In this section we introduce the sub-fractional Brownian motion as well as the Wiener integral with respect to it. We also establish some important results which will be needed throughout this paper.
Let \((\Omega,\mathcal{F},\mathbb{P})\) be a complete probability space. Now we aim at introducing the Wiener integral with respect to one-dimensional sub-fBm \(S^{H}\). Fix a time interval \([0,T]\). We denote by ℰ the linear space of ℝ-valued step functions on \([0,T]\), that is, \(\varphi\in\mathcal{E}\) if
$$\varphi(t)=\sum_{i=1}^{n-1}x_{i} \mathbf{I}_{[t_{i},t_{i+1}]}(t), $$
where \(t\in[0,T]\), \(x_{i}\in\mathbb{R}\), and \(0=t_{1}< t_{2}<\cdots <t_{n}=T\). For \(\varphi\in\mathcal{E}\) we define its Wiener integral with respect to \(S^{H}\) as
$$\int_{0}^{T}\varphi(s)\, dS^{H}(s)=\sum _{i=1}^{n}x_{i} \bigl(S^{H}_{t_{i+1}}-S^{H}_{t_{i}}\bigr). $$
Let \(\mathcal{H}_{S^{H}}\) be the canonical Hilbert space associated to the sub-fBm \(S^{H}\). That is, \(\mathcal{H}_{S^{H}}\) is the closure of the linear span ℰ with respect to the scalar product
$$\langle\mathbf{I}_{[0,t]},\mathbf{I}_{[0,s]}\rangle_{\mathcal {H}_{S^{H}}}=C_{H}(t,s). $$
We know that the covariance of sub-fractional Brownian motion can be written as
$$ \mathbb{E}\bigl[S^{H}(t)S^{H}(s)\bigr]=\int _{0}^{t}\int_{0}^{s} \phi_{H}(u,v)\, du\, dv=C_{H}(s,t), $$
(2.1)
where \(\phi_{H}(u,v)=H(2H-1)[|u-v|^{2H-2}-(u+v)^{2H-2}]\).
Equation (2.1) implies that
$$ \langle\varphi,\psi\rangle_{\mathcal{H}_{S^{H}}}=\int_{0}^{t} \int_{0}^{t}\varphi_{u} \psi_{v}\phi_{H}(u,v)\, du\, dv $$
(2.2)
for any pair step functions φ and ψ on \([0,T]\). Consider the kernel
$$ n_{H}(t,s)=\frac{2^{1-H}\sqrt{\pi}}{\Gamma(H-\frac {1}{2})}s^{3/2-H} \biggl(\int _{s}^{t}\bigl(x^{2}-s^{2} \bigr)^{H-3/2}\, dx \biggr)\mathbf{I}_{[0,t]}(s). $$
(2.3)
By Dzhaparidze and Van Zanten [15], we have
$$ C_{H}(t,s)=c_{H}^{2}\int _{0}^{s\wedge t}n_{H}(t,u)n_{H}(s,u)\, du, $$
(2.4)
where
$$c^{2}_{H}=\frac{\Gamma(1+2H)\sin(\pi H)}{\pi}. $$
Property (2.4) implies that \(C_{H}(s,t)\) is non-negative definite. Consider the linear operator \(n^{\ast}_{H}\) from ℰ to \(L^{2}([0,T])\) defined by
$$n^{\ast}_{H}(\varphi) (s):=c_{H}\int _{s}^{r}\varphi_{r}\frac{\partial n_{H}}{\partial r}(r,s) \, dr. $$
Using (2.2) and (2.4) we have
