For the sake of convenience, we denote
$$\begin{aligned}& f_{0}=\liminf_{y\to0}\min_{t\in[\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}} \frac{f(t, y)}{y},\qquad f^{0}=\limsup_{y\to0}\max _{t\in[\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}} \frac{f(t, y)}{y}, \\& f_{\infty}=\liminf_{y\to+\infty}\min_{t\in [\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}} \frac{f(t,y)}{y},\qquad f^{\infty}=\limsup_{y\to+\infty}\max _{t\in[\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}} \frac{f(t,y)}{y}, \\& \frac{1}{A}=\sum_{s=0}^{b+1}G(b+ \nu,s),\qquad \frac{1}{B}= \frac{1}{4}\sum _{s=[\frac{b+\nu}{4}-\nu+1]}^{[\frac{3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[\frac{b-\nu}{2} \biggr]+\nu,s \biggr). \end{aligned}$$
We use Lemma 2.6 to establish the existence of positive solutions to the FBVP (1). To this end, one or several of the following conditions will be needed.
- (H):
-
\(f:[\nu-2,\nu-1,\ldots,b+\nu]_{{\mathbb{N}}_{\nu-2}}\times [0,+\infty) \to[0,+\infty)\) is continuous.
- (H1):
-
There is a number \(p>0\) such that \(f(t,y)< Ap\) for \(0\leqslant y \leqslant p\) and \(\nu-2\leqslant t \leqslant b+\nu\).
- (H2):
-
There is a number \(p>0\) such that \(f(t,y)>Bp\) for \(\frac{1}{4}p\leqslant y \leqslant p\) and \(\frac{b+\nu}{4} \leqslant t \leqslant\frac{3(b+\nu)}{4}\).
- (H3):
-
\(f_{0}>B\), \(f_{\infty}>B \).
- (H4):
-
\(f^{0}< A\), \(f^{\infty}< A \).
- (H5):
-
\(f_{0}>B\), \(f^{\infty}< A \).
- (H6):
-
\(f^{0}< A\), \(f_{\infty}>B \).
- (\(\mathrm{H}_{3}^{*}\)):
-
\(f_{0}=+\infty\), \(f_{\infty}=+\infty\).
- (\(\mathrm{H}_{4}^{*}\)):
-
\(f^{0}=0\), \(f^{\infty}=0\).
Let
$${\mathcal{B}}=\bigl\{ y:[\nu-3,b+\nu]_{{\mathbb{N}}_{\nu-3}}\to {\mathbb{R}}, y(\nu-3)= \triangle y(b+\nu)=\triangle^{2}y(\nu-3)=0\bigr\} . $$
Then ℬ is a Banach space with respect to the norm \(\|y\|=\max_{t\in[\nu-3,b+\nu]_{{\mathbb{N}}_{\nu-3}}}|y(t)|\). We define a cone in ℬ by
$${\mathcal{K}}=\biggl\{ y\in{\mathcal{B}}: y(t)\geqslant0,\min _{ \frac{b+\nu}{4}\leqslant t\leqslant\frac{3(b+\nu)}{4}}y(t)\geqslant\frac{1}{4}\|y\|\biggr\} . $$
Now consider the operator T defined by
$$ (Ty) (t)=\sum_{s=0}^{b+1}G(t,s)f\bigl(s+ \nu-1, y(s+\nu-1)\bigr). $$
(6)
It is easy to see that \(y=y(t)\) is a solution of the FBVP (1) if and only if \(y=y(t)\) is a fixed point of T. We shall obtain sufficient conditions for the existence of fixed points of T. First, we notice that T is a summation operator on a discrete finite set. Hence, T is trivially completely continuous. From (6), then
$$\begin{aligned} \min_{\frac{b+\nu}{4}\leqslant t\leqslant \frac{3(b+\nu)}{4}} (Ty) (t) \geqslant& \frac{1}{4}\sum _{s=0}^{b+1}G(b+\nu ,s)f\bigl(s+\nu-1,y(s+ \nu-1)\bigr) \\ \geqslant& \frac{1}{4}\max_{t\in[\nu-2,b+\nu ]_{{\mathbb{N}}_{\nu-2}}}\sum _{s=0}^{b+1}G(t,s)f\bigl(s+\nu-1,y(s+\nu -1)\bigr) \\ =& \frac{1}{4}\|Ty\|, \end{aligned}$$
hence \(T{\mathcal{K}}\subset\mathcal{K}\).
