Theory and Modern Applications

# Stability of the solutions for nonlinear fractional differential equations with delays and integral boundary conditions

## Abstract

In this article, we establish sufficient conditions for the existence, uniqueness and stability of solutions for nonlinear fractional differential equations with delays and integral boundary conditions.

MSC:34A08, 34A30, 34D20.

## 1 Introduction

Fractional differential equations is a generalization of ordinary differential equations and integration to arbitrary non-integer orders. The origin of fractional calculus goes back to Newton and Leibniz in the seventeenth century. Fractional differential equations appear naturally in a number of fields such as physics, engineering, biophysics, blood flow phenomena, aerodynamics, electron-analytical chemistry, biology, control theory, etc. An excellent account of the study of fractional differential equations can be found in  and the references therein. Boundary value problems for fractional differential equations have been discussed in . By contrast, the development of stability for solutions of fractional differential equations is a bit slow. El-Sayed, Gaafar and Hamadalla  discuss the existence, uniqueness and stability of solutions for the non-local non-autonomous system of fractional order differential equations with delays

${D}^{\alpha }{x}_{i}\left(t\right)=\sum _{j=1}^{n}{a}_{ij}\left(t\right){x}_{j}\left(t\right)+\sum _{j=1}^{n}{b}_{ij}\left(t\right){x}_{j}\left(t-{r}_{j}\right)+{h}_{i}\left(t\right),\phantom{\rule{1em}{0ex}}t>0,$

where ${D}^{\alpha }$ denotes the Riemann-Liouville derivative of order α.

We consider nonlinear fractional differential equations with delay and integral boundary conditions of the form

${D}^{\alpha }x\left(t\right)=\sum _{j=1}^{n}{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right),\phantom{\rule{1em}{0ex}}t>0,$
(1.1)
(1.2)
${I}^{1-\alpha }x\left(t\right){|}_{t=0}=0,$
(1.3)

where $\alpha \in \left(0,1\right)$, $f:{\mathbb{R}}^{+}×{\mathbb{R}}^{2}\to \mathbb{R}$ are continuous functions, ${a}_{j}\left(t\right)$, $\varphi \left(t\right)$ are given continuous functions, ${\tau }_{j}\ge 0$, $j=1,2,\dots ,n$ are constants.

In this article our aim is to show the existence of a unique solution for (1.1)-(1.3) and its uniform stability.

## 2 Preliminaries

In this section, we introduce notation, definitions and preliminary facts which are used throughout this paper.

Definition 2.1 The fractional integral of order $\alpha >0$ of a function $f:{\mathbb{R}}^{+}\to \mathbb{R}$ of order $\alpha \in {\mathbb{R}}^{+}$ is defined by

${I}^{\alpha }f\left(t\right)=\frac{1}{\mathrm{\Gamma }\left(\alpha \right)}{\int }_{0}^{t}{\left(t-s\right)}^{\alpha -1}f\left(s\right)\phantom{\rule{0.2em}{0ex}}ds,$

provided the right-hand side exists pointwise on ${\mathbb{R}}^{+}$. Γ is the gamma function.

For instance, ${I}^{\alpha }f$ exists for all $\alpha >0$ when $f\in {C}^{0}\left({\mathbb{R}}^{+}\right)\cap {L}_{\mathrm{loc}}^{1}\left({\mathbb{R}}^{+}\right)$; note also that when $f\in {C}^{0}\left({\mathbb{R}}_{0}^{+}\right)$, then ${I}^{\alpha }f\in {C}^{0}\left({\mathbb{R}}_{0}^{+}\right)$ and moreover ${I}^{\alpha }f\left(0\right)=0$.

