Skip to main content

Theory and Modern Applications

Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations

Abstract

In this manuscript, by using the fixed point theorems, the existence and the uniqueness of solutions for multi-term nonlinear fractional integro-differential equations are reported. Two examples are presented to illustrate our results.

1 Introduction

The study of fractional differential equations ranges from the theoretical aspects of existence and uniqueness of solutions to the analytic and numerical methods for finding solutions. Fractional differential equations appear naturally in a number of fields such as physics, polymer rheology, regular variational in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry, biology, control theory, fitting of experimental data, etc. An excellent account in the study of fractional differential equations can be found in [1, 2] and [3]. For more details and examples, one can study [413] and [14]. It is considerable that there are many works about fractional integro-differential equations (see, for example, [1518] and [19]).

In 2007, Xinwei and Landong reviewed the existence of solutions for the nonlinear fractional differential equation

D α c u(t)=f ( t , u ( t ) , c D β u ( t ) ) (0<t<1)

with boundary values u(0)= u (1)=0 or u (0)=u(1)=0 or u(0)=u(1)=0, where 1<α2, 0<β1, and f is continuous on [0,1]×R×R [20]. In 2009, Su and Zhang studied the existence and uniqueness of solutions for the following nonlinear two-point fractional boundary value problem

D α c u(t)=f ( t , u ( t ) , c D β u ( t ) ) (0<t<1)

with boundary values a 1 u(0) a 2 u (0)=A and b 1 u(1)+ b 2 u (1)=B, where α, β, a i , b i (i=1,2) satisfy certain conditions [21]. In 2010, Ahmad and Sivasundaram studied the existence of solutions for the nonlinear fractional integro-differential equation

D q c u(t)=f ( t , u ( t ) , ( ϕ u ) ( t ) , ( ψ u ) ( t ) ) (0<t<1 and 1<q2)

with boundary values u (0)+au( η 1 )=0, b u (1)+u( η 2 )=0 and 0< η 1 η 2 <1, where D q c is the Caputo fractional derivative, a,b(0,1), f:[0,1]×X×X×XX is continuous and for the mappings γ,λ:[0,1]×[0,1][0,) with the property sup t [ 0 , 1 ] | 0 t λ(t,s)ds|< and sup t [ 0 , 1 ] | 0 t γ(t,s)ds|<, the maps ϕ and ψ are defined by (ϕu)(t)= 0 t γ(t,s)u(s)ds and (ψu)(t)= 0 t λ(t,s)u(s)ds. Here, X is a Banach space (see [22]).

2 Main results

2.1 The basic problem

In this paper, we study the existence and uniqueness of solutions for the multi-term nonlinear fractional integro-differential equation

D α c u(t)=f ( t , u ( t ) , ( ϕ u ) ( t ) , ( ψ u ) ( t ) , c D β 1 u ( t ) , c D β 2 u ( t ) , , c D β n u ( t ) ) (0<t<1)
(1)

with boundary values u(0)+au(1)=0 and u (0)+b u (1)=0, where 1<α<2, 0< β i <1, α β i 1, a,b1, f:[0,1]× R n + 3 R is continuous, and for the mappings

γ,λ:[0,1]×[0,1][0,)

with the property sup t [ 0 , 1 ] | 0 t λ(t,s)ds|< and sup t [ 0 , 1 ] | 0 t γ(t,s)ds|<, the maps ϕ and ψ are defined by (ϕu)(t)= 0 t γ(t,s)u(s)ds and (ψu)(t)= 0 t λ(t,s)u(s)ds. In this way, we need the following result, which has been proved in [2].

Lemma 2.1 Let α>0 and n=[α]+1. Then

I α c D α u(t)=u(t)+ c 0 + c 1 t+ c 2 t++ c n 1 t n 1 ,

where c 0 , c 1 ,, c n 1 are some real numbers.

The proof of the following result by using Lemma 2.1 is straightforward.

Lemma 2.2 Let yC[0,1], a,b1 and 1<α<2. Then the problem D α c u(t)=y(t) with boundary values u(0)+au(1)=0 and u (0)+b u (1)=0 has the unique solution

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s a ( 1 + a ) Γ ( α ) 0 1 ( 1 s ) α 1 y ( s ) d s + a b b ( 1 + a ) t ( 1 + a ) ( 1 + b ) Γ ( α 1 ) 0 1 ( 1 s ) α 2 y ( s ) d s .

2.2 Some results on solving the problem

Let C(I) be the space of all continuous real-valued functions on I=[0,1] and

X= { u : u C ( I )  and  c D β i u C ( I ) ( 0 < β i < 1 )  for  i = 1 , 2 , , n }

endowed with the norm u= max t I |u(t) | + i = 1 n max t I | c D β i u(t)|. It is known that (X,) is a Banach space.

Theorem 2.3 Assume that there exist κ(0,α1) and μ(t) L 1 κ ([0,1],(0,)) such that

| f ( t , x , y , w , u 1 , u 2 , , u n ) f ( t , x , y , w , v 1 , v 2 , , v n ) | μ ( t ) ( | x x | + | y y | + | w w | + | u 1 v 1 | + | u 2 v 2 | + + | u n v n | )

for all t[0,1] and x,y,w, x , y , w , u 1 , u 2 ,, u n , v 1 , v 2 ,, v n R. Then problem (1) has a unique solution whenever

Δ = ( 1 + γ 0 + λ 0 ) [ ( 1 + 2 | a | ) μ | 1 + a | Γ ( α ) ( 1 κ α κ ) 1 κ + | b | ( 1 + 2 | a | ) μ | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ + i = 1 n ( Γ ( α κ ) μ Γ ( α 1 ) Γ ( α β i κ + 1 ) ( 1 κ α κ 1 ) 1 κ + | b | μ | 1 + b | Γ ( 2 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ) ] < 1 ,

where γ 0 = sup t I | 0 t γ(t,s)ds|, λ 0 = sup t I | 0 t λ(t,s)ds|, μ = ( 0 1 ( μ ( s ) ) 1 κ d s ) κ .

