Skip to main content

Theory and Modern Applications

On the fourth power mean of the general k th Kloosterman sums

Abstract

Let q>2 be an integer, and let χ be a Dirichlet character modulo q. For integers m, n and k, the general k th Kloosterman sum S(m,n,k,χ;q) is defined by S(m,n,k,χ;q)= a = 1 q χ(a)e( m a k + n a ¯ k q ), where ∑ denotes the summation over all a with (a,q)=1, e(y)= e 2 π i y , and a ¯ is the inverse of a modulo q such that a a ¯ 1modq and 1 a ¯ q. In this paper we further study the fourth power mean χ mod q m = 1 q |S(m,n,k,χ;q) | 4 , and we give some identities.

MSC:11F20.

1 Introduction

Let q>2 be an integer, and let χ be a Dirichlet character modulo q. For arbitrary integers m and n, the general Kloosterman sum S(m,n,χ;q) is defined by

S(m,n,χ;q)= a = 1 q χ(a)e ( m a + n a ¯ q ) ,

where ∑ denotes the summation over all a with (a,q)=1, e(y)= e 2 π i y , and a ¯ is the inverse of a modulo q such that a a ¯ 1modq and 1 a ¯ q. For q=p a prime, Chowla [1] and Malyshev [2] proved an upper bound:

|S(m,n,χ;p)| ( m , n , p ) 1 / 2 p 1 / 2 + ϵ ,

where (m,n,p) is the great common divisor of m, n and p.

For general integer q>2, we do not know how large |S(m,n,χ;q)| is. However, |S(m,n,χ;q)| enjoys good value distribution properties. For fixed integer n with (n,q)=1, Zhang [3] showed the identity

χ mod q m = 1 q |S(m,n,χ;q) | 4 = ϕ 2 (q) q 2 d(q) p α q ( 1 2 α + 1 p α 1 1 p α ( p 1 ) + α 4 p α 1 ( α + 1 ) p α ) ,

where d(q) is the divisor function, ϕ(q) is the Euler function, and p α q denotes the product over all prime divisors p of q with p α q and p α + 1 q.

For integers m, n and k, the general k th Kloosterman sum S(m,n,k,χ;q) is defined by

S(m,n,k,χ;q)= a = 1 q χ(a)e ( m a k + n a ¯ k q ) .

Suppose that (nk,q)=1. Liu and Zhang [4] proved the identity:

χ mod q m = 1 q | S ( m , n , k , χ ; q ) | 4 = ϕ 2 ( q ) q 2 p α q ( k , p 1 ) 2 ( α 1 + 2 ( p 1 ) ( k , p 1 ) p + α p α 2 ( p α 1 ) p α ( p 1 ) ) .

In this paper we further consider the situation (k,q)>1. Our result is a generalization of [4].

Theorem 1.1 Let p be an odd prime, n be any integer. Let α and k be positive integers with d=(k,p1) and (k, p α 1 )= p δ . Then we have

χ mod p α m = 1 p α | S ( m , n , k , χ ; p α ) | 4 = { 2 d ϕ 3 ( p α ) p α + δ ( 1 d 2 ϕ ( p ) ) + d 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p α δ 1 1 ) , α 2 2 δ α 1 ; 2 d ϕ 3 ( p α ) p α + δ ( 1 d 2 ϕ ( p ) ) + d 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p δ + 1 1 ) + d 2 ϕ 2 ( p α ) p 2 α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) , 0 δ α 3 2 .

From Theorem 1.1 we immediately get the following corollary.

Corollary 1.1 Let p be an odd prime, n be any integer. Let α and k be positive integers. Assume that one of the following conditions holds:

  1. (1)

    α=1;

  2. (2)

    α=2 and (k, p α 1 )>1;

  3. (3)

    α2 and (k, p α 1 )= p α 1 .

Then we have

χ mod p α m = 1 p α |S ( m , n , k , χ ; p α ) | 4 =2 ϕ 3 ( p α ) p α ( k , ϕ ( p α ) ) ( 1 d 2 ϕ ( p ) ) .