Definition 2.2 The Riemann-Liouville fractional derivative of order $\alpha \in \left(0,1\right)$ of a function $f:{\mathbb{R}}^{+}\to \mathbb{R}$ is given by

${D}^{\alpha }f\left(t\right)=\frac{d}{dt}{I}^{1-\alpha }f\left(t\right)=\frac{1}{\mathrm{\Gamma }\left(1-\alpha \right)}\frac{d}{dt}{\int }_{0}^{t}{\left(t-s\right)}^{-\alpha }f\left(s\right)\phantom{\rule{0.2em}{0ex}}ds.$

Definition 2.3 Let $f:{\mathbb{R}}^{+}×{\mathbb{R}}^{2}\to \mathbb{R}$ be continuous functions and satisfy the Lipschitz conditions

$|f\left(t,x,{y}_{j}\right)-f\left(t,u,{v}_{j}\right)|\le k|x-u|+{k}_{j}|{y}_{j}-{v}_{j}|,\phantom{\rule{1em}{0ex}}k>0,{k}_{j}>0,j=1,2,\dots ,n$

for all $x,{y}_{j},u,{v}_{j}\in \mathbb{R}$.

## 3 Existence of a unique solution for nonlinear fractional differential equations (1.1)-(1.3)

Let X be the class of all continuous functions defined on ${\mathbb{R}}^{+}$ with the norm

$\parallel x\parallel =\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)|\right\},\phantom{\rule{1em}{0ex}}x\in X.$

Theorem 3.1 Let $f:{\mathbb{R}}^{×}{\mathbb{R}}^{2}\to \mathbb{R}$ be continuous and satisfy the Lipschitz condition: if

$\frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}<1,$

where ${a}_{j}={max}_{t\in {\mathbb{R}}^{+}}\left\{|{a}_{j}\left(t\right)|\right\}$, then nonlinear fractional differential equations (1.1)-(1.3) have a unique positive solution.

Proof For $t>0$, equation (1.1) can be written as

$\frac{d}{dt}{I}^{1-\alpha }x\left(t\right)=\sum _{j=1}^{n}{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right).$

Integrating both sides of the above equation, we obtain

${I}^{1-\alpha }x\left(t\right)-{I}^{1-\alpha }x\left(t\right){|}_{t=0}=\sum _{j=1}^{n}{\int }_{0}^{t}{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)\phantom{\rule{0.2em}{0ex}}ds$

then

${I}^{1-\alpha }{x}_{i}\left(t\right)=\sum _{j=1}^{n}{\int }_{0}^{t}{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)\phantom{\rule{0.2em}{0ex}}ds.$

Applying the operator by ${I}^{\alpha }$ on both sides,

$Ix\left(t\right)=\sum _{j=1}^{n}{I}^{\alpha +1}{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)$

differentiating both sides, we obtain

$x\left(t\right)=\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right).$
(3.1)

Now, let $F:X\to X$ be defined by

$Fx=\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right).$

Then

$\begin{array}{rcl}|Fx\left(t\right)-Fy\left(t\right)|& =& |\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)-\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,y\left(t\right),y\left(t-{\tau }_{j}\right)\right)|\\ =& |\sum _{j=1}^{n}{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}\left\{{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)-{a}_{j}\left(s\right)f\left(s,y\left(s\right),y\left(s-{\tau }_{j}\right)\right)\right\}\phantom{\rule{0.2em}{0ex}}ds|\\ \le & \sum _{j=1}^{n}{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)-{a}_{j}\left(s\right)f\left(s,y\left(s\right),y\left(s-{\tau }_{j}\right)\right)|\phantom{\rule{0.2em}{0ex}}ds\\ \le & \sum _{j=1}^{n}{a}_{j}{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}\left\{k|x\left(s\right)-y\left(s\right)|+{k}_{j}|x\left(s-{\tau }_{j}\right)-y\left(s-{\tau }_{j}\right)|\right\}\phantom{\rule{0.2em}{0ex}}ds\\ \le & \sum _{j=1}^{n}{a}_{j}k{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s\right)-y\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\\ +\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{0}^{{\tau }_{j}}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s-{\tau }_{j}\right)-y\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\\ +\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{{\tau }_{j}}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s-{\tau }_{j}\right)-y\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds.\end{array}$