Proof Define the mapping F:XX by

( F u ) ( t ) = 0 t ( t s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s a ( 1 + a ) 0 1 ( 1 s ) α 1 Γ ( α ) × f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s + a b b ( 1 + a ) t ( 1 + a ) ( 1 + b ) 0 1 ( 1 s ) α 2 Γ ( α 1 ) × f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s .

For each u,vX and t[0,1], by using the Hölder inequality, we have

| ( F u ) ( t ) ( F v ) ( t ) | = | 0 t ( t s ) α 1 Γ ( α ) ( f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) f ( s , v ( s ) , ( ϕ v ) ( s ) , ( ψ v ) ( s ) , c D β 1 v ( s ) , c D β 2 v ( s ) , , c D β n v ( s ) ) ) d s a ( 1 + a ) 0 1 ( 1 s ) α 1 Γ ( α ) ( f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) f ( s , v ( s ) , ( ϕ v ) ( s ) , ( ψ v ) ( s ) , c D β 1 v ( s ) , c D β 2 v ( s ) , , c D β n v ( s ) ) ) d s + a b b ( 1 + a ) t ( 1 + a ) ( 1 + b ) 0 1 ( 1 s ) α 2 Γ ( α 1 ) ( f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) f ( s , v ( s ) , ( ϕ v ) ( s ) , ( ψ v ) ( s ) , c D β 1 v ( s ) , c D β 2 v ( s ) , , c D β n v ( s ) ) ) d s | 0 t ( t s ) α 1 Γ ( α ) | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) f ( s , v ( s ) , ( ϕ v ) ( s ) , ( ψ v ) ( s ) , c D β 1 v ( s ) , c D β 2 v ( s ) , , c D β n v ( s ) ) | d s + | a | | 1 + a | 0 1 ( 1 s ) α 1 Γ ( α ) | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) f ( s , v ( s ) , ( ϕ v ) ( s ) , ( ψ v ) ( s ) , c D β 1 v ( s ) , c D β 2 v ( s ) , , c D β n v ( s ) ) | d s + | a b b ( 1 + a ) t | | 1 + a | | 1 + b | 0 1 ( 1 s ) α 2 Γ ( α 1 ) | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) f ( s , v ( s ) , ( ϕ v ) ( s ) , ( ψ v ) ( s ) , c D β 1 v ( s ) , c D β 2 v ( s ) , , c D β n v ( s ) ) | d s 0 t ( t s ) α 1 Γ ( α ) μ ( s ) ( | u ( s ) v ( s ) | + | ( ϕ u ) ( s ) ( ϕ v ) ( s ) | + | ( ψ u ) ( s ) ( ψ v ) ( s ) | + | c D β 1 u ( s ) c D β 1 v ( s ) | + | c D β 2 u ( s ) c D β 2 v ( s ) | + + | c D β n u ( s ) c D β n v ( s ) | ) d s + | a | | 1 + a | 0 1 ( 1 s ) α 1 Γ ( α ) μ ( s ) ( | u ( s ) v ( s ) | + | ( ϕ u ) ( s ) ( ϕ v ) ( s ) | + | ( ψ u ) ( s ) ( ψ v ) ( s ) | + | c D β 1 u ( s ) c D β 1 v ( s ) | + | c D β 2 u ( s ) c D β 2 v ( s ) | + + | c D β n u ( s ) c D β n v ( s ) | ) d s + | b | ( 1 + 2 | a | ) | 1 + a | | 1 + b | 0 1 ( 1 s ) α 2 Γ ( α 1 ) μ ( s ) ( | u ( s ) v ( s ) | + | ( ϕ u ) ( s ) ( ϕ v ) ( s ) | + | ( ψ u ) ( s ) ( ψ v ) ( s ) | + | c D β 1 u ( s ) c D β 1 v ( s ) | + | c D β 2 u ( s ) c D β 2 v ( s ) | + + | c D β n u ( s ) c D β n v ( s ) | ) d s ( 1 + γ 0 + λ 0 ) u v Γ ( α ) 0 t ( t s ) α 1 μ ( s ) d s + | a | ( 1 + γ 0 + λ 0 ) u v | 1 + a | Γ ( α ) 0 1 ( 1 s ) α 1 μ ( s ) d s + | b | ( 1 + 2 | a | ) ( 1 + γ 0 + λ 0 ) u v | 1 + a | | 1 + b | Γ ( α 1 ) 0 1 ( 1 s ) α 2 μ ( s ) d s ( 1 + γ 0 + λ 0 ) u v Γ ( α ) ( 0 t ( ( t s ) α 1 ) 1 1 κ d s ) 1 κ ( 0 t ( μ ( s ) ) 1 κ d s ) κ + | a | ( 1 + γ 0 + λ 0 ) u v | 1 + a | Γ ( α ) ( 0 1 ( ( 1 s ) α 1 ) 1 1 κ d s ) 1 κ ( 0 1 ( μ ( s ) ) 1 κ d s ) κ + | b | ( 1 + 2 | a | ) ( 1 + γ 0 + λ 0 ) u v | 1 + a | | 1 + b | Γ ( α 1 ) × ( 0 1 ( ( 1 s ) α 2 ) 1 1 κ d s ) 1 κ ( 0 1 ( μ ( s ) ) 1 κ d s ) κ μ ( 1 + γ 0 + λ 0 ) u v Γ ( α ) ( 1 κ α κ ) 1 κ + | a | μ ( 1 + γ 0 + λ 0 ) u v | 1 + a | Γ ( α ) ( 1 κ α κ ) 1 κ + | b | ( 1 + 2 | a | ) μ ( 1 + γ 0 + λ 0 ) u v | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ( 1 + γ 0 + λ 0 ) [ ( 1 + 2 | a | ) μ | 1 + a | Γ ( α ) ( 1 κ α κ ) 1 κ + | b | ( 1 + 2 | a | ) μ | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ] u v .

