- Research
- Open access
- Published:
On the oscillation and asymptotic behavior for a kind of fractional differential equations
Advances in Difference Equations volume 2014, Article number: 50 (2014)
Abstract
In this paper, we discuss the oscillations of the fractional order differential equation , , , where q is a positive real-valued function and f is a continuous functional; denotes the Riemann-Liouville differential operator of order α, . We use the Riccati transformation technique to obtain some sufficient conditions which guarantee that every solution of the equation is oscillatory or the limit inferior converges to zero. Two examples are given to show the applications of our main results.
MSC:34A08, 34K11.
1 Introduction
The theory of fractional calculus goes back to Leibniz’s note in his list to L’Hospital [1], dated 30 September 1695, in which the meaning of the derivative of order 1/2 is discussed. After that in pure mathematics field the foundation of the fractional differential equations had been established. However, in recent years, many researchers found that the fractional differential equations are more accurate in describing some practical models, e.g. polymers. Today it has been used widely in physics, electrochemistry, control theory, and electromagnetic fields [2–7]. Furthermore, the fractional calculus can also provide an excellent instrument for the description of memory and hereditary properties of various materials and processes due to the existence of a ‘memory’ term in the model [8–13]. Since these studies there has been much research actively concerned with the fractional differential equations and many useful achievements have been obtained [14–18].
From the 1960s, a lot of books and theses about the oscillatory behavior for first, second, and higher order differential equations are presented, see [19–21]. The study of the oscillatory problem with a view on fractional differential equation is just being initiated. As a new cross-cutting area, recently some attention has been paid to oscillations of fractional differential equations [22–29].
In 2012, Chen et al. [22] studied the oscillatory behavior of the following fractional differential equation:
where denotes the Liouville right-sided fractional derivative of order α with the form
By the Riccati transformation technique the authors obtained some sufficient conditions, which guarantee that every solution of the equation is oscillatory.
Using the same method, in 2013, Chen [23] studied oscillatory behavior of the fractional differential equation of the form
where is the Liouville right-sided fractional derivative of order of y.
Zhang [24] considered the oscillation of the nonlinear fractional differential equation with damping term,
where denotes the Liouville right-sided fractional derivative of order α of x. Using a generalized Riccati function and the inequality technique, he established some new oscillation criteria.
Han et al. [25] considered the oscillation for a class of fractional differential equations,
where is a real number, is the Liouville right-sided fractional derivative of order α of y. By a generalized Riccati transformation technique, oscillation criteria for the nonlinear fractional differential equation are obtained.
Qi and Huang [26] studied the oscillation behavior of the equation of the form
where also denotes the Liouville right-sided fractional derivative and some sufficient conditions for the oscillation of the equation have been given.
The above works on the oscillation are all concerned with fractional equations with Liouville right-sided fractional derivative by the Riccati transformation technique.
We notice that very little attention is paid to oscillations of fractional differential equations with a Riemann-Liouville derivative. For work studying the oscillatory behavior of fractional differential equations with the Riemann-Liouville derivative we refer to [27, 28], and [29].
In 2012, Grace et al. [27] studied the oscillation theory for fractional differential equations by considering equations of the form
under the conditions
and
where denotes the Riemann-Liouville differential operator of order q with , and the operator is the Rieman-Liouville fractional integral operator. The authors obtained some new oscillation criteria by reducing the fractional differential equation to the equivalent Volterra fractional integral equation and by applying the inequality technique.
Marian [28] presented the oscillatory behavior of forced nonlinear fractional difference equations of the form
where is a Riemann-Liouville like discrete fractional difference operator of order α, and some oscillation criteria are established by the same method in [27].
In 2013, Chen et al. [29] improved and extended some work in [27] by considering the forced oscillation of the fractional differential equation
with the conditions
and
where denotes the Riemann-Liouville or Caputo differential operator of order q with , , and the operator is the Rieman-Liouville fractional integral operator. The authors obtained some new oscillation criteria by the same method as [27].
Motivated by above work, in this paper we will extend some oscillation results from integer differential equations to the fractional differential equation
where denotes the standard Riemann-Liouville differential operator of order α with , q is a positive real-valued function, f is a continuous functional defined on satisfying
and denotes the Riemann-Liouville integral operator.
We will use the method of the Riccati transformation technique to study the oscillatory behavior of the fractional differential equation (1.1). To the best of our knowledge, there is not any result on the oscillation of the fractional differential equation involving the Riemann-Liouville derivative by the method of the Riccati transformation technique.
A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros on and otherwise it is non-oscillatory. An equation is said to be oscillatory if all its solutions are oscillatory.