Theorem 1.2 Let q>2 be an odd number, n be an integer with (n,q)=1, and let k be a positive integer. Then we have

χ mod q m = 1 q | S ( m , n , k , χ ; q ) | 4 = p α q ( k , p α 1 ) = p δ α 2 2 δ α 1 ( 2 ( k , p 1 ) ϕ 3 ( p α ) p α + δ ( 1 ( k , p 1 ) 2 ϕ ( p ) ) + ( k , p 1 ) 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p α δ 1 1 ) ) × p α q ( k , p α 1 ) = p δ 0 δ α 3 2 ( 2 ( k , p 1 ) ϕ 3 ( p α ) p α + δ ( 1 ( k , p 1 ) 2 ϕ ( p ) ) + ( k , p 1 ) 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p δ + 1 1 ) + ( k , p 1 ) 2 ϕ 2 ( p α ) p 2 α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) ) .

From Theorem 1.2 we can get the following corollary.

Corollary 1.2 Let q>2 be an odd number, n be an integer with (n,q)=1, and let k be a positive integer. Assume that one of the following conditions holds:

  1. (1)

    q is square-free;

  2. (2)

    q= p 1 2 p r 2 and p 1 p r k;

  3. (3)

    q= i = 1 α i 2 r p i α i and qk i = 1 r p i .

Then we have

χ mod q m = 1 q |S(m,n,k,χ;q) | 4 = 2 ω ( q ) ϕ 3 (q)q ( k , ϕ ( q ) ) p α q ( 1 ( k , p 1 ) 2 ϕ ( p ) ) .

2 Some lemmas

To complete the proof of theorems, we need the following lemmas.

Lemma 2.1 Let p be an odd prime, and let α and k be positive integers with (k, p α 1 )= p δ . Write d=(k,p1). Then we have

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1= { 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 p α + δ 1 ( p α δ 1 1 ) , α 2 2 δ α 1 ; 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 p α + δ 1 ( p δ + 1 1 ) + d 2 p α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) , 0 δ α 3 2 .

Proof For α=1, we get

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1= a = 1 p 1 b = 1 p 1 p ( a k 1 ) ( b k 1 ) 1=2d(p1) d 2 =2dϕ(p) ( 1 d 2 ϕ ( p ) ) .
(2.1)

Now we assume that α2. It is not hard to show that

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1 = β = 0 α γ = 0 α β + γ α a = 1 p α p β a k 1 b = 1 p α p γ b k 1 1 = β = 0 α a = 1 p α p β a k 1 γ = α β α b = 1 p α p γ b k 1 1 = β = 0 α a = 1 p α p β a k 1 b = 1 p α p α β b k 1 1 = a = 1 p α p a k 1 b = 1 p α p α b k 1 1 + β = 1 α 1 a = 1 p α p β a k 1 b = 1 p α p α β b k 1 1 + a = 1 p α p α a k 1 b = 1 p α 1 = ( ϕ ( p α ) p α 1 ( k , ϕ ( p ) ) ) ( k , ϕ ( p α ) ) + ( k , ϕ ( p α ) ) ϕ ( p α ) + β = 1 α 1 ( p α β ( k , ϕ ( p β ) ) p α β 1 ( k , ϕ ( p β + 1 ) ) ) p β ( k , ϕ ( p α β ) ) = p α 1 ( 2 ϕ ( p ) ( k , ϕ ( p ) ) ) ( k , p α 1 ) ( k , ϕ ( p ) ) + p α 1 ( k , ϕ ( p ) ) 2 β = 1 α 1 ( p ( k , p β 1 ) ( k , p β ) ) ( k , p α β 1 ) = 2 d ϕ ( p α ) ( k , p α 1 ) ( 1 d 2 ϕ ( p ) ) + d 2 p α 1 β = 1 α 1 ( p ( k , p β 1 ) ( k , p β ) ) ( k , p α β 1 ) .
(2.2)

If (k, p α 1 )=1, by (2.2) we have

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1=2dϕ ( p α ) ( 1 d 2 ϕ ( p ) ) + d 2 ϕ ( p α ) (α1).
(2.3)

