- Research
- Open Access
- Published:
Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials
Advances in Difference Equations volume 2014, Article number: 155 (2014)
Abstract
In this paper, a further investigation for the Apostol-Bernoulli and Apostol-Euler polynomials and numbers is performed. Some closed formulae of sums of products of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers are established by applying the generating function methods and some summation transform techniques. It turns out that some well-known results are derived as special cases.
MSC:11B68, 05A19.
1 Introduction
The classical Bernoulli polynomials and Euler polynomials are usually defined by means of the following generating functions:
In particular, the rational numbers and integers are called the classical Bernoulli numbers and Euler numbers, respectively.
As is well known, the classical Bernoulli and Euler polynomials and numbers play important roles in different areas of mathematics such as number theory, combinatorics, special functions and analysis. Numerous interesting properties for them can be found in many books; see, for example, [1–4]. Here is the well-known Euler formula on the classical Bernoulli numbers:
This formula has been extended in different directions by many authors. For example, a direct generalisation of (1.2) is the following identity on the classical Bernoulli polynomials due to Nörlund [5]:
which has been generalised to a symmetric form by He and Zhang [6]. We also mention [7–11] for further discoveries of the above Nörlund result following the work of Carlitz [12], Agoh and Dilcher [13, 14]. On the other hand, Eie [15], Sitaramachandraro and Davis [16] generalised (1.2) to sums of products of three and four Bernoulli numbers. After that, Sankaranarayanan [17] gave the closed expression of sums of products of five Bernoulli numbers, and Zhang [18] derived the closed ones of sums of products of less than and equal to seven Bernoulli numbers. In particular, Dilcher [19] obtained some closed formulae of sums of products of any number of classical Bernoulli and Euler polynomials and numbers. Petojević and Srivastava [20–22] got several new formulae of sums of products of any number of classical Bernoulli numbers including the Euler type and Dilcher type sums of products of Bernoulli numbers. Recently, Kim [23] developed a new approach to give the closed formula of sums of products of any number of classical Bernoulli numbers by using the relation of values at non-positive integers of the important representation of the multiple Hurwitz zeta function in terms of the Hurwitz zeta function. Further, Kim and Hu [24] obtained the closed formula of sums of products of any number of Apostol-Bernoulli numbers by expressing the sums of products of the Apostol-Bernoulli polynomials in terms of the special values of multiple Hurwitz-Lerch zeta functions at non-positive integers.
We now turn to the Apostol-Bernoulli polynomials and Apostol-Euler polynomials , which are usually defined by means of the following generating functions (see, e.g., [25, 26]):
and
Moreover, and are called the Apostol-Bernoulli numbers and Apostol-Euler numbers, respectively. Obviously and reduce to and when . It is worth noticing that the Apostol-Bernoulli polynomials were firstly introduced by Apostol [27] (see also Srivastava [28] for a systematic study) in order to evaluate the value of the Hurwitz-Lerch zeta function. For some elegant results and nice methods on these polynomials and numbers, one is referred to [29–38].
In the present paper, we will be concerned with some closed formulae of sums of products of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers. The idea stems from the two identities of Xu and Cen [39] applying the famous Faà di Bruno formula to answer a problem posed by Guo and Qi [40]. We prove the two results due to Xu and Cen in a brief way again. As further applications, we obtain some closed formulae of sums of products of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers by applying the generating function methods and some summation transform techniques. It turns out that some known results including the ones stated in [19, 24] are derived as special cases.
2 Some auxiliary results
We firstly recall the Stirling numbers of the first kind and the Stirling numbers of the second kind which can be found in the standard book [41]. The Stirling numbers of the first kind are the coefficients in the expansion
and the Stirling numbers of the second kind are characterised by the identity
The notation appearing in (2.1) and (2.2) stands for the falling factorial of order n defined by and for positive integer n and complex number x. In fact, the Stirling numbers of the first kind and the Stirling numbers of the second kind can be defined by means of the following generating functions:
If making use of (2.3) then one can easily obtain the pair of classical inverse relations (see, e.g., [[41], p.144]):
with n being non-negative integer and and being two sequences.
