Theory and Modern Applications

# Existence results for fractional differential inclusions with three-point fractional integral boundary conditions

## Abstract

This paper is concerned with fractional differential inclusions with three-point fractional integral boundary conditions. We consider the fractional differential inclusions under both convexity and nonconvexity conditions on the multivalued term. Some new existence results are obtained by using standard fixed point theorems. Two examples are given to illustrate the main results.

MSC:34A60, 26A33, 34B15.

## 1 Introduction

Fractional differential equations have recently gained much importance and attention due to the fact that they have been proved to be valuable tools in the modeling of many physical phenomena . For some recent developments on the existence results of fractional differential equations, we can refer, for instance, to  and the references therein.

Differential inclusions arise in the mathematical modeling of certain problems in economics, optimal control, etc. and are widely studied by many authors, see [18, 19] and the references therein. For some recent works on differential inclusions of fractional order, we refer the reader to the references [4, 5, 2029].

Motivated by the above papers, in this article, we study a new class of fractional boundary value problems, i.e., the following fractional differential inclusions with three-point fractional integral boundary conditions:

$\left\{\begin{array}{l}{}^{c}D^{\alpha }x\left(t\right)\in F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right],1<\alpha \le 2,0<\beta <1,\\ x\left(0\right)=0,\phantom{\rule{2em}{0ex}}a{I}^{\gamma }x\left(\eta \right)+bx\left(1\right)=c,\phantom{\rule{1em}{0ex}}0<\eta <1,\end{array}$
(1)

where ${}^{c}D^{p}$ denotes the Caputo fractional derivative of order p, ${I}^{q}$ the Riemann-Liouville fractional integral of order q, $F:\left[0,1\right]×\mathbb{R}\to {2}^{\mathbb{R}}$ is a multifunction and a, b, c are real constants with $a{\eta }^{1+\gamma }\ne -b\mathrm{\Gamma }\left(\gamma +2\right)$.

We remark that when $b=-1$, $c=0$ and third variable of the function F in (1) vanishes, problem (1) reduces to a three-point fractional integral boundary value problem (see  with $F=f$ a given continuous function).

The rest of this paper is organized as follows. In Section 2 we present the notations, definitions and give some preliminary results that we need in the sequel, Section 3 is dedicated to the existence results of problem (1), in the final Section 4, two examples are given to illustrate the main results.

## 2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts that will be used in the remainder of this paper.

Let $\left(X,\parallel \cdot \parallel \right)$ be a normed space. We use the notations: $P\left(X\right)=\left\{Y\subseteq X:Y\ne \mathrm{\varnothing }\right\}$, , , , and so on.

Let $A,B\in {P}_{cl}\left(X\right)$, the Pompeiu-Hausdorff distance of A, B is defined as

$h\left(A,B\right)=max\left\{\underset{a\in A}{sup}d\left(a,B\right),\underset{b\in B}{sup}d\left(b,A\right)\right\}.$

A multivalued map $F:X\to P\left(X\right)$ is convex (closed) valued if $F\left(x\right)$ is convex (closed) for all $x\in X$. F is said to be completely continuous if $F\left(B\right)$ is relatively compact for every $B\in {P}_{b}\left(X\right)$. F is called upper semicontinuous on X if, for every $x\in X$, the set $F\left(x\right)$ is a nonempty closed subset of X, and for every open set O of X containing $F\left(x\right)$, there exists an open neighborhood U of x such that $F\left(U\right)\subseteq O$. Equivalently, F is upper semicontinuous if the set $\left\{x\in X:F\left(x\right)\subseteq O\right\}$ is open for any open set O of X. F is called lower semicontinuous if the set $\left\{x\in X:F\left(x\right)\cap O\ne \mathrm{\varnothing }\right\}$ is open for each open set O in X. If a multivalued map F is completely continuous with nonempty compact values, then F is upper semicontinuous if and only if F has a closed graph, i.e., if ${x}_{n}\to {x}_{\ast }$ and ${y}_{n}\to {y}_{\ast }$, then ${y}_{n}\in F\left({x}_{n}\right)$ implies ${y}_{\ast }\in F\left({x}_{\ast }\right)$ .

A multivalued map $F:\left[0,1\right]\to {P}_{cl}\left(X\right)$ is said to be measurable if, for every $x\in X$, the function $t\to d\left(x,F\left(t\right)\right)=inf\left\{d\left(x,y\right):y\in F\left(t\right)\right\}$ is a measurable function.

Definition 2.1 A multivalued map $F:X\to {P}_{cl}\left(X\right)$ is called

1. (1)

γ-Lipschitz if there exists $\gamma >0$ such that

2. (2)

a contraction if it is γ-Lipschitz with $\gamma <1$.

Definition 2.2 A multivalued map $F:\left[0,1\right]×\mathbb{R}×\mathbb{R}\to P\left(\mathbb{R}\right)$ is said to be Carathéodory if:

1. (1)

$t\to F\left(t,x,y\right)$ is measurable for each $x,y\in \mathbb{R}$;

2. (2)

$x\to F\left(t,x,y\right)$ is upper semicontinuous for a.e. $t\in \left[0,1\right]$.

Further, a Carathéodory function F is said to be ${L}^{1}$-Carathéodory if

1. (3)

for each $k>0$, there exists ${\phi }_{k}\in {L}^{k}\left(\left[0,1\right],{\mathbb{R}}^{+}\right)$ such that

$\parallel F\left(t,x,y\right)\parallel =sup\left\{|v|:v\in F\left(t,x,y\right)\right\}\le {\phi }_{k}\left(t\right)$

for all $|x|\le k$, $|y|\le k$ and a.e. $t\in \left[0,1\right]$.