The paper is organized as follows. In the next section, we present some basic definitions of the fractional differential and integral operators, and provide some necessary lemmas. In Section 3, we mainly use the Riccati transformation technique to get some sufficient conditions which guarantee that every solution of (1.1) is oscillatory or the limit inferior converges to zero. Our results are essential new. Finally we provide some examples to show applications of our criteria.
2 Some preliminary lemmas
The operator with defined by
is called the Riemann-Liouville derivative operator. The operator defined by
is called the Riemann-Liouville integral operator. Using the integral operator we can define as
In general, if is an integer and , then
The integral operator has the following properties, which will be used in the next lemma:
The Riemann-Liouville integral operator also has a general relationship between and like
Lemma 2.1 [3]
Let . Assume for x: . Then the following equality holds:
for some , , where n is the smallest integer greater than or equal to α.
For more details on the Riemann-Liouville type fractional operators, see for example [2–7].
Before stating our main results, we begin with the following lemmas which are crucial in the proofs of the main results.
Lemma 2.2 Suppose that x is an eventually positive solution of (1.1) and
Then there is a sufficiently large such that
Proof Let x be an eventually positive solution of (1.1), which means that there exists a such that for .
From the condition (2.7) we can find a and a constant with such that for . So we can divide into three parts
From Lemma 2.1 we know that if exists, and this means for any , especially .
Also we get . Therefore we can take . Then we have
Obviously there exists a sufficient large such that . So for . The proof is complete. □
Lemma 2.3 [30]
If X and Y are nonnegative, then
and
where equality holds if and only if .
3 Main results
Theorem 3.1 If there exists a positive function and a sufficiently large such that
where , then every solution x of (1.1) is oscillatory or .
Proof Assume to the contrary that there exists a non-oscillatory solution x of (1.1). Without loss of generality, we only consider the case when is eventually positive, since the case when is eventually negative is similar. Thus there exists such that for . Next we define the ‘Riccati’ type function w by
If , from Lemma 2.2, there exists a such that for . Furthermore, using the same measure in Lemma 2.2, we can easily obtain the result that there exists a such that for . So we get for .
Now differentiating on we have
Then using condition (1.2) we get the inequality
Now taking
and using Lemma 2.3 and (3.3) we conclude that
Integrating both sides from to t, and letting , we have
So
which is a contradiction to the condition (3.1) and the proof is complete. □
Corollary 3.1 Assume that (1.2) hold, and there exists a sufficient large such that
Then every solution x of (1.1) is either oscillatory or .
Proof This follows from Theorem 3.1 by taking . □
Corollary 3.2 Assume that (1.2) hold, and there exists a sufficiently large such that
Then every solution x of (1.1) is either oscillatory or .
Proof Taking , then the condition (3.1) in Theorem 3.1 is reduced to (3.5). Hence the result is obtained from Theorem 3.1. □
Theorem 3.2 Assume that (1.2) holds. Also, assume that there exist functions , such that
where and H has a nonpositive continuous partial derivative on D with respect to the second variable. Also assume there exists a nonnegative continuous function h defined on D and a differentiable positive function satisfying for all
where . If these assumptions hold and
then every solution x of (1.1) is oscillatory or .
Proof Suppose x is a non-oscillatory solution of (1.1). We only consider the case that is eventually positive, since the case that is eventually negative is similar. Assume that for all with large enough .
If , we proceed as in the proof of Theorem 3.1 to see that (3.3) holds. Multiplying each side of (3.3) by and integrating from to t, we obtain
Then using the integration by parts formula and from (3.6), (3.8) we have
Taking
and using Lemma 2.3 we get
Therefore
which contradicts (3.7). The proof is complete. □
Theorem 3.3 Assume that (1.2) holds. Furthermore assume there is a positive function such that is continuous on and a sufficiently large satisfies
where . Then every solution of (1.1) is either oscillatory or .
Proof Suppose x is a non-oscillatory solution of (1.1). We only consider the case that is eventually positive, since the case that is eventually negative is similar. Assume that for all where is chosen large. If , proceeding as in Theorem 3.1, we get
Therefore,
Using the integration by parts formula leads to
Then from (3.11) we have
and so
Hence,
which is a contradiction of (3.10). So the proof is complete. □
4 Examples
In this section, we will show applications of our main results.
Example 4.1 Consider the fractional differential equation
where , is the Riemann-Liouville differential operator. In (4.1), , . Set . Then . Taking , we obtain
which implies that all conditions in Theorem 3.1 hold. So by Theorem 3.1 every solution of (4.1) is oscillatory or .