If (k, p α 1 )= p α 1 , then

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1=2dϕ ( p α ) p α 1 ( 1 d 2 ϕ ( p ) ) .
(2.4)

On the other hand, for α=2 and (k, p α 1 )>1, we have

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1=2dϕ ( p α ) ( k , p α 1 ) ( 1 d 2 ϕ ( p ) ) .
(2.5)

Next we suppose that α3 and (k, p α 1 )= p δ with 1δα2. Then

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1 = 2 d ϕ ( p α ) ( k , p α 1 ) ( 1 d 2 ϕ ( p ) ) + d 2 p α 1 β = 1 α 1 ( p ( k , p β 1 ) ( k , p β ) ) ( k , p α β 1 ) = 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 ϕ ( p α ) p δ β = δ + 1 α 1 ( k , p α β 1 ) .

Noting that

β = δ + 1 α 1 ( k , p α β 1 ) = u = 0 α δ 2 ( k , p u ) = { u = 0 α δ 2 p u , α δ 2 δ , u = 0 δ p u + u = δ + 1 α δ 2 p δ , α δ 2 δ + 1 = { p α δ 1 1 p 1 , δ α 2 2 , p δ + 1 1 p 1 + ( α 2 δ 2 ) p δ , δ α 3 2 .

Therefore

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1 = { 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 p α + δ 1 ( p α δ 1 1 ) , α 2 2 δ α 2 ; 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 p α + δ 1 ( p δ + 1 1 ) + d 2 p α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) , 1 δ α 3 2 .
(2.6)

Now combining (2.1), (2.3)-(2.6) we immediately get

a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1 = { 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 p α + δ 1 ( p α δ 1 1 ) , α 2 2 δ α 1 ; 2 d ϕ ( p α ) p δ ( 1 d 2 ϕ ( p ) ) + d 2 p α + δ 1 ( p δ + 1 1 ) + d 2 p α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) , 0 δ α 3 2 ,

for α1. □

Lemma 2.2 Let n, k, k 1 , k 2 be integers with (n, k 1 k 2 )=( k 1 , k 2 )=1. Then for any character χmod k 1 k 2 , there exist integers n 1 and n 2 with ( n 1 , k 1 )=( n 2 , k 2 )=1 such that

n n 1 k 2 2 + n 2 k 1 2 (mod k 1 k 2 ),

and for these integers we have

|S(m,n,k,χ; k 1 k 2 )|=|S(m k ¯ 2 , n 1 k 2 ,k, χ 1 ; k 1 )||S(m k ¯ 1 , n 2 k 1 ,k, χ 2 ; k 2 )|,

where χ= χ 1 χ 2 with χ 1 mod k 1 and χ 2 mod k 2 .

Proof This is Lemma 2.2 of [4]. □

3 Proof of the theorems

First we prove Theorem 1.1. Let p be an odd prime, and let α and k be positive integers. Assume that n is any integer. We have

| S ( m , n , k , χ ; p α ) | 2 = a = 1 p α χ ( a ) e ( m a k + n a ¯ k p α ) b = 1 p α χ ¯ ( b ) e ( m b k + n b ¯ k p α ) = a = 1 p α b = 1 p α χ ( a ) e ( m b k ( a k 1 ) + n b ¯ k ( a ¯ k 1 ) p α ) .

Then from the orthogonality relation for characters and the trigonometric identity we get