$$\begin{aligned} \bigl\langle n^{\ast}_{H}\varphi,n^{\ast}_{H} \psi\bigr\rangle _{L^{2}([0,T])}&=c_{H}^{2}\int _{0}^{T} \biggl(\int_{s}^{T} \varphi_{r}\frac{\partial n_{H}}{\partial r}(r,s)\, dr \biggr) \biggl(\int _{s}^{T}\psi_{u}\frac{\partial n_{H}}{\partial u}(u,s)\, du \biggr)ds \\ &=c_{H}^{2}\int_{0}^{T}\int _{0}^{T} \biggl(\int_{0}^{r\wedge u} \frac{\partial n_{H}}{\partial r}(r,s)\frac{\partial n_{H}}{\partial u}(u,s)\, ds \biggr)\varphi_{r} \psi_{u}\, dr\, du \\ &=c_{H}^{2}\int_{0}^{T}\int _{0}^{T}\frac{\partial^{2}n_{H}}{\partial r\, \partial u}(r,u)\varphi_{r} \psi_{u}\, dr\, du \\ &=H(2H-1)\int_{0}^{T}\int_{0}^{T} \bigl[|u-r|^{2H-2}-(u+r)^{2H-2}\bigr]\varphi_{r}\psi _{u}\, dr\, du \\ &=\langle\varphi,\psi\rangle_{\mathcal{H}_{S^{H}}}. \end{aligned}$$
(2.5)
As a consequence, the operator \(n^{\ast}_{H}\) provides an isometry between the Hilbert space \(\mathcal{H}_{S^{H}}\) and \(L^{2}([0,T])\). Hence, the process W defined by
$$W(t):=S^{H}\bigl(\bigl(n^{\ast}_{H} \bigr)^{-1}(\mathbf{I}_{[0,t]})\bigr) $$
is a Wiener process, and \(S^{H}\) has the following Wiener integral representation:
$$S^{H}(t)=c_{H}\int_{0}^{t}n_{H}(t,s) \, dW(s) $$
because \((n^{\ast}_{H})(\mathbf{I}_{[0,t]})(s)=c_{H}n_{H}(t,s)\). By Dzhaparidze and Van Zanten [15], we have
$$W(t)=\int_{0}^{t}\psi_{H}(t,s)\, dS^{H}(s), $$
where
$$\begin{aligned} \psi_{H}(t,s) =&\frac{s^{H-1/2}}{\Gamma (3/2-H)}\biggl[t^{H-3/2} \bigl(t^{2}-s^{2}\bigr)^{1/2-H}-(H-3/2)\int _{s}^{t}\bigl(x^{2}-s^{2} \bigr)^{1/2-H}x^{H-3/2}\, dx\biggr] \\ &{}\times\mathbf{I}_{[0,t]}(s). \end{aligned}$$
In addition, for any \(\varphi\in\mathcal{H}_{S^{H}}\),
$$\int_{0}^{T}\varphi(s)\, dS^{H}(s)=\int _{0}^{T}\bigl(n^{\ast}_{H}\varphi \bigr) (t)\, dW(t) $$
if and only if \(n^{\ast}_{H}\varphi\in L^{2}([0,T])\).
Also denoting \(L^{2}_{\mathcal{H}_{S^{H}}}([0,T])=\{\varphi\in\mathcal {H}_{S^{H}}, n^{\ast}_{H}\varphi\in L^{2}([0,T])\}\). Since \(H>1/2\), we have by (2.5) and Lemma 2.1 of [16],
$$ L^{2}\bigl([0,T]\bigr)\subset L^{\frac{1}{H}} \bigl([0,T]\bigr)\subset L^{2}_{\mathcal {H}_{S^{H}}}\bigl([0,T]\bigr). $$
(2.6)
Moreover, the following useful result holds:
Lemma 2.1
(Nualart [17])
For
\(\varphi\in L^{1/H}([0,T])\),
$$H(2H-1)\int_{0}^{T}\int_{0}^{T}| \varphi_{r}||\varphi_{u}||u-r|^{2H-2}\, dr\, du\leq C_{H}\|\varphi\|_{L^{\frac{1}{H}}([0,T])}, $$
where
\(C_{H}= (\frac{H(2H-1)}{B(2-2H,H-\frac{1}{2})} )^{1/2}\), with
B
denoting the beta function.
Next we are interested in considering a sub-fBm with values in Hilbert space and giving the definition of the corresponding stochastic integral.