In the sequel, let \(\Omega_{\lambda}=\{y\in{\mathcal{K}}: \|y\|<\lambda\}\), for \(\lambda>0\), \(\partial\Omega_{\lambda}=\{y\in{\mathcal{K}}: \|y\|=\lambda\}\).
Theorem 3.1
Assume that there exist two different positive numbers
r
and
R
such that
f
satisfies condition (H1) at
r
and condition (H2) at
R. Then the FBVP (1) has at least one positive solution
\(y_{0}\in\mathcal{K}\)
satisfying
\(\min\{r,R\}\leqslant\|y_{0}\|\leqslant\max\{r,R\}\).
Proof
We know that \(T:{\mathcal{K}}\to{\mathcal{K}}\), and T is completely continuous. Without loss of generality suppose that \(r< R\). Note that for \(y\in \partial\Omega_{r}\), we have \(\|y\|=r\), so that condition (H1) holds for all \(y\in \partial\Omega_{r}\). Then
$$\begin{aligned} (Ty) (t) \leqslant& \sum_{s=0}^{b+1}G(b+ \nu,s)f\bigl(s+\nu -1,y(s+\nu-1)\bigr) \\ \leqslant& Ar \sum_{s=0}^{b+1}G(b+\nu,s) \\ =& r, \end{aligned}$$
i.e., we have \(\|Ty\|\leqslant\|y\|\) for \(y\in{\mathcal {K}}\cap {\partial\Omega_{r }}\).
Note that for \(y\in \partial\Omega_{R}\), we have \(\|y\|=R\), so condition (H2) holds for all \(y\in\partial\Omega_{R}\). Since \([ \frac{b-\nu}{2} ]+\nu\in [ \frac{b+\nu}{4}, \frac{3(b+\nu)}{4} ]\),
$$\begin{aligned} (Ty) \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu \biggr) =& \sum _{s=0}^{b+1}G \biggl( \biggl[ \frac {b-\nu}{2} \biggr]+\nu,s \biggr)f\bigl(s+\nu-1,y(s+\nu-1)\bigr) \\ \geqslant& \frac{1}{4} \sum_{s=[\frac{b+\nu}{4}-\nu+1]}^{[\frac{3(b+\nu)}{4}-\nu +1]}G \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu,s \biggr)f\bigl(s+\nu -1,y(s+ \nu-1)\bigr) \\ \geqslant& \frac{BR}{4}\sum_{s=[\frac{b+\nu}{4}-\nu+1]}^{[\frac {3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu,s \biggr) \\ =& R, \end{aligned}$$
i.e., we have \(\|Ty\|\geqslant\|y\|\) for \(y\in{\mathcal {K}}\cap {\partial\Omega_{R}}\).
By Lemma 2.6 that T has at least one fixed point, say, \(y_{0}\in \overline{\Omega}_{R}\backslash\Omega_{r}\). This function \(y_{0}(t)\) is a positive solution of (1) and satisfies \(r\leqslant\|y_{0}\|\leqslant R\). The proof is complete. □
Theorem 3.2
Assume that conditions (H), (H1), and (H3) hold. Then the FBVP (1) has at least two positive solutions
\(y_{1}\)
and
\(y_{2}\)
with
\(0<\|y_{1}\|<p\leqslant\|y_{2}\|\).
Proof
Suppose that (H3) holds. Since \(f_{0}>B\), there exist \(\varepsilon>0\) and \(0< r_{0}<p\) such that
$$f(t,y)\geqslant(B+\varepsilon)y,\quad 0\leqslant y\leqslant r_{0}, t \in [\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}. $$
Let \(r_{1}\in(0,r_{0})\). Thus for \(y\in\partial\Omega_{r_{1}}\), we have
$$\begin{aligned} (Ty) \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu \biggr) \geqslant& \sum _{s=0}^{b+1}G \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu,s \biggr) (B+\varepsilon)y \\ \geqslant& (B+\varepsilon)\cdot \frac{1}{4}\|y\|\sum _{s=[\frac {b+\nu}{4}-\nu+1]}^{[\frac{3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu,s \biggr) \\ >&B\cdot \frac{1}{4}\|y\|\sum_{s=[\frac{b+\nu }{4}-\nu+1]}^{[\frac{3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[ \frac {b-\nu}{2} \biggr]+\nu,s \biggr) \\ =& r_{1}, \end{aligned}$$
from which we see that \(\|Ty\|>\|y\|\) for \(y\in{\mathcal{K}}\cap{\partial\Omega_{r_{1} }}\).
