Theory and Modern Applications

# Existence results for nonlinear fractional differential equations involving different Riemann-Liouville fractional derivatives

## Abstract

By applying an iterative technique, a necessary and sufficient condition is obtained for the existence of the unique solution of nonlinear fractional differential equations involving two Riemann-Liouville derivatives of different fractional orders. Finally, an example is also given to illustrate the availability of our main results.

## 1 Introduction

Recently, the study of fractional differential equations has acquired popularity, see books [15] for more information. In this paper, we consider the following nonlinear fractional differential equations:

$\left\{\begin{array}{l}{D}^{\alpha }u\left(t\right)=f\left(t,{D}^{\alpha }u\left(t\right),{D}^{\beta }u\left(t\right),u\left(t\right)\right),\\ {D}^{\beta }u\left(0\right)=0,\phantom{\rule{1em}{0ex}}u\left(0\right)=0,\end{array}$
(1.1)

where $t\in J=\left[0,T\right]$ ($0), $f\in C\left(J×{\mathbb{R}}^{3},\mathbb{R}\right)$, D is the standard Riemann-Liouville fractional derivative, $1<\alpha \le 2$, $0<\beta \le 1$ and $0<\alpha -\beta \le 1$. It is worthwhile to indicate that the nonlinear term f involves the unknown function’s Riemann-Liouville fractional derivatives with different orders.

The method of upper and lower solutions coupled with the monotone iterative technique is an interesting and powerful mechanism. The importance and advantage of the method needs no special emphasis [6, 7]. There have appeared some papers dealing with the existence of the solution of nonlinear Riemann-Liouville-type fractional differential equations [818] or nonlinear Caputo-type fractional differential equations [1922] by using the method. For example, by employing the method of lower and upper solutions combined with the monotone iterative technique, Lakshmikanthan and Vatsala [13], McRae [14] and Zhang [17] successfully investigated the initial value problems of Riemann-Liouville fractional differential equation ${D}^{\alpha }u\left(t\right)=f\left(t,u\left(t\right)\right)$, where $0<\alpha \le 1$.

However, in the existing literature [818], only one case when $\alpha \in \left(0,1\right]$ is considered. The research, involving Riemann-Liouville fractional derivative of order $1<\alpha \le 2$, proceeds slowly and there appear some new difficulties in employing the monotone iterative method. To overcome these difficulties, we apply a substitution ${D}^{\alpha }u\left(t\right)=y\left(t\right)$. Note that the technique has been discussed for fractional problems in papers [10, 11]. To the best of our knowledge, it is the first paper, in which the monotone iterative method is applied to nonlinear Riemann-Liouville-type fractional differential equations, involving two different fractional derivatives ${D}^{\alpha }$ and ${D}^{\beta }$.

We organize the rest of this paper as follows. In Section 2, by using the monotone iterative technique and the method of upper and lower solutions, the minimal and maximal solutions of an equivalent problem of (1.1) are investigated and two explicit monotone iterative sequences, converging to the corresponding minimal and maximal solution, are given. In addition, the uniqueness of the solution for fractional differential equations (1.1) is discussed. In Section 3, an example is given to illustrate our results.

## 2 Existence results

Lemma 2.1 For a given function $y\in C\left(J,\mathbb{R}\right)$, the following problem

$\left\{\begin{array}{l}{D}^{\alpha }u\left(t\right)=y\left(t\right),\\ {D}^{\beta }u\left(0\right)=u\left(0\right)=0,\end{array}$
(2.1)

has a unique solution $u\left(t\right)={I}^{\alpha }y\left(t\right)$, where I is the fractional integral and ${I}^{\alpha }y\left(t\right)={\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds$, $1<\alpha \le 2$, $0<\beta \le 1$ and $0<\alpha -\beta \le 1$.

Proof One can reduce equation ${D}^{\alpha }u\left(t\right)=y\left(t\right)$ to an equivalent integral equation

$u\left(t\right)={I}^{\alpha }y\left(t\right)+{c}_{1}{t}^{\alpha -1}+{c}_{2}{t}^{\alpha -2}$
(2.2)

for some ${c}_{1},{c}_{2}\in \mathbb{R}$.