By conditions (1.2), we have

$\begin{array}{rcl}|Fx\left(t\right)-Fy\left(t\right)|& \le & \sum _{j=1}^{n}{a}_{j}k{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s\right)-y\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\\ +\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{{\tau }_{j}}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s-{\tau }_{j}\right)-y\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\end{array}$

and

$\begin{array}{c}{e}^{-Nt}|Fx\left(t\right)-Fy\left(t\right)|\hfill \\ \phantom{\rule{1em}{0ex}}\le \sum _{j=1}^{n}{a}_{j}k{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-s\right)}{e}^{-Ns}|x\left(s\right)-y\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{{\tau }_{j}}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-s+{\tau }_{j}\right)}{e}^{-N\left(s-{\tau }_{j}\right)}|x\left(s-{\tau }_{j}\right)-y\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\hfill \\ \phantom{\rule{1em}{0ex}}\le \sum _{j=1}^{n}{a}_{j}k\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\right\}{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-s\right)}\phantom{\rule{0.2em}{0ex}}ds\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{0}^{t-{\tau }_{j}}\frac{{\left(t-\theta -{\tau }_{j}\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-\theta \right)}{e}^{-N\theta }|x\left(\theta \right)-y\left(\theta \right)|\phantom{\rule{0.2em}{0ex}}d\theta \hfill \\ \phantom{\rule{1em}{0ex}}\le \sum _{j=1}^{n}{a}_{j}k\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\right\}{\int }_{0}^{Nt}\frac{{u}^{\alpha -1}{e}^{-u}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}du\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\right\}{\int }_{0}^{t-\tau }\frac{{\left(t-\theta -{\tau }_{j}\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-\theta \right)}\phantom{\rule{0.2em}{0ex}}d\theta \hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x-y\parallel +\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\right\}{\int }_{0}^{t-{\tau }_{j}}\frac{{u}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-Nu}{e}^{-N{\tau }_{j}}\phantom{\rule{0.2em}{0ex}}du\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x-y\parallel +\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\right\}\frac{{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}{\int }_{0}^{N\left(t-{\tau }_{j}\right)}\frac{{u}^{\alpha -1}{e}^{-u}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}du\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x-y\parallel +\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\right\}\frac{{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x-y\parallel +\frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\underset{t\in {\mathbb{R}}^{+}}{sup}{e}^{-Nt}|x\left(t\right)-y\left(t\right)|\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}\parallel x-y\parallel .\hfill \end{array}$

Now, choose N large enough such that $\frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}<1$. So, the map $F:X\to X$ is a contraction and it has a fixed point $x=Fx$, and hence there exists a unique $x\in X$ which is a solution of integral equation (3.1).

We now prove the equivalence between integral equation (3.1) and nonlinear fractional differential equations (1.1)-(1.3). Indeed, since $x\in X$ and ${I}^{1-\alpha }x\left(t\right)\in C\left(X\right)$, applying the operator ${I}^{1-\alpha }$ on both sides of (3.1), we obtain

$\begin{array}{rcl}{I}^{1-\alpha }x\left(t\right)& =& \sum _{j=1}^{n}{I}^{1-\alpha }{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)\\ =& \sum _{j=1}^{n}I{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right).\end{array}$

Differentiating both sides,

$D{I}^{1-\alpha }x\left(t\right)=\sum _{j=1}^{n}DI{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right),$

we get

${D}^{\alpha }x\left(t\right)=\sum _{j=1}^{n}{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right),\phantom{\rule{1em}{0ex}}t>0,$

which proves the equivalence of (3.1) and (1.1). We want to prove that ${lim}_{t\to {0}^{+}}x=0$. Since ${a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)$ are continuous on $\left[0,T\right]$, there exist constants m, M such that $m\le {a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)\le M$. We have