The following lemmas will be used in the sequel.

Lemma 2.1 (see )

Let X be a Banach space. Let $G:\left[0,1\right]×X\to {P}_{cp,c}\left(X\right)$ be an ${L}^{1}$-Carathéodory multivalued map and P be a linear continuous map from ${L}^{1}\left(\left[0,1\right],X\right)$ to $C\left(\left[0,1\right],X\right)$, then the operator

$P\circ {S}_{G}:C\left(\left[0,1\right],X\right)\to {P}_{cp,c}\left(C\left(\left[0,1\right],X\right)\right),\phantom{\rule{2em}{0ex}}y↦\left(P\circ {S}_{G}\right)\left(y\right)=P\left({S}_{G,y}\right)$

is a closed graph operator in $C\left(\left[0,1\right],X\right)×C\left(\left[0,1\right],X\right)$.

Here the set of selections

Definition 2.3 ()

The Riemann-Liouville fractional integral of order q for a function f is defined as

${I}^{q}f\left(t\right)=\frac{1}{\mathrm{\Gamma }\left(q\right)}{\int }_{0}^{t}\frac{f\left(s\right)}{{\left(t-s\right)}^{1-q}}\phantom{\rule{0.2em}{0ex}}ds,\phantom{\rule{1em}{0ex}}q>0,$

provided the integral exists.

Definition 2.4 ()

For at least n-times differentiable function f, the Caputo derivative of order q is defined as

${}^{c}D^{q}f\left(t\right)=\frac{1}{\mathrm{\Gamma }\left(n-q\right)}{\int }_{0}^{t}{\left(t-s\right)}^{n-q-1}{f}^{\left(n\right)}\left(s\right)\phantom{\rule{0.2em}{0ex}}ds,\phantom{\rule{1em}{0ex}}n-1

where $\left[q\right]$ denotes the integer part of the real number q.

Lemma 2.2 ()

Let $\alpha >0$, then the differential equation

${}^{c}D^{\alpha }h\left(t\right)=0$

has solutions $h\left(t\right)={c}_{0}+{c}_{1}t+{c}_{2}{t}^{2}+\cdots +{c}_{n-1}{t}^{n-1}$ and

$I^{\alpha }{}^{c}{D}^{\alpha }h\left(t\right)=h\left(t\right)+{c}_{0}+{c}_{1}t+{c}_{2}{t}^{2}+\cdots +{c}_{n-1}{t}^{n-1},$

here ${c}_{i}\in \mathbb{R}$, $i=0,1,2,\dots ,n-1$, $n=\left[\alpha \right]+1$.

Lemma 2.3 For any $y\in C\left(\left[0,1\right],\mathbb{R}\right)$, the unique solution of the three-point boundary value problem

$\left\{\begin{array}{l}{}^{c}D^{\alpha }x\left(t\right)=y\left(t\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right],1<\alpha \le 2,\\ x\left(0\right)=0,\phantom{\rule{2em}{0ex}}a{I}^{\gamma }x\left(\eta \right)+bx\left(1\right)=c,\phantom{\rule{1em}{0ex}}0<\eta <1,\end{array}$
(2)

is given by

$x\left(t\right)={\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds+\frac{t\left(c-b{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds\right)}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}-\frac{ta{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}.$

Proof For $1<\alpha \le 2$ and some constants ${c}_{0},{c}_{1}\in \mathbb{R}$, the general solution of the equation ${}^{c}D^{\alpha }x\left(t\right)=y\left(t\right)$ can be written as

$x\left(t\right)={I}^{\alpha }y\left(t\right)+{c}_{0}+{c}_{1}t.$
(3)

From $x\left(0\right)=0$, it follows that ${c}_{0}=0$. Using the integral boundary conditions of (2), we obtain

$\left(\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b\right){c}_{1}+a{I}^{\alpha +\gamma }y\left(\eta \right)+b{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds=c.$

Therefore, we have

${c}_{1}=\frac{c-b{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds-a{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}y\left(s\right)\phantom{\rule{0.2em}{0ex}}ds}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}.$

Substituting the values of ${c}_{0}$, ${c}_{1}$, we obtain the result. This completes the proof. □

Let us define what we mean by a solution of problem (1).

Definition 2.5 A function $x\in A{C}^{1}\left(\left[0,1\right],\mathbb{R}\right)$ is a solution of problem (1) if it satisfies the boundary conditions in (1) and there exists a function $f\in {L}^{1}\left(\left[0,1\right],\mathbb{R}\right)$ such that $f\left(t\right)\in F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right)$ a.e. on $t\in \left[0,1\right]$ and

$x\left(t\right)={\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}f\left(s\right)\phantom{\rule{0.2em}{0ex}}ds+\frac{t\left(c-b{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}f\left(s\right)\phantom{\rule{0.2em}{0ex}}ds\right)}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}-\frac{ta{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}f\left(s\right)\phantom{\rule{0.2em}{0ex}}ds}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}.$

Let $C\left(\left[0,1\right],\mathbb{R}\right)$ be the space of all continuous functions defined on $\left[0,1\right]$. Define the space endowed with the norm $\parallel x\parallel ={max}_{t\in \left[0,1\right]}|x\left(t\right){|+{max}_{t\in \left[0,1\right]}|}^{c}{D}^{\beta }x\left(t\right)|$. Obviously, $\left(\mathcal{X},\parallel \cdot \parallel \right)$ is a Banach space.