By $u\left(0\right)=0$, it follows ${c}_{2}=0$. Consequently, the general solution of (2.2) is

$u\left(t\right)={I}^{\alpha }y\left(t\right)+{c}_{1}{t}^{\alpha -1}.$
(2.3)

Thus, we have

$\begin{array}{rl}{D}^{\beta }u\left(t\right)& ={I}^{\alpha -\beta }y\left(t\right)+{c}_{1}\frac{\mathrm{\Gamma }\left(\alpha \right)}{\mathrm{\Gamma }\left(\alpha -\beta \right)}{t}^{\alpha -\beta -1}\\ ={\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -\beta -1}}{\mathrm{\Gamma }\left(\alpha -\beta \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds+{c}_{1}\frac{\mathrm{\Gamma }\left(\alpha \right)}{\mathrm{\Gamma }\left(\alpha -\beta \right)}{t}^{\alpha -\beta -1}.\end{array}$
(2.4)

By the condition ${D}^{\beta }u\left(0\right)=0$, it follows that ${c}_{1}=0$. Therefore, we have $u\left(t\right)={I}^{\alpha }y\left(t\right)$.

Conversely, by a direct computation, we can get ${D}^{\alpha }u\left(t\right)=y\left(t\right)$ and ${D}^{\beta }u\left(t\right)={I}^{\alpha -\beta }y\left(t\right)$. It is easy to verify $u\left(t\right)={I}^{\alpha }y\left(t\right)$ satisfies (2.1).

This completes the proof. □

Combined with Lemma 2.1, we see that (1.1) can be translated into the following system

$y\left(t\right)=f\left(t,y\left(t\right),{I}^{\alpha -\beta }y\left(t\right),{I}^{\alpha }y\left(t\right)\right),$
(2.5)

where $y\left(t\right)={D}^{\alpha }u\left(t\right)$, $\mathrm{\forall }t\in J$ and ${I}^{\alpha }$, ${I}^{\alpha -\beta }$ are the standard fractional integrals.

Now, we list for convenience the following condition:

(H1) There exist ${y}_{0},{z}_{0}\in C\left(J,\mathbb{R}\right)$ satisfying ${y}_{0}\le {z}_{0}$ such that

$\left\{\begin{array}{l}{y}_{0}\left(t\right)\le f\left(t,{y}_{0}\left(t\right),{I}^{\alpha -\beta }{y}_{0}\left(t\right),{I}^{\alpha }{y}_{0}\left(t\right)\right),\\ {z}_{0}\left(t\right)\ge f\left(t,{z}_{0}\left(t\right),{I}^{\alpha -\beta }{z}_{0}\left(t\right),{I}^{\alpha }{z}_{0}\left(t\right)\right).\end{array}$

(H2) There exists a function $M\in C\left(J,\left(-1,+\mathrm{\infty }\right)\right)$ such that

$f\left(t,u\left(t\right),{I}^{\alpha -\beta }u\left(t\right),{I}^{\alpha }u\left(t\right)\right)-f\left(t,v\left(t\right),{I}^{\alpha -\beta }v\left(t\right),{I}^{\alpha }v\left(t\right)\right)\ge -M\left(t\right)\left(u-v\right)\left(t\right),$

where ${y}_{0}\le v\le u\le {z}_{0}$, $\mathrm{\forall }t\in J$.

(H3) There exist functions $N,K,L\in C\left(J,\left[0,+\mathrm{\infty }\right)\right)$ such that

$\begin{array}{r}f\left(t,u\left(t\right),{I}^{\alpha -\beta }u\left(t\right),{I}^{\alpha }u\left(t\right)\right)-f\left(t,v\left(t\right),{I}^{\alpha -\beta }v\left(t\right),{I}^{\alpha }v\left(t\right)\right)\\ \phantom{\rule{1em}{0ex}}\le N\left(t\right)\left(u-v\right)\left(t\right)+K\left(t\right){I}^{\alpha -\beta }\left(u-v\right)\left(t\right)+L\left(t\right){I}^{\alpha }\left(u-v\right)\left(t\right),\end{array}$

where ${y}_{0}\le v\le u\le {z}_{0}$, $\mathrm{\forall }t\in J$.