${I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)=\frac{1}{\mathrm{\Gamma }\left(\alpha \right)}{\int }_{0}^{t}{\left(t-s\right)}^{\alpha -1}{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)\phantom{\rule{0.2em}{0ex}}ds,$

which implies

$\begin{array}{c}\begin{array}{rl}m{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}ds& \le {I}^{\alpha }f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)\\ \le M{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}ds,\end{array}\hfill \\ \begin{array}{rl}nm{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}ds& \le \sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)\\ \le nM{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}ds,\end{array}\hfill \end{array}$

which in turn implies

$nm\frac{{t}^{\alpha }}{\mathrm{\Gamma }\left(\alpha +1\right)}\le \sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)\le nM\frac{{t}^{\alpha }}{\mathrm{\Gamma }\left(\alpha +1\right)}$

and

$\underset{t\to {0}^{+}}{lim}\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)=0.$

Then from (3.1) ${lim}_{t\to {0}^{+}}x\left(t\right)=0$ and from (1.2), we have ${lim}_{t\to {0}^{+}}\varphi \left(t\right)=0$. □

Now, for $t\in \left(-\mathrm{\infty },T\right]$, $T<\mathrm{\infty }$, the solution of nonlinear fractional differential equations (1.1)-(1.3) takes the form

$x\left(t\right)=\left\{\begin{array}{cc}\varphi \left(t\right),\hfill & t<0,\hfill \\ 0,\hfill & t=0,\hfill \\ {\sum }_{j=1}^{n}\frac{1}{\mathrm{\Gamma }\left(\alpha \right)}{\int }_{0}^{t}{\left(t-s\right)}^{\alpha -1}{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)\phantom{\rule{0.2em}{0ex}}ds,\hfill & t>0.\hfill \end{array}$

## 4 Stability of a unique solution for nonlinear fractional differential equations (1.1)-(1.3)

In this section, we study the stability of the solution of nonlinear fractional differential equations (1.1)-(1.3).

The $\stackrel{˜}{x}\left(t\right)$ is a solution of the nonlinear fractional differential equations

Definition 4.1 The solution of nonlinear fractional differential equation (1.1) is stable if for any $ϵ>0$, there exists $\delta >0$ such that for any two solutions $x\left(t\right)$ and $\stackrel{˜}{x}\left(t\right)$ of nonlinear fractional differential equations (1.1)-(1.3) and $\stackrel{˜}{P}$ respectively, one has $\parallel \varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)\parallel \le \delta$, then $\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel <ϵ$ for all $t\ge 0$.

Theorem 4.2 The solution of nonlinear fractional differential equations (1.1)-(1.3) is uniformly stable.

Proof Let $x\left(t\right)$ and $\stackrel{˜}{x}\left(t\right)$ be the solutions of nonlinear fractional differential equations (1.1)-(1.3) and $\stackrel{˜}{P}$ respectively, then for $t>0$, from (3.1), we have

$\begin{array}{rcl}|x\left(t\right)-\stackrel{˜}{x}\left(t\right)|& =& |\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,x\left(t\right),x\left(t-{\tau }_{j}\right)\right)-\sum _{j=1}^{n}{I}^{\alpha }{a}_{j}\left(t\right)f\left(t,\stackrel{˜}{x}\left(t\right),\stackrel{˜}{x}\left(t-{\tau }_{j}\right)\right)|\\ \le & \sum _{j=1}^{n}{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|{a}_{j}\left(s\right)f\left(s,x\left(s\right),x\left(s-{\tau }_{j}\right)\right)-{a}_{j}\left(s\right)f\left(s,\stackrel{˜}{x}\left(s\right),\stackrel{˜}{x}\left(s-{\tau }_{j}\right)\right)|\phantom{\rule{0.2em}{0ex}}ds\\ \le & \sum _{j=1}^{n}{a}_{j}k{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s\right)-\stackrel{˜}{x}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\\ +\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{0}^{{\tau }_{j}}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|\varphi \left(s-{\tau }_{j}\right)-\stackrel{˜}{\varphi }\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\\ +\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{{\tau }_{j}}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}|x\left(s-{\tau }_{j}\right)-\stackrel{˜}{x}\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\end{array}$