Theorem 2.1 (Nonlinear alternative of Leray-Schauder type)

Let X be a Banach space, C be a closed convex subset of X, U be an open subset of C with $0\in U$. Suppose that $F:\overline{U}\to {P}_{cp,c}\left(C\right)$ is an upper semicontinuous compact map. Then either (1) F has a fixed point in $\overline{U}$, or (2) there are $x\in \partial U$ and $\lambda \in \left(0,1\right)$ such that $x\in \lambda F\left(x\right)$.

Let $\left(X,d\right)$ be a complete metric space. If $F:X\to {P}_{cl}\left(X\right)$ is a contraction, then F has a fixed point.

## 3 Existence results

In this section, three existence results of problem (1) are presented. The first one concerns the convex valued case, and the others are related to the nonconvex valued case.

Now let us begin with the convex valued case.

Theorem 3.1 Suppose that the following (H1), (H2) and (H3) are satisfied.

(H1) $F:\left[0,1\right]×\mathbb{R}×\mathbb{R}\to {P}_{cp,c}\left(\mathbb{R}\right)$ is a Carathéodory multivalued map.

(H2) There exist $m\in {L}^{\mathrm{\infty }}\left(\left[0,1\right],{\mathbb{R}}^{+}\right)$ and $\phi :\left[0,\mathrm{\infty }\right)\to \left(0,\mathrm{\infty }\right)$ continuous, nondecreasing such that

$\parallel F\left(t,x,y\right)\parallel =sup\left\{|v|:v\in F\left(t,x,y\right)\right\}\le m\left(t\right)\left(\phi \left(|x|\right)+\phi \left(|y|\right)\right)$

for $x,y\in \mathbb{R}$, $t\in \left[0,1\right]$.

(H3) There exists a constant $M>0$ such that

$\frac{M}{O+\parallel m\parallel \left(\phi \left(M\right)+\psi \left(M\right)\right)Q}>1,$
(4)

where

$\begin{array}{c}\parallel m\parallel =\underset{t\in \left[0,1\right]}{sup}|m\left(t\right)|,\phantom{\rule{2em}{0ex}}O=\frac{|c|}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\left(1+\frac{1}{\mathrm{\Gamma }\left(2-\beta \right)}\right),\hfill \\ Q=\left(\frac{1}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{1}{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{\left(\mathrm{\Gamma }\left(2-\beta \right)+1\right)\left(\frac{|a|{\eta }^{\alpha +\gamma }}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}+\frac{|b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\right).\hfill \end{array}$

Then boundary value problem (1) has at least one solution on $\left[0,1\right]$.

Proof Consider the multivalued operator $N:\mathcal{X}\to P\left(\mathcal{X}\right)$ defined as

$N\left(x\right)=\left\{h\in \mathcal{X}:h=Sv,v\in {S}_{F,x}\right\}$
(5)

with

Clearly, by Lemma 2.3, we know that the fixed points of N are solutions of problem (1). From (H1) and (H2), we have, for each $x\in \mathcal{X}$, that the set ${S}_{F,x}$ is nonempty . Next we will show that N satisfies the assumptions of the nonlinear alternative of Leray-Schauder type. The proof is given in the following five steps.

Step 1: $N\left(x\right)$ is convex valued. Since F is convex valued, we know that ${S}_{F,x}$ is convex and therefore it is obvious that for each $x\in \mathcal{X}$, $N\left(x\right)$ is convex.

Step 2: N maps bounded sets into bounded sets in $\mathcal{X}$. Let

${B}_{r}=\left\{x\in \mathcal{X}:\parallel x\parallel \le r\right\}$

be a bounded subset of $\mathcal{X}$. We need to prove that there exists a constant $k>0$ such that for each $x\in {B}_{r}$, one has $\parallel h\parallel \le k$ for each $h\in N\left(x\right)$. Let $x\in {B}_{r}$ and $h\in N\left(x\right)$, then there exists $v\in {S}_{F,x}$ such that

By simple calculations, we have

$\begin{array}{rcl}|h\left(t\right)|& \le & {\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|v\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds+\frac{\left(|c|+|b|{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|v\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\right)}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ +\frac{|a|{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}|v\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \le & \frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{|c|}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ +\frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)\left(\frac{|a|{\eta }^{\alpha +\gamma }}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}+\frac{|b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\right)}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}.\end{array}$

Similarly, we can obtain

$\begin{array}{r}{|}^{c}{D}^{\beta }h\left(t\right)|\\ \phantom{\rule{1em}{0ex}}\le {\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -\beta -1}}{\mathrm{\Gamma }\left(\alpha -\beta \right)}|v\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds+\frac{|{c}_{1}|}{\mathrm{\Gamma }\left(2-\beta \right)}\\ \phantom{\rule{1em}{0ex}}\le \frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)}{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{|c|}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{2em}{0ex}}+\frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)\left(\frac{|a|{\eta }^{\alpha +\gamma }}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}+\frac{|b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}.\end{array}$

Therefore, we have

$\begin{array}{rcl}|h\left(t\right)|& \le & \frac{|c|}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\left(1+\frac{1}{\mathrm{\Gamma }\left(2-\beta \right)}\right)+\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)\\ ×\left(\frac{1}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{1}{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{\left(\mathrm{\Gamma }\left(2-\beta \right)+1\right)\left(\frac{|a|{\eta }^{\alpha +\gamma }}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}+\frac{|b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\right).\end{array}$