Let \((U,\|\cdot\|_{U},\langle\cdot\rangle_{U})\) and \((K,\|\cdot\| _{K},\langle\cdot\rangle_{K})\) be two separable Hilbert spaces. Let \(L(K,U)\) denote the space of all bounded linear operators from K to U. Let \(Q\in L(K,K)\) be a non-negative self-adjoint operator. Denote by \(L^{0}_{Q}(K,U)\) the space of all \(\xi\in L(K,U)\) such that \(\xi Q^{\frac{1}{2}}\) is a Hilbert-Schmidt operator. The norm is given by
$$\|\xi\|^{2}_{L^{0}_{Q}(K,U)}=\bigl\Vert \xi Q^{\frac{1}{2}}\bigr\Vert _{HS}^{2}=\operatorname{tr}\bigl(\xi Q\xi ^{\ast}\bigr). $$
Then ξ is called a Q-Hilbert-Schmidt operator from K to U.
Let \(\{S^{H}_{n}(t)\}_{n\in\mathbb{N}}\) be a sequence of one-dimensional standard sub-fractional Brownian motions mutually independent on \((\Omega,\mathcal{F},\mathbb{P})\). When one considers the following series:
$$\sum_{n=1}^{\infty}S^{H}_{n}(t)e_{n}, \quad t\geq0, $$
where \(\{e_{n}\}_{n\in\mathbb{N}}\) is a complete orthonormal basis in K, this series does not necessarily converge in the space K. Thus we consider a K-valued stochastic process \(S^{H}_{Q}(t)\) given formally by the following series:
$$S^{H}_{Q}(t)=\sum_{n=1}^{\infty}S^{H}_{n}(t)Q^{\frac{1}{2}}e_{n}, \quad t\geq0. $$
If Q is a non-negative self-adjoint trace class operator, then this series converges in the space K, that is, we have \(S^{H}_{Q}(t)\in L^{2}(\Omega,K)\). Then we say that the above \(S^{H}_{Q}(t)\) is a K-valued Q-cylindrical sub-fractional Brownian motion with covariance operator Q. For example, if \(\{\sigma_{n}\}_{n\in\mathbb {N}}\) is a bounded sequence of non-negative real numbers such that \(Qe_{n}=\sigma_{n}e_{n}\), assuming that Q is a nuclear operator in K (that is, \(\sum_{n=1}^{\infty}\sigma_{n}<\infty\)), then the stochastic process
$$S^{H}_{Q}(t)=\sum_{n=1}^{\infty}S^{H}_{n}(t)Q^{\frac{1}{2}}e_{n}= \sum_{n=1}^{\infty}\sqrt{\sigma_{n}}S^{H}_{n}(t)e_{n}, \quad t\geq0, $$
is well defined as a K-valued Q-cylindrical sub-fractional Brownian motion.
Let \(\varphi:[0,T]\rightarrow L^{0}_{Q}(K,U)\) such that
$$ \sum_{n=1}^{\infty}\bigl\Vert n^{\ast}_{H}\bigl(\varphi Q^{1/2}e_{n}\bigr) \bigr\Vert _{L^{2}([0,T];U)}< \infty. $$
(2.7)
Definition 2.1
Let \(\varphi:[0,T]\rightarrow L^{0}_{Q}(K,U)\) satisfy (2.7). Then its stochastic integral with respect to the sub-fBm \(S^{H}_{Q}\) is defined, for \(t\geq0\), as follows:
$$\begin{aligned} \int_{0}^{t}\varphi(s)\, dS^{H}_{Q}(s) :=& \sum_{n=1}^{\infty}\int_{0}^{t} \varphi (s)Q^{1/2}e_{n}\, dS^{H}_{n}(s) \\ =& \sum_{n=1}^{\infty}\int_{0}^{t} \bigl(n^{\ast }_{H}\bigl(\varphi Q^{1/2}e_{n} \bigr)\bigr) (s)\, dW(s). \end{aligned}$$
Notice that if
$$ \sum_{n=1}^{\infty}\bigl\Vert \varphi Q^{1/2}e_{n}\bigr\Vert _{L^{1/H}([0,T];U)}< \infty, $$
(2.8)
then in particular (2.7) holds, which follows immediately from (2.6).
The following lemma is obtained as a simple application of Lemma 2.1.