Also, we have

| c D β i ( F u ) ( t ) c D β i ( F v ) ( t ) | = | 0 t ( t s ) β i Γ ( 1 β i ) ( F u ) ( s ) d s 0 t ( t s ) β i Γ ( 1 β i ) ( F v ) ( s ) d s | = | 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , v ( τ ) , ( ϕ v ) ( τ ) , ( ψ v ) ( τ ) , c D β 1 v ( τ ) , c D β 2 v ( τ ) , , c D β n v ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , v ( τ ) , ( ϕ v ) ( τ ) , ( ψ v ) ( τ ) , c D β 1 v ( τ ) , c D β 2 v ( τ ) , , c D β n v ( τ ) ) d τ ) d s | 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) f ( τ , v ( τ ) , ( ϕ v ) ( τ ) , ( ψ v ) ( τ ) , c D β 1 v ( τ ) , c D β 2 v ( τ ) , , c D β n v ( τ ) ) | d τ ) d s + | b | | 1 + b | 0 t ( t s ) β i Γ ( 1 β i ) × ( 0 1 ( 1 τ ) α 2 Γ ( α 1 ) | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) f ( τ , v ( τ ) , ( ϕ v ) ( τ ) , ( ψ v ) ( τ ) , c D β 1 v ( τ ) , c D β 2 v ( τ ) , , c D β n v ( τ ) ) | d τ ) d s ( 1 + γ 0 + λ 0 ) u v Γ ( 1 β i ) Γ ( α 1 ) 0 t ( t s ) β i ( 0 s ( s τ ) α 2 μ ( τ ) d τ ) d s + | b | ( 1 + γ 0 + λ 0 ) u v | 1 + b | Γ ( 1 β i ) Γ ( α 1 ) 0 t ( t s ) β i ( 0 1 ( 1 τ ) α 2 μ ( τ ) d τ ) d s μ ( 1 + γ 0 + λ 0 ) u v Γ ( 1 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ 0 t ( t s ) β i s α κ 1 d s + | b | μ ( 1 + γ 0 + λ 0 ) u v | 1 + b | Γ ( 1 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ 0 t ( t s ) β i d s μ ( 1 + γ 0 + λ 0 ) u v Γ ( 1 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ 0 1 ( 1 ξ ) β i ξ α κ 1 d ξ + | b | μ ( 1 + γ 0 + λ 0 ) u v | 1 + b | Γ ( 2 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ .

Since B(ακ,1 β i )= 0 1 ( 1 ξ ) β i ξ α κ 1 dξ= Γ ( α κ ) Γ ( 1 β i ) Γ ( α β i κ + 1 ) , we obtain

| c D β i ( F u ) ( t ) c D β i ( F v ) ( t ) | ( 1 + γ 0 + λ 0 ) [ Γ ( α κ ) μ Γ ( α 1 ) Γ ( α β i κ + 1 ) ( 1 κ α κ 1 ) 1 κ + | b | μ | 1 + b | Γ ( 2 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ] u v

for all i=1,2,,n. Hence, we get

F u F v ( 1 + γ 0 + λ 0 ) [ ( 1 + 2 | a | ) μ | 1 + a | Γ ( α ) ( 1 κ α κ ) 1 κ + | b | ( 1 + 2 | a | ) μ | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ + i = 1 n ( Γ ( α κ ) μ Γ ( α 1 ) Γ ( α β i κ + 1 ) ( 1 κ α κ 1 ) 1 κ + | b | μ | 1 + b | Γ ( 2 β i ) Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ) ] u v = Δ u v .

Since Δ<1, F is a contraction mapping, therefore, by using the Banach contraction principle, F has a unique fixed point, which is the unique solution of problem (1) by using Lemma 2.2. □

Corollary 2.4 Assume that there exists L>0 such that

| f ( t , x , y , w , u 1 , u 2 , , u n ) f ( t , x , y , w , v 1 , v 2 , , v n ) | L ( | x x | + | y y | + | w w | + | u 1 v 1 | + | u 2 v 2 | + + | u n v n | )

for all t[0,1] and x,y,w, x , y , w , u 1 , u 2 ,, u n , v 1 , v 2 ,, v n R. Then problem (1) has a unique solution whenever

( 1 + γ 0 + λ 0 ) [ ( 1 + 2 | a | ) ( 1 + ( α + 1 ) | b | ) L | 1 + a | | 1 + b | Γ ( α + 1 ) + i = 1 n ( L Γ ( α β i + 1 ) + | b | L | 1 + b | Γ ( 2 β i ) Γ ( α ) ) ] < 1 ,

where γ 0 = sup t I | 0 t γ(t,s)ds|, λ 0 = sup t I | 0 t λ(t,s)ds|.