Hence, we obtain

$\parallel h\parallel \le O+\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)Q=k.$

Step 3: N maps bounded sets into equicontinuous sets in $\mathcal{X}$. Let ${B}_{r}$ be as in Step 2 and $0\le {t}_{1}<{t}_{2}\le 1$. Then, for each $x\in {B}_{r}$ and $h\in N\left(x\right)$, there exists $v\in {S}_{F,x}$ such that $h\left(t\right)=\left(Sv\right)\left(t\right)$ for $t\in \left[0,1\right]$. Since

$\begin{array}{r}|h\left({t}_{2}\right)-h\left({t}_{1}\right)|\\ \phantom{\rule{1em}{0ex}}\le |{\int }_{{t}_{1}}^{{t}_{2}}\frac{{\left({t}_{2}-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds|+|{\int }_{0}^{{t}_{1}}\frac{{\left({t}_{2}-s\right)}^{\alpha -1}-{\left({t}_{1}-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds|\\ \phantom{\rule{2em}{0ex}}+\frac{|\left({t}_{2}-{t}_{1}\right)\left(c-b{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds\right)|}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}+\frac{|\left({t}_{2}-{t}_{1}\right)a{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds|}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{1em}{0ex}}\le \frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right){\left({t}_{2}-{t}_{1}\right)}^{\alpha }}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)|{t}_{2}^{\alpha }-{\left({t}_{2}-{t}_{1}\right)}^{\alpha }-{t}_{1}^{\alpha }|}{\mathrm{\Gamma }\left(\alpha +1\right)}\\ \phantom{\rule{2em}{0ex}}+\frac{|c|\left({t}_{2}-{t}_{1}\right)}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}+\frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)\left({t}_{2}-{t}_{1}\right)\left(\frac{|a|{\eta }^{\alpha +\gamma }}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}+\frac{|b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\right)}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\end{array}$

and

$\begin{array}{r}{|}^{c}{D}^{\beta }h\left({t}_{2}\right){-}^{c}{D}^{\beta }h\left({t}_{1}\right)|\\ \phantom{\rule{1em}{0ex}}\le |{I}^{\alpha -\beta }v\left({t}_{2}\right)-{I}^{\alpha -\beta }v\left({t}_{1}\right)+\frac{{c}_{1}{t}_{2}^{1-\beta }}{\mathrm{\Gamma }\left(2-\beta \right)}-\frac{{c}_{1}{t}_{1}^{1-\beta }}{\mathrm{\Gamma }\left(2-\beta \right)}|\\ \phantom{\rule{1em}{0ex}}\le \frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)\left({t}_{2}^{\alpha -\beta }-{t}_{1}^{\alpha -\beta }\right)}{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{|c|\left({t}_{2}^{1-\beta }-{t}_{1}^{1-\beta }\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{2em}{0ex}}+\frac{\parallel m\parallel \left(\phi \left(r\right)+\psi \left(r\right)\right)\left({t}_{2}^{1-\beta }-{t}_{1}^{1-\beta }\right)\left(\frac{|a|{\eta }^{\alpha +\gamma }}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}+\frac{|b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|},\end{array}$

we deduce that

independently of $x\in {B}_{r}$ and $h\in N\left(x\right)$.

Step 4: N has a closed graph. Let ${x}_{n}\to {x}_{\ast }$, ${h}_{n}\in N\left({x}_{n}\right)$ and ${h}_{n}\to {h}_{\ast }$, we need to show that ${h}_{\ast }\in N\left({x}_{\ast }\right)$. Since ${h}_{n}\in N\left({x}_{n}\right)$, there exists ${v}_{n}\in {S}_{F,{x}_{n}}$ such that ${h}_{n}\left(t\right)=\left(S{v}_{n}\right)\left(t\right)$ for $t\in \left[0,1\right]$. We must prove that there exists ${v}_{\ast }\in {S}_{F,{x}_{\ast }}$ such that ${h}_{\ast }\left(t\right)=\left(S{v}_{\ast }\right)\left(t\right)$ for $t\in \left[0,1\right]$.

Now, let us consider the continuous linear operator $P:{L}^{1}\left(\left[0,1\right],\mathbb{R}\right)\to \mathcal{X}$

$v\to P\left(v\right)\left(t\right)={\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds-\frac{bt{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}-\frac{at{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}v\left(s\right)\phantom{\rule{0.2em}{0ex}}ds}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b},$

and denote

$w\left(t\right)=\frac{ct}{\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b}.$

Clearly, we have $Sv=Pv+w$ and

By the definition of P, we have

${h}_{n}-w\in P\circ {S}_{F}\left({x}_{n}\right).$

It follows from Lemma 2.1 that $P\circ {S}_{F}$ is a closed graph operator. Since ${x}_{n}\to {x}_{\ast }$, we have

${h}_{\ast }\left(t\right)-w\left(t\right)=P\left({v}_{\ast }\right)\left(t\right)$

for some ${v}_{\ast }\in {S}_{F,{x}_{\ast }}$. This implies that ${h}_{\ast }\in N\left({x}_{\ast }\right)$.