Example 4.2 Consider the fractional differential equation
where , is the Riemann-Liouville differential operator. In (4.2), , . Set . Then . Taking , and we obtain
which yields the result that all conditions on Theorem 3.3 hold. Therefore, by Theorem 3.3 every solution of (4.2) is oscillatory or .
References
Leibniz GW: Mathematische Schriften. Georg Olms Verlagsbuchhandlung, Hildesheim; 1962.
Diethelm K: The Analysis of Fractional Differential Equations. Springer, Berlin; 2010.
Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.
Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.
Das S: Functional Fractional Calculus for System Identification and Controls. Springer, New York; 2008.
Oldham KB, Spanier J: The Fractional Calculus. Academic Press, San Diego; 1974.
Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.
Metzler R, Schick S, Kilian HG, Nonnenmacher TF: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 1995, 103: 7180-7186. 10.1063/1.470346
Glöckle WG, Nonnenmacher TF: A fractional calculus approach to self similar protein dynamics. Biophys. J. 1995, 68: 46-53. 10.1016/S0006-3495(95)80157-8
Diethelm K, Freed AD: Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional-derivative kernels with application to the human calcaneal fat pad. Biomech. Model. Mechanobiol. 2006, 5: 203-215. 10.1007/s10237-005-0011-0
Hilfer R: Applications of Fractional Calculus in Physics. World Scientific, River Edge; 2000.
Magin RL: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 2004, 32: 1-377. 10.1615/CritRevBiomedEng.v32.10
Baillie RT: Long memory processes and fractional integration in econometrics. J. Econ. 1996, 73: 5-59. 10.1016/0304-4076(95)01732-1
Diethelm K, Ford NJ: Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265: 229-248. 10.1006/jmaa.2000.7194
Cabada A, Wang GT: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389: 403-411. 10.1016/j.jmaa.2011.11.065
Sun S, Zhao Y, Han Z, Li Y: The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17: 4961-4967. 10.1016/j.cnsns.2012.06.001
Galeone L, Garrappa R: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 2009, 288: 548-560.
Zhang X, Liu L, Wu Y: Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 2012, 55: 1263-1274. 10.1016/j.mcm.2011.10.006
Han Z, Sun S, Shi B: Oscillation criteria for a class of second order Emden-Fowler delay dynamic equations on time scales. J. Math. Anal. Appl. 2007, 334: 847-858. 10.1016/j.jmaa.2007.01.004
Bohner M, Erbe L, Peterson A: Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl. 2005, 301: 491-507. 10.1016/j.jmaa.2004.07.038
Erbe L, Peterson A: Boundedness and oscillation for nonlinear dynamic equations on a time scale. Proc. Am. Math. Soc. 2004, 132: 735-744. 10.1090/S0002-9939-03-07061-8
Chen D: Oscillation criteria of fractional differential equations. Adv. Differ. Equ. 2012., 2012: Article ID 33
Chen D: Oscillatory behavior of a class of fractional differential equations with damping. Univ. Politeh. Bucharest Sci. Bull. 2013, 75: 107-118.
Zheng B: Oscillation for a class of nonlinear fractional differential equations with damping term. J. Adv. Math. Stud. 2013, 6: 107-115.
Han Z, Zhao Y, Sun Y, Zhang C: Oscillation for a class of fractional differential equation. Discrete Dyn. Nat. Soc. 2013., 2013: Article ID 390282
Qi C, Huang S: Interval oscillation criteria for a class of fractional differential equations with damping term. Math. Probl. Eng. 2013., 2013: Article ID 301085 10.1155/2013/301085
Grace SR, Agarwal RP, Wong JY, Zafer A: On the oscillation of fractional differential equations. Fract. Calc. Appl. Anal. 2012, 15: 222-231.
Marian SL: Oscillation of fractional nonlinear difference equations. Math. Æterna 2012, 2: 805-813.
Chen D, Qu P, Lan Y: Forced oscillation of certain fractional differential equations. Adv. Differ. Equ. 2013., 2013: Article ID 125
Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1959.
Acknowledgements
This research is supported by the Natural Science Foundation of China (61374074), Natural Science Outstanding Youth Foundation of Shandong Province (JQ201119) and supported by Shandong Provincial Natural Science Foundation (ZR2012AM009, ZR2013AL003), also supported by Natural Science Foundation of Educational Department of Shandong Province (J11LA01).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Wang, Y., Han, Z., Zhao, P. et al. On the oscillation and asymptotic behavior for a kind of fractional differential equations. Adv Differ Equ 2014, 50 (2014). https://doi.org/10.1186/1687-1847-2014-50
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-1847-2014-50