Now, we restate the Schauder’s fixed point theorem, which is needed to prove next result (see Theorem 1.10.16 in [23]).

Theorem 2.5 Let E be a closed, convex and bounded subset of a Banach space X, and let F:EE be a continuous mapping such that F(E) is a relatively compact subset of X. Then F has a fixed point in E.

Theorem 2.6 Let f:[0,1]× R n + 3 R be a continuous function such that there exists a constant l(0,α1) and a real-valued function m(t) L 1 l ([0,1],(0,)) such that

| f ( t , x , y , w , u 1 , u 2 , , u n ) | m ( t ) +d | x | ρ + d | y | ρ + d | w | ρ + d 1 | u 1 | ρ 1 + d 2 | u 2 | ρ 2 + d n | u n | ρ n ,
(*)

where d, d , d , d i 0 and 0<ρ, ρ , ρ , ρ i <1 for i=1,2,,n, or

| f ( t , x , y , w , u 1 , u 2 , , u n ) | d | x | ρ + d | y | ρ + d | w | ρ + d 1 | u 1 | ρ 1 + d 2 | u 2 | ρ 2 + + d n | u n | ρ n ,

where d, d , d , d i >0 and ρ, ρ , ρ , ρ i >1 for i=1,2,,n. Then problem (1) has a solution.

Proof First, suppose that f satisfy condition (). Define B r ={uX,ur}, where

r max { ( ( n + 4 ) A d ) 1 1 ρ , ( ( n + 4 ) A d γ 0 p ) 1 1 ρ , ( ( n + 4 ) A d λ 0 p ) 1 1 ρ , ( ( n + 4 ) A d 1 ) 1 1 ρ 1 , ( ( n + 4 ) A d 2 ) 1 1 ρ 2 , , ( ( n + 4 ) A d n ) 1 1 ρ n , ( n + 4 ) K } , K = ( 1 + 2 | a | ) M | 1 + a | Γ ( α ) ( 1 l α l ) 1 l + | b | ( 1 + 2 | a | ) M | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 l α l 1 ) 1 l + i = 1 n ( Γ ( α l ) M Γ ( α 1 ) Γ ( α β i l + 1 ) ( 1 l α l 1 ) 1 l + | b | M | 1 + b | Γ ( 2 β i ) Γ ( α 1 ) ( 1 l α l 1 ) 1 l ) , A = ( 1 + 2 | a | ) ( 1 + ( 1 + α ) | b | ) | 1 + a | | 1 + b | Γ ( α + 1 ) + i = 1 n ( 1 Γ ( α β i + 1 ) + | b | | 1 + b | Γ ( α ) Γ ( 2 β i ) )

and M= ( 0 1 ( m ( t ) ) 1 l d s ) l . Note that B r is a closed, bounded and convex subset of the Banach space X. For each u B r , we have

| ( F u ) ( t ) | = | 0 t ( t s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s a ( 1 + a ) 0 1 ( 1 s ) α 1 Γ ( α ) × f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s + a b b ( 1 + a ) t ( 1 + a ) ( 1 + b ) 0 1 ( 1 s ) α 2 Γ ( α 1 ) × f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s | 0 t ( t s ) α 1 Γ ( α ) | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) | d s + | a | | 1 + a | 0 1 ( 1 s ) α 1 Γ ( α ) × | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) | d s + | b | ( 1 + 2 | a | ) | 1 + a | | 1 + b | 0 1 ( 1 s ) α 2 Γ ( α 1 ) × | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) | d s 0 t ( t s ) α 1 Γ ( α ) m ( s ) d s + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) 0 t ( t s ) α 1 Γ ( α ) d s + | a | | 1 + a | 0 1 ( 1 s ) α 1 Γ ( α ) m ( s ) d s + | a | | 1 + a | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) × 0 1 ( 1 s ) α 1 Γ ( α ) d s + | b | ( 1 + 2 | a | ) | 1 + a | | 1 + b | 0 1 ( 1 s ) α 2 Γ ( α 1 ) m ( s ) d s + | b | ( 1 + 2 | a | ) | 1 + a | | 1 + b | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) × 0 1 ( 1 s ) α 2 Γ ( α 1 ) d s 1 Γ ( α ) ( 0 t ( ( t s ) α 1 ) 1 1 l d s ) 1 l ( 0 t ( m ( s ) ) 1 l d s ) l + | a | | 1 + a | Γ ( α ) ( 0 1 ( ( 1 s ) α 1 ) 1 1 l d s ) 1 l ( 0 1 ( m ( s ) ) 1 l d s ) l + | b | ( 1 + 2 | a | ) | 1 + a | | 1 + b | Γ ( α 1 ) ( 0 1 ( ( 1 s ) α 2 ) 1 1 l d s ) 1 l ( 0 1 ( m ( s ) ) 1 l d s ) l + ( 1 + 2 | a | ) ( 1 + ( 1 + α ) | b | ) | 1 + a | | 1 + b | Γ ( α + 1 ) × ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) ( 1 + 2 | a | ) M | 1 + a | Γ ( α ) ( 1 l α l ) 1 l + | b | ( 1 + 2 | a | ) M | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 l α l 1 ) 1 l + ( 1 + 2 | a | ) ( 1 + ( 1 + α ) | b | ) | 1 + a | | 1 + b | Γ ( α + 1 ) × ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) .