Step 5: A priori bounds for solutions. Let $x\in \lambda N\left(x\right)$ for some $\lambda \in \left(0,1\right)$. Then there exists $v\in {S}_{F,x}$ such that $x\left(t\right)=\lambda \left(Sv\right)\left(t\right)$ for $t\in \left[0,1\right]$. By a similar discussion as in Step 2, we have

Thus

By the assumption of (H3), there exists M such that $\parallel x\parallel \ne M$. Let us set

$U=\left\{x\in \mathcal{X}:\parallel x\parallel

As a consequence of Steps 1-4, together with the Arzela-Ascoli theorem, we can obtain that $N:\overline{U}\to {P}_{cp,c}\left(\mathcal{X}\right)$ is an upper semicontinuous and completely continuous map. From the choice of U, there is no $x\in \partial U$ such that $x\in \lambda N\left(x\right)$ for some $\lambda \in \left(0,1\right)$. Hence, by Theorem 2.1, we deduce that N has a fixed point $x\in \overline{U}$ which is a solution of problem (1). This is the end of the proof. □

Next we study the case when F is not necessarily convex valued.

Let A be a subset of $\left[0,1\right]×\mathbb{R}$. A is $\mathrm{\Sigma }\otimes {\mathcal{B}}_{\mathbb{R}}$ measurable if A belongs to the σ-algebra generated by all sets of the form $J×D$, where J is Lebesgue measurable in $\left[0,1\right]$ and D is a Borel set of . A subset A of ${L}^{1}\left(\left[0,1\right],\mathbb{R}\right)$ is decomposable if for all $u,v\in A$ and $J\subseteq \left[0,1\right]$ Lebesgue measurable, then $u{\chi }_{J}+v{\chi }_{\left[0,1\right]-J}\in A$, where χ stands for the characteristic function.

Theorem 3.2 Let (H2) and (H3) hold and assume:

(H4) $F:\left[0,1\right]×\mathbb{R}×\mathbb{R}\to {P}_{cp}\left(\mathbb{R}\right)$ is such that: (1) $\left(t,x,y\right)\to F\left(t,x,y\right)$ is $\mathrm{\Sigma }\otimes {\mathcal{B}}_{\mathbb{R}}\otimes {\mathcal{B}}_{\mathbb{R}}$ measurable; (2) the map $\left(x,y\right)\to F\left(t,x,y\right)$ is lower semicontinuous for a.e. $t\in \left[0,1\right]$.

Then problem (1) has at least one solution on $\left[0,1\right]$.

Proof From (H2), (H4) and Lemma 4.4 of , the map

$\mathcal{F}:\mathcal{X}\to P\left({L}^{1}\left(\left[0,1\right],\mathbb{R}\right)\right),\phantom{\rule{2em}{0ex}}x\to \mathcal{F}\left(x\right)={S}_{F,x}$
(6)

is lower semicontinuous and has nonempty closed and decomposable values. Then, from a selection theorem due to Bressan and Colombo , there exists a continuous function $f:\mathcal{X}\to {L}^{1}\left(\left[0,1\right],\mathbb{R}\right)$ such that for all $x\in \mathcal{X}$, $f\left(x\right)\left(t\right)\in F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right)$ a.e. $t\in \left[0,1\right]$. Now consider the problem

${}^{c}D^{\alpha }x\left(t\right)=f\left(x\right)\left(t\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right]$
(7)

with the boundary conditions in (2). Note that if $x\in \mathcal{X}$ is a solution of problem (7), then x is a solution to problem (1).

Problem (7) is then reformulated as a fixed point problem for the operator $\overline{N}:\mathcal{X}\to \mathcal{X}$ defined by

$\overline{N}\left(x\right)\left(t\right)=\left(Sf\left(x\right)\right)\left(t\right).$

It can easily be shown that $\overline{N}$ is continuous and completely continuous and satisfies all conditions of the Leray-Schauder nonlinear alternative for single-valued maps . By a discussion similar to the one in Theorem 3.1, Theorem 3.2 follows. □

Theorem 3.3 We assume that:

(H5) $F:\left[0,1\right]×\mathbb{R}×\mathbb{R}\to {P}_{cp}\left(\mathbb{R}\right)$ is such that: (1) the map $t\to F\left(t,x,y\right)$ is measurable for all $x,y\in \mathbb{R}$; (2) there exists $m\in {L}^{\mathrm{\infty }}\left(\left[0,1\right],{\mathbb{R}}^{+}\right)$ such that for a.e. $t\in \left[0,1\right]$ and all ${x}_{1},{x}_{2},{y}_{1},{y}_{2}\in \mathbb{R}$,

$h\left(F\left(t,{x}_{1},{y}_{1}\right),F\left(t,{x}_{2},{y}_{2}\right)\right)\le m\left(t\right)\left(|{x}_{1}-{x}_{2}|+|{y}_{1}-{y}_{2}|\right),$

and

$\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{\left(\frac{\parallel m\parallel |b|}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel |a|}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}\right)\left(1+\mathrm{\Gamma }\left(2-\beta \right)\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}<1,$
(8)

then problem (1) has at least one solution on $\left[0,1\right]$.

Proof From (H5), for each $x\in \mathcal{X}$, the multivalued map $t\to F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right)$ is measurable and closed valued. Hence it has measurable selection (Theorem 2.2.1 ) and the set ${S}_{F,x}$ is nonempty. Let N be defined in (5). We will show that N satisfies the requirements of Theorem 2.2.