Theorem 2.1 Assume that (H1) and (H2) hold. Then problem (2.5) has the minimal and maximal solution ${y}^{\ast }$, ${z}^{\ast }$ in the ordered interval $\left[{y}_{0},{z}_{0}\right]$. Moreover, there exist explicit monotone iterative sequences $\left\{{y}_{n}\right\},\left\{{z}_{n}\right\}\subset \left[{y}_{0},{z}_{0}\right]$ such that ${lim}_{n\to \mathrm{\infty }}{y}_{n}\left(t\right)={y}^{\ast }\left(t\right)$ and ${lim}_{n\to \mathrm{\infty }}{z}_{n}\left(t\right)={z}^{\ast }\left(t\right)$, where ${y}_{n}\left(t\right)$, ${z}_{n}\left(t\right)$ are defined as

$\begin{array}{r}{y}_{n}\left(t\right)=\frac{1}{1+M\left(t\right)}\left[f\left(t,{y}_{n-1}\left(t\right),{I}^{\alpha -\beta }{y}_{n-1}\left(t\right),{I}^{\alpha }{y}_{n-1}\left(t\right)\right)+M\left(t\right){y}_{n-1}\left(t\right)\right],\\ \phantom{\rule{1em}{0ex}}\mathrm{\forall }t\in J,n=1,2,\dots ,\\ {z}_{n}\left(t\right)=\frac{1}{1+M\left(t\right)}\left[f\left(t,{z}_{n-1}\left(t\right),{I}^{\alpha -\beta }{z}_{n-1}\left(t\right),{I}^{\alpha }{z}_{n-1}\left(t\right)\right)+M\left(t\right){z}_{n-1}\left(t\right)\right],\\ \phantom{\rule{1em}{0ex}}\mathrm{\forall }t\in J,n=1,2,\dots ,\end{array}$
(2.6)

and

${y}_{0}\le {y}_{1}\le \cdots \le {y}_{n}\le \cdots \le {y}^{\ast }\le {z}^{\ast }\le \cdots \le {z}_{n}\le \cdots \le {z}_{1}\le {z}_{0}.$
(2.7)

Proof Define an operator $Q:\left[{y}_{0},{z}_{0}\right]\to C\left(J,\mathbb{R}\right)$ by $x=Q\eta$, where x is the unique solution of the corresponding linear problem corresponding to $\eta \in \left[{y}_{0},{z}_{0}\right]$ and

$Q\eta =\frac{1}{1+M\left(t\right)}\left[f\left(t,\eta \left(t\right),{I}^{\alpha -\beta }\eta \left(t\right),{I}^{\alpha }\eta \left(t\right)\right)+M\left(t\right)\eta \left(t\right)\right].$
(2.8)

Then, the operator Q has the following properties:

$\begin{array}{r}\text{(a)}\phantom{\rule{1em}{0ex}}{y}_{0}\le Q{y}_{0},\phantom{\rule{2em}{0ex}}Q{z}_{0}\le {z}_{0};\\ \text{(b)}\phantom{\rule{1em}{0ex}}Q{h}_{1}\le Q{h}_{2},\phantom{\rule{1em}{0ex}}\mathrm{\forall }{h}_{1},{h}_{2}\in \left[{y}_{0},{z}_{0}\right],{h}_{1}\le {h}_{2}.\end{array}$
(2.9)

Firstly, we show that (a) holds. Let ${y}_{1}=Q{y}_{0}$, $p={y}_{1}-{y}_{0}$. By (H1) and the definition of Q, we know that

$\begin{array}{rl}p\left(t\right)& =\frac{1}{1+M\left(t\right)}\left[f\left(t,{y}_{0}\left(t\right),{I}^{\alpha -\beta }{y}_{0}\left(t\right),{I}^{\alpha }{y}_{0}\left(t\right)\right)+M\left(t\right){y}_{0}\left(t\right)\right]-{y}_{0}\left(t\right)\\ \ge \frac{1}{1+M\left(t\right)}\left[{y}_{0}\left(t\right)+M\left(t\right){y}_{0}\left(t\right)\right]-{y}_{0}\left(t\right)\\ =0.\end{array}$

Thus, we can obtain $p\left(t\right)\ge 0$, $\mathrm{\forall }t\in J$. That is, ${y}_{0}\le Q{y}_{0}$. Similarly, we can prove that $Q{z}_{0}\le {z}_{0}$. Then, (a) holds.