Motivated by two identities appearing in [42], Guo and Qi [40, 43] posed the following problem: for and positive integer n, determine the numbers for such that
Stimulated by this problem, the authors [40] made use of the mathematical induction to establish eight identities which reveal the functions and the derivatives can be expressed by each other by linear combinations with coefficients involving the combinatorial numbers and Stirling numbers of the second kind. Further, Xu and Cen [39] applied the famous Faà di Bruno formula to unify the eight identities due to Guo and Qi [40] to two identities involving two parameters α and λ. We next state their results and give a brief proof.
Theorem 2.1 ([39])
Let n be a non-negative integer and α, λ two parameters. Then
and for positive integer n,
Proof In view of the binomial series
we discover
If taking in (2.1) then we obtain, for positive integer n,
Applying (2.10) to (2.9) yields
It is easy to see from (2.9) that
Thus, combining (2.11) and (2.12) gives the formula (2.7). It follows from (2.4) and (2.7) that (2.6) is complete. This concludes the proof. □
It becomes obvious that in the case in (2.7) arises, for positive integer n,
and
We next give another auxiliary result as follows.
Theorem 2.2 Let n be a non-negative integer. Then
and for positive integer r,
where denotes the rising factorial of order n defined by and for positive integer n and complex number x, is denoted by , is denoted by and is a sequence of polynomials given by
with being a formal power series.
Proof See [[44], (2.6), (3.11)] for details. □
There follow some special cases of Theorem 2.2. By setting and in (2.15), we obtain, for non-negative integers m, n,
where stands for the coefficients of in . On the other hand, since when and when (see, e.g., [25]), so by setting we get
It is easy to see from the properties of the Beta and Gamma functions that, for non-negative integers m, n,
Thus, by setting , and in (2.16), with the help of (2.19) and (2.20), we obtain, for non-negative integers m, n,
We shall make use of the above formulae (2.13), (2.14), (2.18) and (2.21) to give some closed formulae of sums of products of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers in the next section.
3 The restatement of main results
Before stating our main results, we begin by introducing the Stirling cycle numbers given by the relation
It is obvious from (2.1) that . In fact, the Stirling cycle numbers can be defined recursively by (see, e.g., [4, 29])
In this section we always denote by a polynomial given by (see, e.g., [23, 24])
and we also denote by the multinomial coefficient defined by
We next explore the closed formulae of sums of products of any number of Apostol-Bernoulli and Apostol-Euler polynomials and numbers. The discovery depends on the following identity:
where r is a non-negative integer, m is a positive integer with and . On taking in (3.5) by (1.4) we get
On the other hand, from (2.13) we discover
If applying (2.21) to the right-hand side of (3.7) then
Changing the order of the summation on the right-hand side of (3.8) gives
Thus, by equating (3.6) and (3.9) and then applying (3.3) the following result arises.
Theorem 3.1 Let m be a positive integer and . Then, for positive integer ,
There follow some special cases of Theorem 3.1. Obviously the case in Theorem 3.1 is an equivalent version of the classical formula of Dilcher [[19], Theorem 3]:
Theorem 3.1 can also be used to give the closed formula of sums of products of any number of Apostol-Bernoulli numbers described in [24]. For example, since the Apostol-Bernoulli polynomials obey the symmetric distribution
and the difference equation
which can be found in [25], by setting and replacing λ by in Theorem 3.1, in view of (3.12), we derive
On multiplying in both sides of (3.13) and substituting , in view of adding the preceding results, we get for positive integer m and non-negative integer n,
We notice that, from (3.13), we have and for positive integer , and the following relation (see, e.g., [23]):
Thus, by applying (3.15) and (3.16) to (3.14), one can obtain the closed formula for the Apostol-Bernoulli numbers due to Kim and Hu [[24], Theorem 1.2], as follows:
If taking in (3.5) then by (1.5) we obtain
With the help of (2.14) and (2.18), we rewrite the left-hand side of (3.18) as
Changing the order of the summation on the right-hand side of (3.19) arises
The following result follows from (3.3), (3.18) and (3.20).