Lemma 2.2
For any
\(\varphi:[0,T]\rightarrow L^{0}_{Q}(K,U)\)
such that (2.8) holds, and for any
\(\alpha,\beta\in[0,T]\)
with
\(\alpha>\beta\),
$$\mathbb{E}\biggl\Vert \int_{\alpha}^{\beta}\varphi(s)\, dS^{H}_{Q}(s)\biggr\Vert _{U}^{2}\leq C_{H}(\alpha-\beta)^{2H-1}\sum_{n=1}^{\infty} \int_{\alpha }^{\beta}\bigl\Vert \varphi(s)Q^{1/2}e_{n} \bigr\Vert ^{2}_{U}\, ds. $$
If, in addition,
$$ \sum_{n=1}^{\infty}\bigl\Vert \varphi(s)Q^{1/2}e_{n}\bigr\Vert ^{2}_{U} \textit{ is uniformly convergent for } t\in[0,T], $$
(2.9)
then
$$ \mathbb{E}\biggl\Vert \int_{\alpha}^{\beta} \varphi(s)\, dS^{H}_{Q}(s)\biggr\Vert _{U}^{2} \leq C_{H}(\alpha-\beta)^{2H-1}\int_{\alpha}^{\beta} \bigl\Vert \varphi (s)\bigr\Vert ^{2}_{L^{0}_{Q}(K,U)}\, ds. $$
(2.10)
Proof
Let \(\{e_{n}\}_{n\in\mathbb{N}}\) be the complete orthonormal basis of K introduced above. Applying Lemma 2.1 we can obtain
$$\begin{aligned} \mathbb{E}\biggl\Vert \int_{\alpha}^{\beta}\varphi(s)\, dS^{H}_{Q}(s)\biggr\Vert _{U}^{2} =& \mathbb{E}\Biggl\Vert \sum_{n=1}^{\infty}\int _{\alpha}^{\beta }\varphi(s)Q^{1/2}e_{n} \, dS^{H}(s)\Biggr\Vert _{U}^{2} \\ =&\sum_{n=1}^{\infty}\mathbb{E}\biggl\Vert \int_{\alpha}^{\beta }\varphi(s)Q^{1/2}e_{n} \, dS^{H}(s)\biggr\Vert _{U}^{2} \\ =&\sum_{n=1}^{\infty}H(2H-1)\int _{\alpha}^{\beta}\int_{\alpha }^{\beta} \bigl\Vert \varphi(t)Q^{1/2}e_{n}\bigr\Vert _{U} \bigl\Vert \varphi(s)Q^{1/2}e_{n}\bigr\Vert _{U} \\ &{}\times\bigl[|t-s|^{2H-2}-(t+s)^{2H-2}\bigr]\, dt\, ds \\ \leq&\sum_{n=1}^{\infty}H(2H-1)\int _{\alpha}^{\beta}\int_{\alpha }^{\beta} \bigl\Vert \varphi(t)Q^{1/2}e_{n}\bigr\Vert _{U} \bigl\Vert \varphi(s)Q^{1/2}e_{n}\bigr\Vert _{U} \\ &{}\times|t-s|^{2H-2}\, dt\, ds \\ \leq&C_{H}\sum_{n=1}^{\infty} \biggl(\int_{\alpha}^{\beta}\bigl\Vert \varphi (s)Q^{1/2}e_{n}\bigr\Vert _{U}^{1/H}\, ds \biggr)^{2H} \\ \leq&C_{H}(\alpha-\beta)^{2H-1}\sum _{n=1}^{\infty}\int_{\alpha }^{\beta} \bigl\Vert \varphi(s)Q^{1/2}e_{n}\bigr\Vert _{U}^{2}\, ds. \end{aligned}$$
The second assertion is an immediate consequence of the Weierstrass M-test. □
Remark 2.1
If \(\{\sigma_{n}\}_{n\in\mathbb{N}}\) is a bounded sequence of non-negative real numbers such that the nuclear operator Q satisfies \(Qe_{n}=\sigma_{n}e_{n}\), assuming that there exists a positive constant \(k_{\varphi}\) such that
$$\bigl\Vert \varphi(t)\bigr\Vert _{L^{2}_{Q}(K,U)}\leq k_{\varphi},\quad \text{uniformly in } \in[0,T], $$
then (2.9) holds automatically.