Secondly, let $q=Q{h}_{2}-Q{h}_{1}$, by (2.8) and (H2), we have

$\begin{array}{rl}q\left(t\right)=& \frac{1}{1+M\left(t\right)}\left[f\left(t,{h}_{2}\left(t\right),{I}^{\alpha -\beta }{h}_{2}\left(t\right),{I}^{\alpha }{h}_{2}\left(t\right)\right)+M\left(t\right){h}_{2}\left(t\right)\right]\\ -\frac{1}{1+M\left(t\right)}\left[f\left(t,{h}_{1}\left(t\right),{I}^{\alpha -\beta }{h}_{1}\left(t\right),{I}^{\alpha }{h}_{1}\left(t\right)\right)+M\left(t\right){h}_{1}\left(t\right)\right]\\ \ge & \frac{1}{1+M\left(t\right)}\left[-M\left(t\right)\left({h}_{2}-{h}_{1}\right)\left(t\right)+M\left(t\right)\left({h}_{2}-{h}_{1}\right)\left(t\right)\right]\\ =& 0.\end{array}$

Hence, we have $q\left(t\right)\ge 0$, $\mathrm{\forall }t\in J$. That is, $Q{h}_{2}\ge Q{h}_{1}$. Then, (b) holds.

Now, put

${y}_{n}=Q{y}_{n-1},\phantom{\rule{2em}{0ex}}{z}_{n}=Q{z}_{n-1},\phantom{\rule{1em}{0ex}}n=1,2,\dots .$
(2.10)

By (2.9), we can get

${y}_{0}\le {y}_{1}\le \cdots \le {y}_{n}\le \cdots \le {z}_{n}\le \cdots \le {z}_{1}\le {z}_{0}.$

Obviously, ${y}_{n}$, ${z}_{n}$ satisfy

$\begin{array}{r}{y}_{n}\left(t\right)=f\left(t,{y}_{n-1}\left(t\right),{I}^{\alpha -\beta }{y}_{n-1}\left(t\right),{I}^{\alpha }{y}_{n-1}\left(t\right)\right)-M\left(t\right)\left({u}_{n}-{y}_{n-1}\right)\left(t\right),\\ {z}_{n}\left(t\right)=f\left(t,{z}_{n-1}\left(t\right),{I}^{\alpha -\beta }{z}_{n-1}\left(t\right),{I}^{\alpha }{z}_{n-1}\left(t\right)\right)-M\left(t\right)\left({z}_{n}-{z}_{n-1}\right)\left(t\right).\end{array}$
(2.11)

Employing the same arguments used in Ref. [17], we see that $\left\{{y}_{n}\right\}$, $\left\{{z}_{n}\right\}$ converge to their limit functions ${y}^{\ast }$, ${z}^{\ast }$, respectively. That is, ${lim}_{n\to \mathrm{\infty }}{y}_{n}\left(t\right)={y}^{\ast }\left(t\right)$ and ${lim}_{n\to \mathrm{\infty }}{z}_{n}\left(t\right)={z}^{\ast }\left(t\right)$. Moreover, ${y}^{\ast }\left(t\right)$, ${z}^{\ast }\left(t\right)$ are solutions of (2.5) in $\left[{y}_{0},{z}_{0}\right]$. (2.7) is true.

Finally, we prove that ${y}^{\ast }\left(t\right)$, ${z}^{\ast }\left(t\right)$ are the minimal and the maximal solution of (2.5) in $\left[{y}_{0},{z}_{0}\right]$. Let $w\in \left[{y}_{0},{z}_{0}\right]$ be any solution of (2.5), then $Qw=w$. By ${y}_{0}\le w\le {z}_{0}$, (2.9) and (2.10), we can obtain

${y}_{n}\le w\le {z}_{n},\phantom{\rule{1em}{0ex}}n=1,2,\dots .$
(2.12)

Thus, taking limit in (2.12) as $n\to +\mathrm{\infty }$, we have ${y}^{\ast }\le w\le {z}^{\ast }$. That is, ${y}^{\ast }$, ${z}^{\ast }$ are the minimal and maximal solution of (2.5) in the ordered interval $\left[{y}_{0},{z}_{0}\right]$, respectively.