Theorem 3.2 Let m be a positive integer and . Then, for positive integer ,
It is worthy noticing that since (3.20) can be rewritten as
by combining (3.18) and (3.22), we obtain
Obviously the case in (3.23) gives the formula of Dilcher [[19], Theorem 5] on the classical Euler polynomials.
We next consider the case in (3.5). For convenience, in the following we always denote . We apply the familiar partial fraction decomposition and let
We are now in the position to determine the coefficients and in (3.24). By multiplying both sides in (3.24) by and taking , we obtain
For the case in (3.24), by multiplying in both sides of (3.24) and taking , with the help of the binomial theorem for non-negative integer n, we get
In light of (3.25), we can make the L’Hôspital rule for (3.26). In fact, repeatedly applying the L’Hôspital rule i times there arises
where is the falling factorial of order n in (2.1). Hence, the coefficients satisfy
It follows from (3.28) that we can claim
We shall use induction on i. Obviously (3.29) holds trivially when . Assume that (3.29) is complete for any smaller value of i. From (3.28) and (3.29), we have
Note that, for non-negative integer n and complex numbers a and b (cf. the Chu-Vandermonde summation formula stated in [45]),
and the first summation of the right-hand side of (3.30) can be rewritten as
where is the rising factorial of order n in Theorem 2.2. It follows from (3.31) and (3.32) that
which together with (3.30) immediately yields (3.29). On multiplying both sides in (3.24) by and then taking , we obtain
On multiplying in both sides of (3.24) and then taking , with the help of the binomial theorem, we get, for ,
So from (3.34), we repeatedly apply the L’Hôspital rule j times to get
By a similar consideration to (3.29), we can state
It follows from (3.5), (3.24), (3.29) and (3.37) that, for positive integers m and r with ,
Thus, applying (3.9) and (3.20) to (3.38), in light of (3.3), we get the result.
Theorem 3.3 Let m be a positive integer and . Then, for positive integer and positive integer r with ,
References
Cohen H Graduate Texts in Math. 240. In Number Theory, Volume II: Analytic and Modern Tools. Springer, New York; 2007.
Nielsen N: Traité élémentaire des nombres de Bernoulli. Gauthier-Villars, Paris; 1923.
Nörlund NE: Vorlesungen über Differenzenrechnung. Springer, Berlin; 1924.
Srivastava HM, Choi J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam; 2012.
Nörlund NE: Mémoire sur les polynomes de Bernoulli. Acta Math. 1922, 43: 121–196.
He Y, Zhang WP: Some sum relations involving Bernoulli and Euler polynomials. Integral Transforms Spec. Funct. 2011, 22: 207–215.
He Y, Wang CP: Some formulae of products of the Apostol-Bernoulli and Apostol-Euler polynomials. Discrete Dyn. Nat. Soc. 2012., 2012: Article ID 927953
He Y, Wang CP: Recurrence formulae for Apostol-Bernoulli and Apostol-Euler polynomials. Adv. Differ. Equ. 2012., 2012: Article ID 209
He Y, Zhang WP: A convolution formula for Bernoulli polynomials. Ars Comb. 2013, 108: 97–104.
He, Y, Zhang, WP: A three-term reciprocity formula for Bernoulli polynomials. Util. Math. (to appear)
Wang JZ: New recurrence formulae for the Apostol-Bernoulli and Apostol-Euler polynomials. Adv. Differ. Equ. 2013., 2013: Article ID 247
Carlitz L: Note on the integral of the product of several Bernoulli polynomials. J. Lond. Math. Soc. 1959, 34: 361–363.
Agoh T, Dilcher K: Convolution identities and lacunary recurrences for Bernoulli numbers. J. Number Theory 2007, 124: 105–122.
Agoh T, Dilcher K: Reciprocity relations for Bernoulli numbers. Am. Math. Mon. 2008, 115: 237–244.
Eie M: A note on Bernoulli numbers and Shintani generalized Bernoulli polynomials. Trans. Am. Math. Soc. 1996, 348: 1117–1136.
