- Research
- Open Access
- Published:
Harvesting analysis of a discrete competitive system
Advances in Difference Equations volume 2014, Article number: 241 (2014)
Abstract
In this paper, we discuss a discrete competitive system based on density dependence to obtain a set of sufficient conditions for the existence and asymptotic stability of the equilibrium of systems. By obtaining the optimal harvest strategy of systems through the extreme value method and the discrete Pontryagin maximum principle, we provide a theoretical direction for the actual production.
1 Introduction
Stability and permanence of a biological system have been studied by several authors [1–4]. The problem of fractional differential equation was also studied [5–13]. However, the rational development and management of the biological resources were directly related to sustainable development. In recent years, continuous system capture has received many scholars’ attention [14–22]. Similarly, the optimal control theory is a good method [23–27]. In fact, as we know, fish distribution is inhomogeneous and it is not possible to capture successively. Therefore, it is more reasonable to consider the discrete system’s capture. Not only it will keep the biological balance but it will also save time and produce more economic revenue for fishermen. Due to the peculiarity of the discrete system, it is difficult to study its stability and capture, and there are few related studies. Therefore, in this paper, we consider the following discrete two species competitive system and discuss the system’s stability and capturing strategy,
Here and (, ) denote the intrinsic growth rate of two species and (or life factor). and () denote the density-dependent entry. Generally speaking, two populations are both caught by fishermen. It has practical significance to take the capture effect into consideration in order to reap the maximum economic benefits. Let , () be the capture intensity of the two populations (that is, fishing effort multiplies the capture coefficients) (), and let the capture per unit time be proportional to the stock and population, and . Under this assumption, we can get the following competitive capture systems.
The rest of the paper is arranged as follows. We discuss a set of sufficient conditions for the stability of system (1.1) equilibrium based on density dependence in Section 2. It is discussed that system (1.1) stable equilibrium in the optimal acquisition strategy through the extreme value method, by using structuring discrete Hamiltonian function and discrete Pontryagin maximum principle, it is to obtain optimal harvest policy by three equilibriums in Section 3.
2 Equilibrium and stability
2.1 Equilibrium
By calculating, we can get that system (1.1) has the following equilibriums: , , , , where
Theorem 2.1 O, and are non-negative equilibrium points; is a positive equilibrium if and only if
2.2 Stability of the positive equilibrium
For any initial value , let be the solution sequence of system (1.1).
Theorem 2.2 Under the conditions of Theorem 2.1 and further assumption that system (1.1) satisfies the following conditions:
the positive equilibrium is locally asymptotically stable in the region , which is called the attraction domain of the positive equilibrium point in system (1.1).
Proof Let , considering the function:
from condition (1), we have and , hence .
When , , we have
For , according to (1.1) and (2.2), we get
Because is in the region surrounded by
it follows that . That is, , then .
Similarly, consider the following function:
From condition (2) we have
and , so . When , , we have
For , from (1.1) and (2.3) we get
Because is in the region surrounded by
it follows that
That is,
thus
By the recursive method, the solutions of system (1.1) satisfy the conditions of theorem and , ().
According to the monotone bounded theorem , .
Let . In (1.1), , are monotonically increasing sequences and the positive equilibrium point of system (1.1) is unique, we get , . So the sequence of , converges to the positive equilibrium P. □
Theorem 2.3 Under the conditions of Theorem 2.1 and further assumption that system (1.1) satisfies the following conditions:
in system (1.1) is locally asymptotically stable in the region
which is the attraction domain of .
Proof Let , since is included in the region on the top of the two straight lines , and , that is, .
Consider the following function:
From condition (1) we get . This function has two real zero points:
From condition (2) we get
hence .
From condition (3) we get
. And when , , so for ,
For ,
then , hence .
Consider the auxiliary functions
From conditions (4), (5) and (6), can also be proved. From the recursive method available, the solution of system (1.1) satisfies the conditions of theorem, and , (). By the same method used in Theorem 2.2, it can be proved that the solution sequence of system (1.1) converges to the positive equilibrium point P. □
Based on the actual situation, population , , then we have the following.
Theorem 2.4 If Theorem 2.2 is satisfied, and system (1.1) satisfies the following conditions:
then system (1.1) is globally asymptotically stable.
Proof Define a Lyapunov function, , then
From conditions (1) and (2) of Theorem 2.2 we get
From , , then system (1.1) is globally asymptotically stable. □
3 The optimal economic benefit
As we know, both the fishermen and the fishing companies must consider the cost-effectiveness when catching all kinds of fish in terms of the sale price and the capture cost. Suppose that the largest capture intensity is , then , the cost is C and the price of the two kinds of group are , . The economic profit is .
For the positive equilibrium point , the economic benefits (profits) are
where
Due to the limitation of capture ability , from the knowledge of calculus, (that is, ), so L has a maximum value.
If , , then, when
L reaches the maximum:
For the non-negative equilibrium point (), we obtain the optimal harvest strategy of the non-negative equilibrium point by using the discrete Pontryagin maximum principle and the optimal control theory. To obtain the optimal capture, seeking to capture the best efforts of degrees , the goal of functions are given:
According to the discrete maximum principle, seeking optimal control , the following Hamilton function is introduced:
where , i is the instantaneous discount rate for periods, are variables, gets maximum value , which is accompanied by the following equations:
that is,
Substituting n into type, we have
If , we have a solution
By , we have
because
By (3.6), (3.7) and (3.8), we have
From (3.9), we have as the optimal equilibrium solution. So, seeking to capture the best efforts of degrees
this is the optimal equilibrium program. Then the economic profit of captured populations is completely controlled by the discount rates α, C, .