Also, we have

| c D β i ( F u ) ( t ) | = | 0 t ( t s ) β i Γ ( 1 β i ) ( F u ) ( s ) d s | = | 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , D β 1 c u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s | 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , D β 1 c u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) | d τ ) d s + | b | | 1 + b | 0 t ( t s ) β i Γ ( 1 β i ) ( 0 1 ( 1 τ ) α 2 Γ ( α 1 ) | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , D β 1 c u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) | d τ ) d s 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) m ( τ ) d τ ) d s + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) × 0 t ( t s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) d τ ) d s + | b | | 1 + b | 0 t ( t s ) β i Γ ( 1 β i ) ( 0 1 ( 1 τ ) α 2 Γ ( α 1 ) m ( τ ) d τ ) d s + | b | | 1 + b | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) × 0 t ( t s ) β i Γ ( 1 β i ) ( 0 1 ( 1 τ ) α 2 Γ ( α 1 ) d τ ) d s 1 Γ ( α 1 ) Γ ( 1 β i ) 0 t ( t s ) β i × [ ( 0 s ( ( s τ ) α 2 ) 1 1 l d τ ) 1 l ( 0 s ( m ( τ ) ) 1 l d τ ) l ] d s + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) Γ ( α ) Γ ( 1 β i ) × 0 t ( t s ) β i s α 1 d s + | b | | 1 + b | Γ ( α 1 ) Γ ( 1 β i ) × 0 t ( t s ) β i [ ( 0 1 ( ( 1 τ ) α 2 ) 1 1 l d τ ) 1 l ( 0 1 ( m ( τ ) ) 1 l d τ ) l ] d s + | b | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) | 1 + b | Γ ( α ) Γ ( 2 β i ) M Γ ( α 1 ) Γ ( 1 β i ) ( 1 l α l 1 ) 1 l 0 t ( t s ) β i s α l 1 d s + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) Γ ( α ) Γ ( 1 β i ) × 0 t ( t s ) β i s α 1 d s + | b | M | 1 + b | Γ ( α 1 ) Γ ( 1 β i ) ( 1 l α l 1 ) 1 l 0 t ( t s ) β i d s + | b | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) | 1 + b | Γ ( α ) Γ ( 2 β i ) M Γ ( α 1 ) Γ ( 1 β i ) ( 1 l α l 1 ) 1 l 0 1 ( 1 ξ ) β i ξ α l 1 d ξ + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) Γ ( α ) Γ ( 1 β i ) × 0 1 ( 1 ξ ) β i ξ α 1 d ξ + | b | M | 1 + b | Γ ( α 1 ) Γ ( 2 β i ) ( 1 l α l 1 ) 1 l + | b | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) | 1 + b | Γ ( α ) Γ ( 2 β i ) .

Since B(αl,1 β i )= 0 1 ( 1 ξ ) β i ξ α l 1 dξ= Γ ( α l ) Γ ( 1 β i ) Γ ( α β i l + 1 ) and, on the other hand, B(α,1 β i )= 0 1 ( 1 ξ ) β i ξ α 1 dξ= Γ ( α ) Γ ( 1 β i ) Γ ( α β i + 1 ) , we conclude that

| c D β i ( F u ) ( t ) | Γ ( α l ) M Γ ( α 1 ) Γ ( α β i l + 1 ) ( 1 l α l 1 ) 1 l + | b | M | 1 + b | Γ ( α 1 ) Γ ( 2 β i ) ( 1 l α l 1 ) 1 l + d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n Γ ( α β i + 1 ) + | b | ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) | 1 + b | Γ ( α ) Γ ( 2 β i )

for all i=1,2,,n. Thus,

F u ( 1 + 2 | a | ) M | 1 + a | Γ ( α ) ( 1 l α l ) 1 l + | b | ( 1 + 2 | a | ) M | 1 + a | | 1 + b | Γ ( α 1 ) ( 1 l α l 1 ) 1 l + i = 1 n [ Γ ( α l ) M Γ ( α 1 ) Γ ( α β i l + 1 ) ( 1 l α l 1 ) 1 l + | b | M | 1 + b | Γ ( α 1 ) Γ ( 2 β i ) ( 1 l α l 1 ) 1 l ] + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) × ( ( 1 + 2 | a | ) ( 1 + ( 1 + α ) | b | ) | 1 + a | | 1 + b | Γ ( α + 1 ) + i = 1 n [ 1 Γ ( α β i + 1 ) + | b | | 1 + b | Γ ( α ) Γ ( 2 β i ) ] ) = K + ( d r ρ + d γ 0 p r ρ + d λ 0 p r ρ + d 1 r ρ 1 + d 2 r ρ 2 + + d n r ρ n ) A r n + 4 × ( n + 4 ) = r .

Hence, F maps B r into B r . Now, suppose that f satisfy the second condition. In this case, choose

0 < r min { ( 1 ( n + 3 ) A d ) 1 ρ 1 , ( 1 ( n + 3 ) A d γ 0 p ) 1 ρ 1 , ( 1 ( n + 3 ) A d λ 0 p ) 1 ρ 1 , ( 1 ( n + 3 ) A d 1 ) 1 ρ 1 1 , ( 1 ( n + 3 ) A d 2 ) 1 ρ 2 1 , , ( 1 ( n + 3 ) A d n ) 1 ρ n 1 } .

By using similar arguments, one can show that Fu r n + 3 ×(n+3)=r, and so F maps B r into B r . Since f is continuous, it is easy to get that F is also continuous. Now, we show that F is completely continuous operator on B r . For each u B r , put

N= max t I { f ( t , u ( t ) , ( ϕ u ) ( t ) , ( ψ u ) ( t ) , c D β 1 u ( t ) , c D β 2 u ( t ) , , c D β n u ( t ) ) } +1.