Sitaramachandrarao R, Davis B: Some identities involving the Riemann zeta function, II. Indian J. Pure Appl. Math. 1986, 17: 1175–1186.
Sankaranarayanan A: An identity involving Riemann zeta function. Indian J. Pure Appl. Math. 1987, 18: 794–800.
Zhang WP: On the several identities of Riemann zeta-function. Chin. Sci. Bull. 1991, 36: 1852–1856.
Dilcher K: Sums of products of Bernoulli numbers. J. Number Theory 1996, 60: 23–41.
Petojević A: A note about the sums of products of Bernoulli numbers. Novi Sad J. Math. 2007, 37: 123–128.
Petojević A: New sums of products of Bernoulli numbers. Integral Transforms Spec. Funct. 2008, 19: 105–114.
Petojević A, Srivastava HM: Computation of Euler’s type sums of the products of Bernoulli numbers. Appl. Math. Lett. 2009, 22: 796–801.
Kim M-S: A note on sums of products of Bernoulli numbers. Appl. Math. Lett. 2011, 24: 55–61.
Kim M-S, Hu S: Sums of products of Apostol-Bernoulli numbers. Ramanujan J. 2012, 28: 113–123.
Luo QM, Srivastava HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308: 290–302.
Luo QM: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10: 917–925.
Apostol TM: On the Lerch zeta function. Pac. J. Math. 1951, 1: 161–167.
Srivastava HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129: 77–84.
Choi J, Jang DS, Srivastava HM: A generalization of the Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. 2008, 19: 65–79.
Garg M, Jain K, Srivastava HM: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 2006, 17: 803–815.
Lu D-Q, Srivastava HM: Some series identities involving the generalized Apostol type and related polynomials. Comput. Math. Appl. 2011, 62: 3591–3602.
Luo QM, Srivastava HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51: 631–642.
Luo QM: Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comput. 2009, 78: 2193–2208.
Luo QM: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transforms Spec. Funct. 2009, 20: 377–391.
Navas LM, Ruiz FJ, Varona JL: Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comput. 2011, 81: 1707–1722.
Prévost M: Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials. J. Comput. Appl. Math. 2010, 233: 3005–3017.
Srivastava HM, Todorov PG: An explicit formula for the generalized Bernoulli polynomials. J. Math. Anal. Appl. 1988, 130: 509–513.
Srivastava HM, Garg M, Choudhary S: A new generalization of the Bernoulli and related polynomials. Russ. J. Math. Phys. 2010, 17: 251–261.
Xu A-M, Cen Z-D: Some identities involving exponential functions and Stirling numbers and applications. J. Comput. Appl. Math. 2014, 260: 201–207.
Guo B-N, Qi F: Some identities and an explicit formula for Bernoulli and Stirling numbers. J. Comput. Appl. Math. 2014, 255: 568–579.
Comtet L: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht; 1974.
Koumandos S: On Ruijsenaars’ asymptotic expansion of the logarithm of the double gamma function. J. Math. Anal. Appl. 2008, 341: 1125–1132.
Qi, F: Eight interesting identities involving the exponential function, derivatives, and Stirling numbers of the second kind http://arxiv.org/abs/arXiv:1202.2006
He Y, Zhang WP: Some symmetric identities involving a sequence of polynomials. Electron. J. Comb. 2010., 17: Article ID N7
Gasper G, Rahman M: Basic Hypergeometric Series. Cambridge University Press, Cambridge; 1990.
Acknowledgements
This work is supported by the Foundation for Fostering Talents in Kunming University of Science and Technology (Grant No. KKSY201307047) and the National Natural Science Foundation of P.R. China (Grant Nos. 11326050, 11071194).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
He, Y., Araci, S. Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials. Adv Differ Equ 2014, 155 (2014). https://doi.org/10.1186/1687-1847-2014-155
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-1847-2014-155
Keywords
- Bernoulli polynomials and numbers
- Euler polynomials and numbers
- Apostol-Bernoulli polynomials and numbers
- Apostol-Euler polynomials and numbers
- summation formulae