Step 1: For each $x\in \mathcal{X}$, $N\left(x\right)\in {P}_{cl}\left(\mathcal{X}\right)$. Let ${h}_{n}\in N\left(x\right)$ be such that ${h}_{n}\to h$ in $\mathcal{X}$. Then $h\in \mathcal{X}$ and there exists ${v}_{n}\in {S}_{F,x}$ such that

${h}_{n}\left(t\right)=\left(S{v}_{n}\right)\left(t\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right].$

By (H5), the sequence ${v}_{n}$ is integrable bounded. Since F has compact values, we may pass to a subsequence if necessary to get that ${v}_{n}$ converges to v in ${L}^{1}\left(\left[0,1\right],\mathbb{R}\right)$. Thus $v\in {S}_{F,x}$ and for each $t\in \left[0,1\right]$,

${h}_{n}\left(t\right)\to h\left(t\right)=\left(Sv\right)\left(t\right).$

This implies that $h\in N\left(x\right)$ and $N\left(x\right)$ is closed.

Step 2: There exists $0<\lambda <1$ such that

Let $x,y\in \mathcal{X}$ and ${h}_{1}\in N\left(y\right)$, then there exists ${v}_{1}\in {S}_{F,y}$ such that

${h}_{1}\left(t\right)=\left(S{v}_{1}\right)\left(t\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right].$

From (H5), we know that

$h\left(F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right),F\left(t,y\left(t\right){,}^{c}{D}^{\beta }y\left(t\right)\right)\right)\le m\left(t\right)\left(|x\left(t\right)-y\left(t\right)|+{|}^{c}{D}^{\beta }x\left(t\right){-}^{c}{D}^{\beta }y\left(t\right)|\right).$

Hence, for a.e. $t\in \left[0,1\right]$, there exists $u\in F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right)$ such that

$|{v}_{1}\left(t\right)-u|\le m\left(t\right)\left(|x\left(t\right)-y\left(t\right)|+{|}^{c}{D}^{\beta }x\left(t\right){-}^{c}{D}^{\beta }y\left(t\right)|\right).$
(9)

Consider the multivalued map $V:\left[0,1\right]\to P\left(\mathbb{R}\right)$ given by

$V\left(t\right)=\left\{u\in \mathbb{R}:|{v}_{1}\left(t\right)-u|\le m\left(t\right)\left(|x\left(t\right)-y\left(t\right)|+{|}^{c}{D}^{\beta }x\left(t\right){-}^{c}{D}^{\beta }y\left(t\right)|\right)\right\}.$

Since ${v}_{1}\left(t\right)$, $\alpha \left(t\right)=m\left(t\right)\left(|x\left(t\right)-y\left(t\right){|+|}^{c}{D}^{\beta }x\left(t\right){-}^{c}{D}^{\beta }y\left(t\right)|\right)$ are measurable, Theorem III.41 in  implies that V is measurable. It follows from (H5) that the map $t\to F\left(t,x\left(t\right)\right)$ is measurable. Hence, by (9) and Proposition 2.1.43 in , the multivalued map $t\to V\left(t\right)\cap F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right)$ with nonempty closed values is measurable. Therefore, we can find ${v}_{2}\left(t\right)\in F\left(t,x\left(t\right){,}^{c}{D}^{\beta }x\left(t\right)\right)$ and

Let ${h}_{2}\left(t\right)=\left(S{v}_{2}\right)\left(t\right)$, i.e., ${h}_{2}\in N\left(x\right)$. Since

$\begin{array}{r}|{h}_{1}\left(t\right)-{h}_{2}\left(t\right)|\\ \phantom{\rule{1em}{0ex}}\le {\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|{v}_{1}\left(s\right)-{v}_{2}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds+\frac{\left(|b|{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|{v}_{1}\left(s\right)-{v}_{2}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\right)}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{2em}{0ex}}+\frac{\left(|a|{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}|{v}_{1}\left(s\right)-{v}_{2}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\right)}{|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{1em}{0ex}}\le \left(\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel |b|}{\mathrm{\Gamma }\left(\alpha +1\right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}+\frac{\parallel m\parallel |a|}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\right)\parallel x-y\parallel \end{array}$

and

$\begin{array}{r}{|}^{c}{D}^{\beta }{h}_{1}\left(t\right){-}^{c}{D}^{\beta }{h}_{2}\left(t\right)|\\ \phantom{\rule{1em}{0ex}}\le {\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -\beta -1}}{\mathrm{\Gamma }\left(\alpha -\beta \right)}|{v}_{1}\left(s\right)-{v}_{2}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds+\frac{\left(|b|{\int }_{0}^{1}\frac{{\left(1-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|{v}_{1}\left(s\right)-{v}_{2}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{2em}{0ex}}+\frac{\left(|a|{\int }_{0}^{\eta }\frac{{\left(\eta -s\right)}^{\alpha +\gamma -1}}{\mathrm{\Gamma }\left(\alpha +\gamma \right)}|{v}_{1}\left(s\right)-{v}_{2}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{1em}{0ex}}\le \left(\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{\frac{\parallel m\parallel |b|}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel |a|}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\right)\parallel x-y\parallel ,\end{array}$

we obtain that

$\begin{array}{r}\parallel {h}_{1}\left(t\right)-{h}_{2}\left(t\right)\parallel \\ \phantom{\rule{1em}{0ex}}\le \left(\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{\frac{\parallel m\parallel |b|}{\mathrm{\Gamma }\left(\alpha +1\right)}\left(1+\mathrm{\Gamma }\left(2-\beta \right)\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\\ \phantom{\rule{2em}{0ex}}+\frac{\frac{\parallel m\parallel |a|}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}\left(1+\mathrm{\Gamma }\left(2-\beta \right)\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}\right)\parallel x-y\parallel .\end{array}$