For each t 1 , t 2 I with t 1 < t 2 , we have

| ( F u ) ( t 2 ) ( F u ) ( t 1 ) | = | 0 t 2 ( t 2 s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s 0 t 1 ( t 1 s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s + b ( t 1 t 2 ) 1 + b 0 1 ( 1 s ) α 2 Γ ( α 1 ) × f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s | = | 0 t 1 ( t 2 s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s + t 1 t 2 ( t 2 s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s 0 t 1 ( t 1 s ) α 1 Γ ( α ) f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s + b ( t 1 t 2 ) 1 + b 0 1 ( 1 s ) α 2 Γ ( α 1 ) × f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) d s | 0 t 1 ( t 2 s ) α 1 ( t 1 s ) α 1 Γ ( α ) × | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) | d s + t 1 t 2 ( t 2 s ) α 1 Γ ( α ) | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) | d s + | b | ( t 2 t 1 ) | 1 + b | 0 1 ( 1 s ) α 2 Γ ( α 1 ) × | f ( s , u ( s ) , ( ϕ u ) ( s ) , ( ψ u ) ( s ) , c D β 1 u ( s ) , c D β 2 u ( s ) , , c D β n u ( s ) ) | d s N 0 t 1 ( t 2 s ) α 1 ( t 1 s ) α 1 Γ ( α ) d s + N t 1 t 2 ( t 2 s ) α 1 Γ ( α ) d s + N | b | ( t 2 t 1 ) | 1 + b | 0 1 ( 1 s ) α 2 Γ ( α 1 ) d s = N Γ ( α + 1 ) ( t 2 α t 1 α ) + N | b | | 1 + b | Γ ( α ) ( t 2 t 1 ) .

On the other hand, for each i{1,2,,n}, we have

| c D β i ( F u ) ( t 2 ) c D β i ( F u ) ( t 1 ) | = | 0 t 2 ( t 2 s ) β i Γ ( 1 β i ) ( F u ) ( s ) d s 0 t 1 ( t 1 s ) β i Γ ( 1 β i ) ( F u ) ( s ) d s | = | 0 t 2 ( t 2 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s 0 t 1 ( t 1 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s | = | 0 t 1 ( t 2 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s + t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s 0 t 1 ( t 1 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s | = | 0 t 1 ( t 2 s ) β i ( t 1 s ) β i Γ ( 1 β i ) × ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s + t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ b 1 + b 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) d τ ) d s | 0 t 1 ( t 1 s ) β i ( t 2 s ) β i Γ ( 1 β i ) × ( 0 s ( s τ ) α 2 Γ ( α 1 ) | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) | d τ ) d s + | b | | 1 + b | 0 t 1 ( t 1 s ) β i ( t 2 s ) β i Γ ( 1 β i ) × ( 0 1 ( 1 τ ) α 2 Γ ( α 1 ) | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) | d τ ) d s + t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) × | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) | d τ ) d s + | b | | 1 + b | t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) ( 0 1 ( 1 τ ) α 2 Γ ( α 1 ) × | f ( τ , u ( τ ) , ( ϕ u ) ( τ ) , ( ψ u ) ( τ ) , c D β 1 u ( τ ) , c D β 2 u ( τ ) , , c D β n u ( τ ) ) | d τ ) d s N Γ ( α ) 0 t 1 ( t 1 s ) β i ( t 2 s ) β i Γ ( 1 β i ) s α 1 d s + N | b | | 1 + b | Γ ( α ) 0 t 1 ( t 1 s ) β i ( t 2 s ) β i Γ ( 1 β i ) d s + N Γ ( α ) t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) s α 1 d s + N | b | | 1 + b | Γ ( α ) t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) d s ( 1 + 2 | b | ) N | 1 + b | Γ ( α ) 0 t 1 ( t 1 s ) β i ( t 2 s ) β i Γ ( 1 β i ) d s + ( 1 + 2 | b | ) N | 1 + b | Γ ( α ) t 1 t 2 ( t 2 s ) β i Γ ( 1 β i ) d s ( 1 + 2 | b | ) N | 1 + b | Γ ( α ) Γ ( 2 β i ) [ ( t 2 1 β i t 1 1 β i ) + 2 ( t 2 t 1 ) 1 β i ] .

Hence,

F u ( t 2 ) F u ( t 1 ) N Γ ( α + 1 ) ( t 2 α t 1 α ) + N | b | | 1 + b | Γ ( α ) ( t 2 t 1 ) + i = 1 n ( 1 + 2 | b | ) N | 1 + b | Γ ( α ) Γ ( 2 β i ) [ ( t 2 1 β i t 1 1 β i ) + 2 ( t 2 t 1 ) 1 β i ] ,

which implies that Fu( t 2 )Fu( t 1 )0 as t 1 t 2 . Thus, F is equi-continuous and uniformly bounded. By using the Arzela-Ascoli theorem, one can get that F is completely continuous. Now, by using Theorem 2.5, F has a fixed point in B r . Therefore, problem (1) has a solution. □

Corollary 2.7 Let f:[0,1]× R n + 3 R be a continuous function such that there exists a constant l(0,α1) and a real-valued function m(t) L 1 l ([0,1],(0,)) such that |f(t,x,y,w, u 1 , u 2 ,, u n )|m(t) for all t[0,1] and x,y,w, u 1 , u 2 ,, u n R. Then problem (1) has a solution.