and

$\begin{array}{c}{e}^{-Nt}|x\left(t\right)-\stackrel{˜}{x}\left(t\right)|\hfill \\ \phantom{\rule{1em}{0ex}}\le \sum _{j=1}^{n}{a}_{j}k{\int }_{0}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-s\right)}{e}^{-Ns}|x\left(s\right)-\stackrel{˜}{x}\left(s\right)|\phantom{\rule{0.2em}{0ex}}ds\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{0}^{{\tau }_{j}}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-s+{\tau }_{j}\right)}{e}^{-N\left(s-{\tau }_{j}\right)}|\varphi \left(s-{\tau }_{j}\right)-\stackrel{˜}{\varphi }\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}{\int }_{{\tau }_{j}}^{t}\frac{{\left(t-s\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-s+{\tau }_{j}\right)}{e}^{-N\left(s-{\tau }_{j}\right)}|x\left(s-{\tau }_{j}\right)-\stackrel{˜}{x}\left(s-{\tau }_{j}\right)|\phantom{\rule{0.2em}{0ex}}ds\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel {\int }_{0}^{Nt}\frac{{u}^{\alpha -1}{e}^{-u}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}du\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|\varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)|\right\}{\int }_{-{\tau }_{j}}^{0}\frac{{\left(t-\theta -{\tau }_{j}\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-\theta \right)}\phantom{\rule{0.2em}{0ex}}d\theta \hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-\stackrel{˜}{x}\left(t\right)|\right\}{\int }_{0}^{t-{\tau }_{j}}\frac{{\left(t-\theta -{\tau }_{j}\right)}^{\alpha -1}}{\mathrm{\Gamma }\left(\alpha \right)}{e}^{-N\left(t-\theta \right)}\phantom{\rule{0.2em}{0ex}}d\theta \hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel \hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|\varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)|\right\}\frac{{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}{\int }_{N\left(t-{\tau }_{j}\right)}^{Nt}\frac{{u}^{\alpha -1}{e}^{-Nu}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}du\hfill \\ \phantom{\rule{2em}{0ex}}+\sum _{j=1}^{n}{a}_{j}{k}_{j}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-\stackrel{˜}{x}\left(t\right)|\right\}\frac{{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}{\int }_{0}^{N\left(t-\tau \right)}\frac{{u}^{\alpha -1}{e}^{-u}}{\mathrm{\Gamma }\left(\alpha \right)}\phantom{\rule{0.2em}{0ex}}du\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}k}{{N}^{\alpha }}\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel +\frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|x\left(t\right)-\stackrel{˜}{x}\left(t\right)|\right\}\hfill \\ \phantom{\rule{2em}{0ex}}+\frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\underset{t\in {\mathbb{R}}^{+}}{sup}\left\{{e}^{-Nt}|\varphi \left(t\right)-\stackrel{˜}{\varphi }j\left(t\right)|\right\}\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel +\frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\parallel \varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)\parallel .\hfill \end{array}$

Then

$\left[1-\frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}\right]\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel \le \frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\parallel \varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)\parallel$

and

$\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel \le \frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}{\left[1-\frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}\right]}^{-1}\parallel \varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)\parallel ;$

therefore, for $ϵ>0$, we can find $\delta ={\left(\frac{{\sum }_{j=1}^{n}{a}_{j}{k}_{j}{e}^{-N{\tau }_{j}}}{{N}^{\alpha }}\right)}^{-1}\left[1-\frac{{\sum }_{j=1}^{n}{a}_{j}\left(k+{k}_{j}{e}^{-N{\tau }_{j}}\right)}{{N}^{\alpha }}\right]ϵ$ such that $\parallel \varphi \left(t\right)-\stackrel{˜}{\varphi }\left(t\right)\parallel <\delta$. Then $\parallel x\left(t\right)-\stackrel{˜}{x}\left(t\right)\parallel \le ϵ$, which proves that the solution $x\left(t\right)$ is uniformly stable. □

## References

1. Machado JT, Kiryakova V, Mainardi F: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16(3):1140-1153. 10.1016/j.cnsns.2010.05.027

2. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. Theory and Applications of Fractional Differential Equations 2006.