Define

$\lambda =\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel }{\mathrm{\Gamma }\left(\alpha -\beta +1\right)}+\frac{\left(\frac{\parallel m\parallel |b|}{\mathrm{\Gamma }\left(\alpha +1\right)}+\frac{\parallel m\parallel |a|}{\mathrm{\Gamma }\left(\alpha +\gamma +1\right)}\right)\left(1+\mathrm{\Gamma }\left(2-\beta \right)\right)}{\mathrm{\Gamma }\left(2-\beta \right)|\frac{a{\eta }^{1+\gamma }}{\mathrm{\Gamma }\left(\gamma +2\right)}+b|}.$

By using an analogous relation obtained by interchanging the roles of x and y, we get

$h\left(N\left(x\right),N\left(y\right)\right)\le \lambda \parallel x-y\parallel .$

Therefore from condition (8), Theorem 2.2 implies that N has a fixed point which is a solution of problem (1). This completes the proof. □

## 4 Examples

In this section, we give two examples to illustrate the results.

Example 1 Consider the following three-point fractional integral boundary value problem:

$\left\{\begin{array}{l}{}^{c}D^{\frac{3}{2}}x\left(t\right)\in F\left(t,x\left(t\right){,}^{c}{D}^{\frac{3}{4}}x\left(t\right)\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right],\\ x\left(0\right)=0,\phantom{\rule{2em}{0ex}}{I}^{\frac{4}{3}}x\left(\frac{1}{2}\right)+\frac{1}{3}x\left(1\right)=-1,\end{array}$
(10)

where $\alpha =\frac{3}{2}$, $\beta =\frac{3}{4}$, $\gamma =\frac{4}{3}$, $\eta =\frac{1}{2}$, $a=1$, $b=\frac{1}{3}$, $c=-1$ and $F:\left[0,1\right]×\mathbb{R}×\mathbb{R}\to P\left(\mathbb{R}\right)$ is a multivalued map given by

$F\left(t,x,y\right)=\left\{v\in \mathbb{R}:{e}^{-|x|}-\frac{|y|}{1+{y}^{2}}+sint+{t}^{2}\le v\le 4+\frac{|x|}{1+{x}^{2}}+siny+6{t}^{3}\right\}.$

In the context of this problem, we have

It is clear that F is convex compact valued and is of Carathéodory type. Let $m\left(t\right)\equiv 1$ and $\phi \left(|x|\right)\equiv 4$, $\psi \left(|y|\right)\equiv 8$, we get that for $t\in \left[0,1\right]$, $x,y\in \mathbb{R}$,

$\parallel F\left(t,x,y\right)\parallel =sup\left\{|v|:v\in F\left(t,x,y\right)\right\}\le m\left(t\right)\left(\phi \left(|x|\right)+\phi \left(|y|\right)\right).$

As for condition (4), since $O+\parallel m\parallel \left(\phi \left(|x|\right)+\psi \left(|y|\right)\right)Q=O+12Q$ (see O, Q in (H3)) is a constant, we can choose M large enough so that

$\frac{M}{O+\parallel m\parallel \left(\phi \left(|M|\right)+\psi \left(|M|\right)\right)Q}>1.$

Thus, by the conclusion of Theorem 3.1, boundary value problem (10) has at least one solution on $\left[0,1\right]$.

Example 2 Consider the following three-point fractional integral boundary value problem:

$\left\{\begin{array}{l}{}^{c}D^{\frac{7}{4}}x\left(t\right)\in F\left(t,x\left(t\right){,}^{c}{D}^{\frac{1}{2}}x\left(t\right)\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right],\\ x\left(0\right)=0,\phantom{\rule{2em}{0ex}}{I}^{\frac{4}{3}}x\left(\frac{1}{3}\right)+\frac{2}{3}x\left(1\right)=-\frac{1}{2},\end{array}$
(11)

where $\alpha =\frac{7}{4}$, $\beta =\frac{1}{2}$, $\gamma =\frac{4}{3}$, $\eta =\frac{1}{3}$, $a=1$, $b=\frac{2}{3}$, $c=-\frac{1}{2}$,

$F\left(t,x,y\right)=\left[-{l}_{1}\left(t\right)-\frac{sinx}{{\left(4+t\right)}^{2}}-3,-\frac{1}{10}\right]\cup \left[0,\frac{|y|}{16\left(1+|y|\right)}+{l}_{2}\left(t\right)\right],$

and ${l}_{1},{l}_{2}\in {L}^{1}\left(\left[0,1\right],{\mathbb{R}}^{+}\right)$.

From the data given above, we have

$\begin{array}{c}sup\left\{|v|:v\in F\left(t,x,y\right)\right\}\le 4+\frac{1}{{\left(4+t\right)}^{2}}+{l}_{1}\left(t\right)+{l}_{2}\left(t\right),\phantom{\rule{1em}{0ex}}t\in \left[0,1\right],x,y\in \mathbb{R},\hfill \\ h\left(F\left(t,{x}_{1},{y}_{1}\right),F\left(t,{x}_{2},{y}_{2}\right)\right)\le \frac{1}{16}\left(|{x}_{1}-{x}_{2}|+|{y}_{1}-{y}_{2}|\right).\hfill \end{array}$