Finally, we should emphasize the importance of anti-periodic conditions, which appear in the case that a=1 and b=1 in the problem. For more details about this note, one can review the papers [24] and [25].

2.3 Examples

Example 2.1 Consider the boundary value problem

{ D 7 4 c u ( t ) = e π t 24 π + e π t [ sin t + e t 1 + t 3 + | u ( t ) | 1 + | u ( t ) | + e π t cos π t 1 + t 2 ( 1 + | ( ϕ u ) ( t ) + c D 1 2 u ( t ) | 1 + | ( ϕ u ) ( t ) + c D 1 2 u ( t ) | ) D 7 4 c u ( t ) = + 1 + sin 2 π t 2 ( t 3 2 + 4 ) ( ( ψ u ) ( t ) + | c D 3 4 u ( t ) | 1 + | c D 3 4 u ( t ) | ) ] , u ( 0 ) + u ( 1 ) = 0 , u ( 0 ) + u ( 1 ) = 0 ,
(2)

where (ϕu)(t)= 0 t e ( s t ) 8 u(s)ds and (ψu)(t)= 0 t e ( s t ) / 2 8 u(s)ds with γ 0 = e 1 8 and λ 0 = e 1 4 . Then, we have

| f ( t , u ( t ) , ( ϕ u ) ( t ) , ( ψ u ) ( t ) , c D 1 2 u ( t ) , c D 3 4 u ( t ) ) f ( t , v ( t ) , ( ϕ v ) ( t ) , ( ψ v ) ( t ) , c D 1 2 v ( t ) , c D 3 4 v ( t ) ) | 1 24 π ( | u ( t ) v ( t ) | + | ( ϕ u ) ( t ) ( ϕ v ) ( t ) | + | ( ψ u ) ( t ) ( ψ v ) ( t ) | + | c D 1 2 u ( t ) c D 1 2 v ( t ) | + | c D 3 4 u ( t ) c D 3 4 v ( t ) | ) .

Put μ(t)= 1 24 π L 4 ([0,1],(0,)), κ= 1 4 and μ = ( 0 1 ( 1 24 π ) 4 d s ) 1 4 = 1 24 π . Since Γ( 3 2 )= π 2 , Γ( 3 4 )1/2,254, Γ( 5 4 )0/9,064 and Γ( 7 4 )0/9,191, we have

( 1 + γ 0 + λ 0 ) [ 3 μ 2 Γ ( α ) ( 1 κ α κ ) 1 κ + μ 4 Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ + Γ ( α κ ) μ Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ( 1 Γ ( α β 1 κ + 1 ) + 1 Γ ( α β 2 κ + 1 ) ) + μ 2 Γ ( α 1 ) ( 1 κ α κ 1 ) 1 κ ( 1 Γ ( 2 β 1 ) + 1 Γ ( 2 β 2 ) ) ] = ( 1 + e 1 8 + e 1 4 ) [ 1 16 π Γ ( 7 4 ) ( 1 2 ) 3 4 + 1 96 π Γ ( 3 4 ) ( 3 2 ) 3 4 + Γ ( 3 2 ) 24 π Γ ( 3 4 ) ( 3 2 ) 3 4 ( 1 Γ ( 2 ) + 1 Γ ( 7 4 ) ) + 1 48 π Γ ( 3 4 ) ( 3 2 ) 3 4 ( 1 Γ ( 3 2 ) + 1 Γ ( 5 4 ) ) ] 0 / 1 , 466 < 1 .

Thus, by using Theorem 2.3, the boundary value problem (2) has a unique solution.

Example 2.2 Consider the boundary value problem

{ D α c u ( t ) = λ e π t 1 + t 2 + cos π t π + | u ( t ) | + | c D 1 2 u ( t ) | ( u ( t ) ) σ 1 + e π t ( 1 + sin 2 u ( t ) ) ( t + 6 ) 3 ( ( ϕ u ) ( t ) ) σ 2 D α c u ( t ) = + t u ( t ) ( 4 + t 2 ) ( 1 + | u ( t ) | ) ( ( ψ u ) ( t ) ) σ 3 D α c u ( t ) = + ( 1 + α ) ( t 1 2 ) 2 Γ ( α ) ( 1 + | u ( t ) + c D 3 2 u ( t ) | ) k = 1 4 ( sin k π t 2 k ) ( D β k c u ( t ) ) δ k , u ( 0 ) + 1 2 u ( 1 ) = 0 , u ( 0 ) + 2 3 u ( 1 ) = 0 ,
(3)

where α= 9 5 , β 1 = 1 2 , β 2 = 4 5 , β 3 = 2 3 , β 4 = 1 7 , λ[0,), (ϕu)(t)= 0 t s 2 e ( s t ) / 2 s 3 + 4 u(s)ds and (ψu)(t)= 0 t ( t s ) 5 1 + s 2 u(s)ds. Then, we have

| f ( t , u ( t ) , ( ϕ u ) ( t ) , ( ψ u ) ( t ) , c D β 1 u ( t ) , c D β 2 u ( t ) , c D β 3 u ( t ) , c D β 4 u ( t ) ) | m ( t ) + 1 π | u ( t ) | σ 1 + 1 108 | ( ϕ u ) ( t ) | σ 2 + 1 4 | ( ψ u ) ( t ) | σ 3 + k = 1 4 ( 1 + α ) Γ ( α ) 2 k + 2 | c D β k u ( t ) | δ k ,

where m(t)= λ e π t 1 + t 2 for all t[0,1]. If 0< σ j <1, 0< δ i <1 for j=1,2,3 and i=1,2,3,4, then assumption () holds. If λ=0 and σ j , δ i >1 for j=1,2,3 and i=1,2,3,4, then the second condition of Theorem 2.6 holds. Thus, by using Theorem 2.6, the boundary value problem (3) has a solution.