This completes the proof. □

Theorem 2.2 Let $N\left(t\right)\ge -M\left(t\right)$. Assume conditions (H1)-(H3) hold. If

$\lambda \left(t\right)=N\left(t\right)+\frac{K\left(t\right){t}^{\alpha -\beta }}{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{L\left(t\right){t}^{\alpha }}{\mathrm{\Gamma }\left(\alpha +1\right)}<1,$

then problem (2.5) has a unique solution $x\left(t\right)\in \left[{y}_{0},{z}_{0}\right]$.

Proof By Theorem 2.1, we have proved that ${y}^{\ast }$, ${z}^{\ast }$ are the minimal and maximal solution of (2.5) and

${y}_{0}\left(t\right)\le {y}^{\ast }\left(t\right)\le {z}^{\ast }\left(t\right)\le {z}_{0}\left(t\right),\phantom{\rule{1em}{0ex}}\mathrm{\forall }t\in J.$

Now, we are going to show that problem (2.5) has a unique solution x, i.e., ${y}^{\ast }\left(t\right)={z}^{\ast }\left(t\right)=x\left(t\right)$.

Let $p\left(t\right)={z}^{\ast }\left(t\right)-{y}^{\ast }\left(t\right)$, by (H3), we have

$\begin{array}{rl}0& \le p\left(t\right)\le f\left(t,{z}^{\ast }\left(t\right),{I}^{\alpha -\beta }{z}^{\ast }\left(t\right),{I}^{\alpha }{z}^{\ast }\left(t\right)\right)-f\left(t,{y}^{\ast }\left(t\right),{I}^{\alpha -\beta }{y}^{\ast }\left(t\right),{I}^{\alpha }{y}^{\ast }\left(t\right)\right)\\ \le N\left(t\right)\left({z}^{\ast }-{y}^{\ast }\right)\left(t\right)+K\left(t\right){I}^{\alpha -\beta }\left({z}^{\ast }-{y}^{\ast }\right)\left(t\right)+L\left(t\right){I}^{\alpha }\left({z}^{\ast }-{y}^{\ast }\right)\left(t\right)\\ =N\left(t\right)p\left(t\right)+K\left(t\right){\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -\beta -1}}{\mathrm{\Gamma }\left(\alpha -\beta \right)}p\left(s\right)\phantom{\rule{0.2em}{0ex}}ds+L\left(t\right){\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}p\left(s\right)\phantom{\rule{0.2em}{0ex}}ds\\ \le \left[N\left(t\right)+\frac{K\left(t\right){t}^{\alpha -\beta }}{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{L\left(t\right){t}^{\alpha }}{\mathrm{\Gamma }\left(\alpha +1\right)}\right]\underset{t\in J}{max}p\left(t\right)\\ \triangleq \lambda \left(t\right)\underset{t\in J}{max}p\left(t\right),\end{array}$

which implies that ${max}_{t\in J}p\left(t\right)\le 0$. Since $p\left(t\right)\ge 0$, then it holds $p\left(t\right)=0$. That is, ${y}^{\ast }\left(t\right)={z}^{\ast }\left(t\right)$. Therefore, problem (2.5) has a unique solution $x\in \left[{y}_{0},{z}_{0}\right]$. □

Let $x\left(t\right)$ be the unique solution of (2.5). Noting that $x\in \left[{y}_{0},{z}_{0}\right]$ and $u\left(t\right)={I}^{\alpha }x\left(t\right)$, we can easily obtain the following theorem.

Theorem 2.3 Let all conditions of Theorem  2.2 hold. Then problem (1.1) has a unique solution $u\in \left[{I}^{\alpha }{y}_{0},{I}^{\alpha }{z}_{0}\right]$, $\mathrm{\forall }t\in J$.