3. Diethelm K: The Analysis of Fractional Differential Equations. Springer, Berlin; 2010.

4. Agarwal RP, O’Regan D, Stanek S: Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 2012, 285: 27-41. 10.1002/mana.201000043

5. Agarwal RP, O’Regan D, Stanek S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 2010, 371: 57-68. 10.1016/j.jmaa.2010.04.034

6. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.

7. Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

8. Samko SG, Kilbas AA, Marichev OI: Fractional Integral and Derivatives. Gordon & Breach, New York; 1993.

9. Podlubny I Mathematics in Science and Engineering 198. In Fractional Differential Equations. Academic Press, New York; 1999.

10. Sabatier J, Agrawal OP, Tenreiro Machado JA: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin; 2007.

11. Lakshmikantham V, Leela S, Vasundhara Devi J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge; 2009.

12. Yang L, Chen H, Luo L, Luo Z: Successive iteration and positive solutions for boundary value problem of nonlinear fractional q -difference equation. J. Appl. Math. Comput. 2012. doi:10.1007/s12190-012-0622-4

13. Yang L, Chen H: Nonlocal boundary value problem for impulsive differential equations of fractional order. Adv. Differ. Equ. 2011. doi:10.1155/2011/404917

14. Su X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22: 64-69. 10.1016/j.aml.2008.03.001

15. Wang G, Liu W: Existence results for a coupled system of nonlinear fractional 2 m -point boundary value problems at resonance. Adv. Differ. Equ. 2011. doi:10.1186/1687-1847-2011-44

16. Caballero J, Harjani J, Sadarangani K: Positive solutions for a class of singular fractional boundary-value problems. Comput. Math. Appl. 2011, 62: 1325-1332. 10.1016/j.camwa.2011.04.013

17. Staněk S: The existence of positive solutions of singular fractional boundary-value problems. Comput. Math. Appl. 2011, 62: 1379-1388. 10.1016/j.camwa.2011.04.048

18. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006., 2006: Article ID 36

19. Ahmad B, Nieto JJ: Existence of solution for non-local boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009., 2009: Article ID 494720

20. Liu S, Jia M, Tian Y: Existence of positive solutions for boundary-value problems with integral boundary conditions and sign changing nonlinearities. Electron. J. Differ. Equ. 2010., 2010: Article ID 163

21. Ahmad B, Nieto JJ: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009., 2009: Article ID 708576

22. Zhang X: Some results of linear fractional order time-delay system. Appl. Math. Comput. 2008, 197(1):407-411. 10.1016/j.amc.2007.07.069

23. El-Sayed AMA, Gaafar FM, Hamadalla EMA: Stability for a non-local non-autonomous system of fractional order differential equations with delays. Electron. J. Differ. Equ. 2010., 2010: Article ID 31

## Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province (13JJ6068, 12JJ9001), Hunan Provincial Science and Technology Department of Science and Technology Project (2012SK3117) and Construct program of the key discipline in Hunan Province.

## Author information

Authors

### Corresponding author

Correspondence to Zhenghui Gao.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

ZG carried out the stability of the solutions for nonlinear fractional differential equations studies and drafted the manuscript. LY and ZL carried out the stability of the solutions for nonlinear fractional differential equations studies. All authors read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Gao, Z., Yang, L. & Luo, Z. Stability of the solutions for nonlinear fractional differential equations with delays and integral boundary conditions. Adv Differ Equ 2013, 43 (2013). https://doi.org/10.1186/1687-1847-2013-43

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-1847-2013-43

### Keywords

• Riemann-Liouvile derivatives
• nonlinear fractional differential equation
• delay
• integral boundary conditions
• stability 