3 Conclusions

Fractional nonlinear differential equations, fractional integro-differential equations and their applications represent a topic of high interest in the area of fractional calculus and its applications in various fields of science and engineering [7]. In this article, based on the Schauder’s fixed point theorem, we have proved some existence results for the multi-term nonlinear fractional integro-differential equation (1).

References

  1. Hilfer R: Applications of Fractional Calculus in Physics. World Scientific, Singapore; 2000.

    Book  Google Scholar 

  2. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studied 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  3. Podlubny I Mathematics in Science and Engineering. In Fractional Differential Equations. Academic Press, San Diego; 1999.

    Google Scholar 

  4. Ahmad B:Existence of solutions for fractional differential equations of order q(2,3) with anti-periodic boundary conditions. J. Appl. Math. Comput. 2009, 34: 385-391.

    Article  Google Scholar 

  5. Baleanu D, Agarwal RP, Mohammadi H, Rezapour S: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 2013., 2013: Article ID 112

    Google Scholar 

  6. Baleanu D, Mohammadi H, Rezapour S: Positive solutions of a boundary value problem for nonlinear fractional differential equations. Abstr. Appl. Anal. 2012., 2012: Article ID 837437

    Google Scholar 

  7. Baleanu D, Mohammadi H, Rezapour S: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. Lond. A 2013., 371: Article ID 20120144

    Google Scholar 

  8. Baleanu D, Mohammadi H, Rezapour S: On a nonlinear fractional differential equation on partially ordered metric spaces. Adv. Differ. Equ. 2013., 2013: Article ID 83

    Google Scholar 

  9. Chang YK, Nieto JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 2009, 49: 605-609. 10.1016/j.mcm.2008.03.014

    Article  MathSciNet  Google Scholar 

  10. Chen A, Chen Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations. Differ. Equ. Dyn. Syst. 2011, 19(3):237-252. 10.1007/s12591-011-0086-2

    Article  MathSciNet  Google Scholar 

  11. Davi JV, Lakshmikantham V: Nonsmooth analysis and fractional differential equations. Nonlinear Anal. 2008, 69: 2677-2682. 10.1016/j.na.2007.08.042

    Article  MathSciNet  Google Scholar 

  12. Lakshmikantham V, Vatsala AS: Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69: 2677-2682. 10.1016/j.na.2007.08.042

    Article  MathSciNet  Google Scholar 

  13. Li CF, Luo XN, Zhou Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 2010, 59: 1363-1375. 10.1016/j.camwa.2009.06.029

    Article  MathSciNet  Google Scholar 

  14. Sun S, Li Q, Li Y: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 2012. 10.1016/j.camwa.2012.01.065

    Google Scholar 

  15. Jaradat O, Al-Omari A, Momani SM: Existence of the mild solution for fractional semilinear initial value problems. Nonlinear Anal. 2008, 69: 3153-3159. 10.1016/j.na.2007.09.008

    Article  MathSciNet  Google Scholar 

  16. Momani SM, El-Khazali R: On the existence of extremal solutions of fractional integro-differential equations. J. Fract. Calc. 2000, 18: 87-92.

    MathSciNet  Google Scholar 

  17. Momani SM: Some existence theorems on fractional integro-differential equations. Abhath Al-Yarmouk J. 2001, 10: 435-444.

    Google Scholar 

  18. Momani SM, Hadid SB: On the inequalities of integro-differential fractional equations. Int. J. Appl. Math. 2003, 12(1):29-37.

    MathSciNet  Google Scholar 

  19. Momani SM, Hadid SB: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 2003, 24: 379-387.

    MathSciNet  Google Scholar 

  20. Xinwei S, Landong L: Existence of solution for boundary value problem of nonlinear fractional differential equation. Appl. Math. J. Chin. Univ. Ser. B 2007, 22(3):291-298. 10.1007/s11766-007-0306-2

    Article  Google Scholar 

  21. Su X, Zhang S: Solutions to boundary value problems for nonlinear differential equations of fractional order. Electron. J. Differ. Equ. 2009., 2009: Article ID 26

    Google Scholar 

  22. Ahmad B, Sivasundaram S: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 2010, 217: 480-487. 10.1016/j.amc.2010.05.080

    Article  MathSciNet  Google Scholar 

  23. Agarwal RP, O’Regan D, Sahu DR: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Berlin; 2009.

    Google Scholar 

  24. Ahmad B: Nonlinear fractional differential equations with anti-periodic type fractional boundary conditions. Differ. Equ. Dyn. Syst. 2012. 10.1007/s12591-012-0154-2

    Google Scholar 

  25. Ahmad B, Nieto JJ: Anti-periodic fractional boundary value problems with nonlinear term depending on lower order. Fract. Calc. Appl. Anal. 2012, 15: 451-462.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Research of the second and the third authors was supported by Azarbaijan Shahid Madani University. Also, the authors express their gratitude to the referees for their helpful suggestions, which improved the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have equal contributions. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Baleanu, D., Nazemi, S.Z. & Rezapour, S. Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv Differ Equ 2013, 368 (2013). https://doi.org/10.1186/1687-1847-2013-368

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-368

Keywords