Let $m=\frac{1}{16}$, we can get

$\frac{1}{16}\left(\frac{1}{\mathrm{\Gamma }\left(\frac{11}{4}\right)}+\frac{1}{\mathrm{\Gamma }\left(\frac{9}{4}\right)}+\frac{\frac{\frac{2}{3}}{\mathrm{\Gamma }\left(\frac{11}{4}\right)}\left(1+\mathrm{\Gamma }\left(\frac{3}{2}\right)\right)}{\mathrm{\Gamma }\left(\frac{3}{2}\right)|\frac{{\frac{1}{3}}^{\frac{7}{3}}}{\mathrm{\Gamma }\left(\frac{10}{3}\right)}+\frac{2}{3}|}+\frac{\frac{1}{\mathrm{\Gamma }\left(\frac{49}{12}\right)}\left(1+\mathrm{\Gamma }\left(\frac{3}{2}\right)\right)}{\mathrm{\Gamma }\left(\frac{3}{2}\right)|\frac{{\frac{1}{3}}^{\frac{7}{3}}}{\mathrm{\Gamma }\left(\frac{10}{3}\right)}+\frac{2}{3}|}\right)\approx 0.2841<1.$

Hence it follows from Theorem 3.3 that problem (11) has at least one solution on $\left[0,1\right]$.

## Author’s contributions

The author carried out the proofs of the theorems and approved the final manuscript.

## References

1. Băleanu D, Machado JAT, Luo ACJ: Fractional Dynamics and Control. Springer, Berlin; 2012.

2. Sabatier J, Agrawal OP, Machado JAT (Eds): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007.

3. Lakshmikantham V, Leela S, Vasundhara Devi J: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge; 2009.

4. Agarwal RP, Belmekki M, Benchohra M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009., 2009: Article ID 981728

5. Agarwal RP, Benchohra M, Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109: 973-1033.

6. Bai Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72(2):916-924.

7. Chang Y, Nieto JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 2009, 49: 605-609.

8. Chen A, Tian Y: Existence of three positive solutions to three-point boundary value problem of nonlinear fractional differential equation. Differ. Equ. Dyn. Syst. 2010, 18(3):327-339.

9. Chen Y, Tang X: Positive solutions of fractional differential equations at resonance on the half-line. Bound. Value Probl. 2012., 2012: Article ID 64

10. Li CF, Luo XN, Zhou Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 2010, 59: 1363-1375.

11. Ahmad B, Nieto JJ: Anti-periodic fractional boundary value problems. Comput. Math. Appl. 2011, 62: 1150-1156.

12. Wang G, Ahmad B, Zhang L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74(3):792-804.

13. Wang JR, Zhou Y: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal., Real World Appl. 2011, 12(6):3642-3653.

14. Wang JR, Lv L, Zhou Y: Boundary value problems for fractional differential equations involving Caputo derivative in Banach spaces. J. Appl. Math. Comput. 2012, 38: 209-224.

15. Zhou Y, Jiao F: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 2010, 11: 4465-4475.

16. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36: 1-12.

17. Sudsutad W, Tariboon J: Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions. Adv. Differ. Equ. 2012., 2012: Article ID 93

18. Smirnov GV: Introduction to the Theory of Differential Inclusions. Am. Math. Soc., Providence; 2002.

19. Tolstonogov AA: Differential Inclusions in a Banach Space. Kluwer Academic, Dordrecht; 2000.

20. Cernea A: A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 2012, 15(2):183-194.

21. Cernea A: On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. J. Appl. Math. Comput. 2012, 38: 133-143.

22. Ahmad B: Existence results for fractional differential inclusions with separated boundary conditions. Bull. Korean Math. Soc. 2010, 47(4):805-813.

23. Ahmad B, Ntouyas SK: Fractional differential inclusions with fractional separated boundary conditions. Fract. Calc. Appl. Anal. 2012, 15(3):362-382.

24. Hamani S, Benchohra M, Graef JR: Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. Electron. J. Differ. Equ. 2010, 2010(20):1-16.

25. Ahmad B, Ntouyas SK: Some existence results for boundary value problems of fractional differential inclusions with non-separated boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2010, 2010(71):1-17.

26. Cernea A: Some remarks on a fractional differential inclusion with non-separated boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2011, 2011(45):1-14.

27. Ouahab A: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. 2008, 69: 3877-3896.

28. Nyamoradi N, Javidi M: Existence of multiple positive solutions for fractional differential inclusions with m -point boundary conditions and two fractional orders. Electron. J. Differ. Equ. 2012, 2012(187):1-26.

29. Nyamoradi N, Baleanu D, Agarwal RP: On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval. Adv. Math. Phys. 2013., 2013: Article ID 823961

30. Hu SC, Papageorgiou NS: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic, Dordrecht; 1997.

31. Lasota A, Opial Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 1965, 13: 781-786.

32. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

33. Bressan A, Colombo G: Extensions and selections of maps with decomposable values. Stud. Math. 1988, 90: 69-86.

34. Granas A, Dugundji J: Fixed Point Theory. Springer, New York; 2003.

35. Castaing C, Valadier M: Convex Analysis and Measurable Multifunctions. Springer, New York; 1997.

## Acknowledgements

The author would like to express his thanks to the referees for their helpful suggestions.

## Author information

Authors

### Corresponding author

Correspondence to Xi Fu.

### Competing interests

The author declares that he has no competing interests.

## Rights and permissions

Reprints and Permissions

Fu, X. Existence results for fractional differential inclusions with three-point fractional integral boundary conditions. Adv Differ Equ 2013, 304 (2013). https://doi.org/10.1186/1687-1847-2013-304

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-1847-2013-304

### Keywords

• fractional differential inclusions
• boundary value problems
• existence results
• multivalued maps 