Similarly, consider the non-negative equilibrium point (). If , we have a solution
From (3.10), we have as the optimal equilibrium solution. So, seeking to capture the best efforts of degrees
this is the optimal equilibrium program. Then the economic profit of captured populations is completely controlled by the discount rates α, C, .
4 Conclusion
This paper qualitatively analyzes a competitive system in situations that are density constrained. We have discussed the stability of equilibrium point in different regions, improved methods of proof in reference. Using the extreme value method to analyze the stable positive equilibrium point is the most optimal way to capture it. By using the Pontryagin maximum principle, through introduces the Hamilton function obtains of the non-negative equilibrium point most superior capture strategy.
References
Wu T: Permanence for nonautonomous Lotka-Volterra two species cooperative systems. Bull. Sci. Technol. 2009, 25(6):743-746.
Wu T: Permanence and global stability of a discrete competition feedback-control system with Beddington-DeAngelis functional response. J. Minjiang Univ. Nat. Sci. Ed. 2010, 31(2):16-20.
Wu T: Permanence of discrete predator-prey system with infinite delay Beddington-DeAngelis functional response. J. Minjiang Univ. Nat. Sci. Ed. 2010, 31(5):1-5.
Mao K, Li RH: Stability analysis of 2-species competitive model. J. Biomath. 1999, 14(3):288-292.
Wang J, Zhou Y: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal., Real World Appl. 2011, 12: 3642-3653. 10.1016/j.nonrwa.2011.06.021
Wang J, Zhou Y: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal. TMA 2011, 74(17):5929-5942. 10.1016/j.na.2011.05.059
Wang J, Zhou Y: Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 2012, 125: 723-728.
Wang J, Zhou Y, Wei W: Fractional Schrodinger equations with potential and optimal controls. Nonlinear Anal., Real World Appl. 2012, 13: 2755-2766. 10.1016/j.nonrwa.2012.04.004
Wang J, Zhou Y, Medved M: Picard and weakly Picard operators technique for nonlinear differential equations in Banach spaces. J. Math. Anal. Appl. 2012, 389: 261-274. 10.1016/j.jmaa.2011.11.059
Wang J, Feckan M, Zhou Y: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 2012, 395: 258-264. 10.1016/j.jmaa.2012.05.040
Wang J, Zhou Y, Feckan M: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 2013, 71: 685-700. 10.1007/s11071-012-0452-9
Wang J, Feckan M, Zhou Y: Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2013, 18: 246-256. 10.1016/j.cnsns.2012.07.004
Wang HJ, Feckan M, Zhou Y: Relaxed controls for nonlinear fractional impulsive evolution equations. J. Optim. Theory Appl. 2013, 156: 13-32. 10.1007/s10957-012-0170-y
Luo ZX, He ZR: Analysis of nonlinear fractional control systems in Banach spaces. J. Biomath. 2003, 18(3):269-274.
Lu HY, Wang K: Autonomous single-species models and their optimal harvesting policies. J. Syst. Sci. Math. Sci. 2004, 24(2):200-205.
Zhang Y, Liu H, Zhang S, Fan M, Wang K: Optimal problem of two species being harvested simultaneously for competing systems. J. Biomath. 1998, 13(4):456-461.
Ganguly S, Chaudhuri KS: Regulation of a single-species fishery by taxation. Ecol. Model. 1995, 82: 51-60. 10.1016/0304-3800(94)00079-W
Kar TK: Management of a fishery based on continuous fishing effort. Nonlinear Anal., Real World Appl. 2004, 5: 629-644. 10.1016/j.nonrwa.2004.01.003
Kar TK: Conservation of a fishery through optimal taxation: a dynamic reaction model. Commun. Nonlinear Sci. Numer. Simul. 2005, 10: 121-131. 10.1016/S1007-5704(03)00101-1
Yang XX: Optimal harvest of the prey-predator discrete systems. J. Eng. Math. 2004, 21(1):81-85.
Jiao JJ, Chen LS: The extinction threshold on a single population model with pulse input of environmental toxin in a polluted environment. Math. Appl. 2009, 22(1):11-19.
Yang HX, Sun Z-Q, Li YA: Optimal harvest strategy for discrete competing ecosystem. J. Chongqing Inst. Technol. Nat. Sci. Ed. 2007, 21(5):67-70.
Wang JR, Wei W, Zhou Y: Fractional finite time delay evolution systems and optimal controls in infinite dimensional spaces. J. Dyn. Control Syst. 2011, 17: 515-535. 10.1007/s10883-011-9128-x
Wang JR, Zhou Y, Medved M: On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 2012, 152: 31-50. 10.1007/s10957-011-9892-5
Wang JR, Zhou Y, Wei W: Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Syst. Control Lett. 2012, 61: 472-476. 10.1016/j.sysconle.2011.12.009
Wang JR, Zhou Y: Complete controllability of fractional evolution systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17: 4346-4355. 10.1016/j.cnsns.2012.02.029
Wang JR, Fan ZB, Zhou Y: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 2012, 154: 292-302. 10.1007/s10957-012-9999-3
Acknowledgements
This work is supported by the Science and Technology Project of the Education Bureau of Fujian Province (JB13170) and the Start-up Foundation of Science and Technology of Mingjiang Univerity (YKY20132).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that they have no competing interests.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Wu, T. Harvesting analysis of a discrete competitive system. Adv Differ Equ 2014, 241 (2014). https://doi.org/10.1186/1687-1847-2014-241
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-1847-2014-241
Keywords
- discrete
- competitive systems
- equilibrium
- global stability
- fishing companies
- profit