χ mod p α m = 1 p α | S ( m , n , k , χ ; p α ) | 4 = χ mod p α m = 1 p α a = 1 p α b = 1 p α χ ( a ) e ( m b k ( a k 1 ) + n b ¯ k ( a ¯ k 1 ) p α ) × c = 1 p α d = 1 p α χ ¯ ( c ) e ( m d k ( c k 1 ) + n d ¯ k ( c ¯ k 1 ) p α ) = ϕ ( p α ) a = 1 p α b = 1 p α d = 1 p α m = 1 p α e ( m ( a k 1 ) ( b k d k ) + n ( a ¯ k 1 ) ( b ¯ k d ¯ k ) p α ) = ϕ ( p α ) a = 1 p α b = 1 p α d = 1 p α m = 1 p α e ( m d k ( a k 1 ) ( b k 1 ) + n d ¯ k ( a ¯ k 1 ) ( b ¯ k 1 ) p α ) = ϕ ( p α ) a = 1 p α b = 1 p α d = 1 p α m = 1 p α e ( m d k ( a k 1 ) ( b k 1 ) + n d ¯ k a ¯ k b ¯ k ( a k 1 ) ( b k 1 ) p α ) = ϕ 2 ( p α ) p α a = 1 p α b = 1 p α p α ( a k 1 ) ( b k 1 ) 1 .

Write d=(k,p1) and (k, p α 1 )= p δ . By Lemma 2.1 we immediately have

χ mod p α m = 1 p α | S ( m , n , k , χ ; p α ) | 4 = { 2 d ϕ 3 ( p α ) p α + δ ( 1 d 2 ϕ ( p ) ) + d 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p α δ 1 1 ) , α 2 2 δ α 1 ; 2 d ϕ 3 ( p α ) p α + δ ( 1 d 2 ϕ ( p ) ) + d 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p δ + 1 1 ) + d 2 ϕ 2 ( p α ) p 2 α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) , 0 δ α 3 2 .

This completes the proof of Theorem 1.1.

Now we prove Theorem 1.2. Let q>2 be an odd number, n be an integer with (n,q)=1, and let k be a positive integer. Write

q= i = 1 r p i α i andm= i = 1 r m i q p i α i .

By Lemma 2.2 and Theorem 1.1 we have

χ mod q m = 1 q | S ( m , n , k , χ ; q ) | 4 = i = 1 r ( χ i mod p i α i m i = 1 p i α i | S ( m i q p i α i ( q p i α i ) ¯ , n i q p i α i , k , χ i ; p i α i ) | 4 ) = i = 1 r ( χ i mod p i α i m i = 1 p i α i | S ( m i , n i q p i α i , k , χ i ; p i α i ) | 4 ) = p α q ( k , p α 1 ) = p δ α 2 2 δ α 1 ( 2 ( k , p 1 ) ϕ 3 ( p α ) p α + δ ( 1 ( k , p 1 ) 2 ϕ ( p ) ) + ( k , p 1 ) 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p α δ 1 1 ) ) × p α q ( k , p α 1 ) = p δ 0 δ α 3 2 ( 2 ( k , p 1 ) ϕ 3 ( p α ) p α + δ ( 1 ( k , p 1 ) 2 ϕ ( p ) ) + ( k , p 1 ) 2 ϕ 2 ( p α ) p 2 α + δ 1 ( p δ + 1 1 ) + ( k , p 1 ) 2 ϕ 2 ( p α ) p 2 α + 2 δ 1 ( p 1 ) ( α 2 δ 2 ) ) .

This proves Theorem 1.2.

References

  1. Chowla S: On Kloosterman’s sum. Norske Vid. Selsk. Forhdl. 1967, 40: 70–72.

    MathSciNet  MATH  Google Scholar 

  2. Malyshev AV: A generalization of Kloosterman sums and their estimates. Vestn. Leningr. Univ. 1960, 15: 59–75. (Russian)

    MathSciNet  Google Scholar 

  3. Zhang W: On the general Kloosterman sum and its fourth power mean. J. Number Theory 2004, 104: 156–161. 10.1016/S0022-314X(03)00154-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu HY, Zhang WP: On the general k -th Kloosterman sums and its fourth power mean. Chin. Ann. Math., Ser. B 2004, 25: 97–102. 10.1142/S0252959904000093

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the P.E.D. (2013JK0561) and N.S.F. (11371291) of P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Guo.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article

Guo, X., Geng, G. & Pan, X. On the fourth power mean of the general k th Kloosterman sums. Adv Differ Equ 2014, 103 (2014). https://doi.org/10.1186/1687-1847-2014-103

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-103

Keywords