥}^{2}-{\left(\underset{nâˆˆZ}{âˆ‘}âˆ£A{x}_{n}-A{y}_{n}{âˆ£}^{2}\right)}^{\frac{1}{2}}{\left(\underset{nâˆˆZ}{âˆ‘}âˆ£\mathrm{Î”}{x}_{n}-\mathrm{Î”}{y}_{n}{âˆ£}^{2}\right)}^{\frac{1}{2}}-\frac{\mathrm{Ï‰}}{\mathrm{Î²}}âˆ¥{x}_{n}-{y}_{n}{âˆ¥}^{2}\hfill \\ â‰¥âˆ¥x-y{âˆ¥}^{2}-\frac{âˆ¥Aâˆ¥}{\sqrt{\mathrm{Î²}}}âˆ¥x-y{âˆ¥}^{2}-\frac{\mathrm{Ï‰}}{\mathrm{Î²}}âˆ¥{x}_{n}-{y}_{n}{âˆ¥}^{2}\hfill \\ =âˆ¥x-y{âˆ¥}^{2}\left(\frac{\mathrm{Î²}-\sqrt{\mathrm{Î²}}âˆ¥Aâˆ¥-\mathrm{Ï‰}}{\mathrm{Î²}}\right),\hfill \end{array}$

where z âˆˆ E and z âˆˆ (x, y), which implies that ||x - y|| = 0, since $0<\mathrm{Ï‰}<\mathrm{Î²}-\sqrt{\mathrm{Î²}}âˆ¥Aâˆ¥$, that is, x â‰¡ y for all n âˆˆ Z.

## References

1. Mawin J, Willem M: Critical Point Theory and Hamiltonian Systems. Springer, New York; 1989:7-24.

2. Long YM: Period solution of perturbed superquadratic Hamiltonian systems. Annalen Scola Normale Superiore di Pisa Series 4 1990, 17: 35-77.

3. Agarwal RP, Grace SR, O'Rogan D: Oscillation Theory for Difference and Functional Differencial Equations. Kluwer Academic Publishers, Dordrecht; 2000.

4. Guo ZM, Yu JS: The existence of subharmonic solutions for superlinear second order difference equations. Sci China 2003, 33: 226-235.

5. Yu JS, Guo ZM: Boundary value problems of discrete generalized Emden-Fowler equation. Sci China 2006,49A(10):1303-1314.

6. Zhou Z, Yu JS: On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J Diff Equ 2010, 249: 1199-1212. 10.1016/j.jde.2010.03.010

7. Zhou Z, Yu JS, Chen YM: Homoclinic solutions in periodic difference equations with saturable nonlinearity. Sci China 2011,54(1):83-93. 10.1007/s11425-010-4101-9

9. Moser J: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton 1973.

10. Hofer H, Wysocki K: First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math Ann 1990, 288: 483-503. 10.1007/BF01444543

11. Omana W, Willem M: Homoclinic orbits for a class of Hamiltonian systems. Diff Integral Equ 1992, 5: 1115-1120.

12. Ding Y, Girardi M: Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinaer Anal 1999, 38: 391-415. 10.1016/S0362-546X(98)00204-1

13. Szulkin A, Zou W: Homoclinic orbits forasymptotically linear Hamiltonian systems. J Funct Anal 2001, 187: 25-41. 10.1006/jfan.2001.3798

14. Ahlbrandt CD, Peterson AC: Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations. Kluwer Academic, Dordrecht 1996.

15. Agarwal RP: Difference Equations and Inequalities, Theory, Methods, and Applications. 2nd edition. Dekker, New York; 2000.

16. Bin HH: The application of the variational methods in the boundary problem of discrete Hamiltonian systems. Dissertation for doctor degree. College of Mathematics and Econometrics, Changsha 2006.

17. Ma MJ, Guo ZM: Homoclinic orbits for second order self-adjoint difference equation. J Math Anal Appl 2006, 323: 513-521. 10.1016/j.jmaa.2005.10.049

18. Ma MJ, Guo ZM: Homoclinic orbits and subharmonics for nonlinear second order difference equation. Nonlinear Anal: Theory Methods Appl 2007,67(6):1737-1745. 10.1016/j.na.2006.08.014

19. Rabinowitz PH: Minimax methods in critical point theory with applications to differential equations. In CBMS Reg Conf Ser in Math. Volume 65. American Methematical Society, Providence, RI; 1986.

## Acknowledgements

This study was supported by the Xinmiao Program of Guangzhou University, the Specialized Fund for the Doctoral Program of Higher Eduction (No. 20071078001) and the project of Scientific Research Innovation Academic Group for the Education System of Guangzhou City. The author would like to thank the reviewer for the valuable comments and suggestions.

## Author information

Authors

### Corresponding author

Correspondence to Yuhua Long.

### Competing interests

The authors declare that they have no competing interests.

## Rights and permissions

Reprints and permissions

Long, Y. Homoclinic solutions of some second-order non-periodic discrete systems. Adv Differ Equ 2011, 64 (2011). https://doi.org/10.1186/1687-1847-2011-64