## 3 Example

Consider the following problem:

$\left\{\begin{array}{l}{D}^{\frac{3}{2}}u\left(t\right)=\frac{t}{10}{\left[1-{D}^{\frac{3}{2}}u\left(t\right)\right]}^{2}+\frac{{t}^{2}}{5}{D}^{\frac{3}{2}}u\left(t\right)+\frac{{t}^{2}}{15}{\left[1-{D}^{\frac{1}{2}}u\left(t\right)\right]}^{3}+\frac{{t}^{3}}{20}{u}^{2}\left(t\right),\\ {D}^{\frac{1}{2}}u\left(0\right)=0,\phantom{\rule{1em}{0ex}}u\left(0\right)=0,\end{array}$
(3.1)

where $t\in \left[0,1\right]$.

Let ${D}^{\frac{3}{2}}u\left(t\right)=y\left(t\right)$, then ${D}^{\frac{1}{2}}u\left(t\right)={I}^{1}y\left(t\right)$, $u\left(t\right)={I}^{\frac{3}{2}}y\left(t\right)$. So, (3.1) can be translated into the following problem

$y\left(t\right)=\frac{t}{10}{\left[1-y\left(t\right)\right]}^{2}+\frac{{t}^{2}}{5}y\left(t\right)+\frac{{t}^{2}}{15}{\left[1-{I}^{1}y\left(t\right)\right]}^{3}+\frac{{t}^{3}}{20}{\left({I}^{\frac{3}{2}}y\left(t\right)\right)}^{2},$
(3.2)

Noting that $\alpha =\frac{3}{2}$, $\beta =\frac{1}{2}$, then

$f\left(t,y,{I}^{\alpha -\beta }y,{I}^{\alpha }y\right)=\frac{t}{10}{\left[1-y\right]}^{2}+\frac{{t}^{2}}{5}y+\frac{{t}^{2}}{15}{\left[1-{I}^{1}y\right]}^{3}+\frac{{t}^{3}}{20}{\left({I}^{\frac{3}{2}}y\right)}^{2}.$

Take ${y}_{0}\left(t\right)=0$, ${z}_{0}\left(t\right)=1$, we have

$\left\{\begin{array}{l}{y}_{0}\left(t\right)=0\le \frac{t}{10}+\frac{{t}^{2}}{15}=f\left(t,{y}_{0}\left(t\right),{I}^{\alpha -\beta }{y}_{0}\left(t\right),{I}^{\alpha }{y}_{0}\left(t\right)\right),\\ {z}_{0}\left(t\right)=1\ge \frac{{t}^{2}}{5}y+\frac{{t}^{2}}{15}{\left(1-t\right)}^{3}+\frac{4{t}^{6}}{45\pi }=f\left(t,{z}_{0}\left(t\right),{I}^{\alpha -\beta }{z}_{0}\left(t\right),{I}^{\alpha }{z}_{0}\left(t\right)\right).\end{array}$

Hence, condition (H1) holds.

For ${y}_{0}\le y\le z\le {z}_{0}$, we have

$\begin{array}{r}f\left(t,z,{I}^{\alpha -\beta }z,{I}^{\alpha }z\right)-f\left(t,y,{I}^{\alpha -\beta }y,{I}^{\alpha }y\right)\\ \phantom{\rule{1em}{0ex}}=\frac{t}{10}\left[{\left(1-z\right)}^{2}-{\left(1-y\right)}^{2}\right]+\frac{{t}^{2}}{5}\left(z-y\right)\\ \phantom{\rule{2em}{0ex}}+\frac{{t}^{2}}{15}\left[{\left(1-{I}^{1}z\right)}^{3}-{\left(1-{I}^{1}y\right)}^{3}\right]+\frac{{t}^{3}}{20}\left[{\left({I}^{\frac{3}{2}}z\right)}^{2}-{\left({I}^{\frac{3}{2}}y\right)}^{2}\right]\\ \phantom{\rule{1em}{0ex}}\ge -\frac{t-{t}^{2}}{5}\left(z-y\right)\end{array}$

and

$f\left(t,z,{I}^{\alpha -\beta }z,{I}^{\alpha }z\right)-f\left(t,y,{I}^{\alpha -\beta }y,{I}^{\alpha }y\right)\le -\frac{{t}^{2}}{5}\left(z-y\right)+\frac{{t}^{2}}{5}{I}^{1}\left(z-y\right)+\frac{2{t}^{3}}{15\sqrt{\pi }}{I}^{\frac{3}{2}}\left(z-y\right).$

Take $M\left(t\right)=\frac{t-{t}^{2}}{5}$, $N\left(t\right)=K\left(t\right)=\frac{{t}^{2}}{5}$, $L\left(t\right)=\frac{2{t}^{3}}{15\sqrt{\pi }}$. Through a simple calculation, we have

$\lambda \left(t\right)=\frac{{t}^{2}}{5}+\frac{{t}^{3}}{5}+\frac{8{t}^{\frac{9}{2}}}{45\pi }<1.$

Then, all conditions of Theorem 2.3 are satisfied. In consequence, the problem (3.1) has a unique solution ${u}^{\ast }\in \left[0,\frac{4{t}^{\frac{3}{2}}}{3\sqrt{\pi }}\right]$.

## References

1. Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

2. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

3. Lakshmikantham V, Leela S, Devi JV: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge; 2009.

4. Sabatier J, Agrawal OP, Machado JAT (Eds): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007.

5. Baleanu D, Diethelm K, Scalas E, Trujillo JJ Series on Complexity, Nonlinearity and Chaos. In Fractional Calculus Models and Numerical Methods. World Scientific, Boston; 2012.

6. Ladde GS, Lakshmikantham V, Vatsala AS: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston; 1985.

7. Nieto JJ: An abstract monotone iterative technique. Nonlinear Anal. TMA 1997, 28(12):1923–1933. 10.1016/S0362-546X(97)89710-6

8. Wang G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 2012, 236: 2425–2430. 10.1016/j.cam.2011.12.001

9. Wang G, Agarwal RP, Cabada A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 2012, 25: 1019–1024. 10.1016/j.aml.2011.09.078

10. Wang G, Baleanu D, Zhang L: Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 2012, 15: 244–252.

11. Jankowski T: Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative. Appl. Math. Comput. 2013, 219: 7772–7776. 10.1016/j.amc.2013.02.001

12. Jankowski T: Fractional equations of Volterra type involving a Riemann-Liouville derivative. Appl. Math. Lett. 2013, 26: 344–350. 10.1016/j.aml.2012.10.002

13. Lakshmikanthan V, Vatsala AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 2008, 21: 828–834. 10.1016/j.aml.2007.09.006

14. McRae FA: Monotone iterative technique and existence results for fractional differential equations. Nonlinear Anal. 2009, 71: 6093–6096. 10.1016/j.na.2009.05.074

15. Wei Z, Li G, Che J: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 2010, 367: 260–272. 10.1016/j.jmaa.2010.01.023

16. Zhang L, Wang G, Ahmad B, Agarwal RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249: 51–56.

17. Zhang S: Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 2009, 71: 2087–2093. 10.1016/j.na.2009.01.043

18. Liu Z, Sun J, Szanto I: Monotone iterative technique for Riemann-Liouville fractional integro-differential equations with advanced arguments. Results Math. 2012. 10.1007/s00025-012-0268-4

19. Zhang S, Su X: The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order. Comput. Math. Appl. 2011, 62: 1269–1274. 10.1016/j.camwa.2011.03.008

20. Al-Refai M, Hajji MA: Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal. 2011, 74: 3531–3539. 10.1016/j.na.2011.03.006

21. Ramirez JD, Vatsala AS: Monotone iterative technique for fractional differential equations with periodic boundary conditions. Opusc. Math. 2009, 29: 289–304.

22. Lin L, Liu X, Fang H: Method of upper and lower solutions for fractional differential equations. Electron. J. Differ. Equ. 2012, 2012: 1–13. 10.1186/1687-1847-2012-1

## Acknowledgements

The authors would like to thank the referees for their useful comments and remarks. This work is supported by the NNSF of China (No.61373174) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (No. 2012021002-3).

## Author information

Authors

### Corresponding author

Correspondence to Sanyang Liu.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors have equal contributions.

## Rights and permissions

Reprints and permissions

Wang, G., Liu, S., Baleanu, D. et al. Existence results for nonlinear fractional differential equations involving different Riemann-Liouville fractional derivatives. Adv Differ Equ 2013, 280 (2013). https://doi.org/10.1186/1687-1847-2013-280