On the other hand, since \(f_{\infty}>B\), there exist \(\eta>0\) and \(R_{0}>0\) such that
$$f(t,y)\geqslant(B+\eta)y, \quad y\geqslant R_{0}, t\in[\nu-2, b+ \nu]_{{\mathbb{N}}_{\nu-2}}. $$
Choose \(R_{1}>\max\{4R_{0}, p\}\). For \(y\in\partial\Omega_{R_{1}}\), since \(y(t)\geqslant \frac{1}{4}\|y\|>R_{0}\) for \(\frac{b+\nu}{4}\leqslant t\leqslant\frac{3(b+\nu)}{4}\), we have
$$\begin{aligned} (Ty) \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu \biggr) \geqslant& \sum _{s=0}^{b+1}G \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu,s \biggr) (B+\eta)y \\ \geqslant& (B+\eta)\cdot \frac{1}{4}\|y\|\sum _{s=[\frac{b+\nu }{4}-\nu+1]}^{[\frac{3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[ \frac {b-\nu}{2} \biggr]+\nu,s \biggr) \\ >&B\cdot \frac{1}{4}\|y\|\sum_{s=[\frac{b+\nu }{4}-\nu+1]}^{[\frac{3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[ \frac {b-\nu}{2} \biggr]+\nu,s \biggr) \\ =& R_{1}, \end{aligned}$$
from which we see that \(\|Ty\|>\|y\|\) for \(y\in{\mathcal{K}}\cap{\partial\Omega_{R_{1}}}\).
For any \(y\in\partial\Omega_{p} \), from (H1), we have \(f(t,y)< Ap\), \(t\in[\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}\), then
$$\begin{aligned} (Ty) (t) =& \sum_{s=0}^{b+1}G(t,s)f\bigl(s+ \nu-1,y(s+\nu -1)\bigr) \\ \leqslant& \sum_{s=0}^{b+1}G(b+\nu,s)Ap \\ =& p, \end{aligned}$$
from which we see that \(\|Ty\|\leqslant\|y\|\) for \(y\in{\mathcal{K}}\cap{\partial\Omega_{p}}\).
Therefore, by Lemma 2.6, we complete the proof. □
By the proof of Theorem 3.2, we obtain the following corollary.
Corollary 3.1
Assume that (H) and (H1) hold, (H3) is replaced by (\(\mathrm{H}_{3}^{*}\)). Then the FBVP (1) has at least two positive solutions
\(y_{1}\)
and
\(y_{2}\)
with
\(0<\|y_{1}\|<p\leqslant\|y_{2}\|\).
Theorem 3.3
Suppose that conditions (H), (H2), and (H4) hold, \(f>0\)
for
\(t\in[\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}\). Then the FBVP (1) has at least two positive solutions
\(y_{1}\)
and
\(y_{2}\)
with
\(0<\|y_{1}\|<p<\|y_{2}\|\).
Proof
Suppose that (H4) holds. Since \(f^{0}< A\), one can find \(\varepsilon>0 \) (\(\varepsilon< A\)) and \(0< r_{0}<p\) such that
$$f(t,y)\leqslant(A-\varepsilon)y, \quad 0\leqslant y\leqslant r_{0}, t \in [\nu-2, b+\nu]_{{\mathbb{N}}_{\nu-2}}. $$
Let \(r_{2}\in(0,r_{0})\), for \(y\in\partial\Omega_{r_{2}}\), we get
$$\begin{aligned} (Ty) (t) =& \sum_{s=0}^{b+1}G(t,s)f\bigl(s+ \nu-1,y(s+\nu -1)\bigr) \\ \leqslant& \sum_{s=0}^{b+1}G(b+\nu,s) (A- \varepsilon )r_{2} \\ < & Ar_{2} \sum_{s=0}^{b+1}G(b+ \nu,s) \\ =& r_{2}, \end{aligned}$$
from which we see that \(\|Ty\|<\|y\|\) for \(y\in\partial\Omega_{r_{2}}\).
On the other hand, since \(f^{\infty}< A \), there exist \(0<\sigma<A \) and \(R_{0}>0\) such that
$$f(t,y)\leqslant\sigma y,\quad y\geqslant R_{0}, t\in[\nu-2, b+\nu ]_{{\mathbb{N}}_{\nu-2}}. $$
Let \(M=\max_{(t,y)\in[\nu-2, b+\nu]\times[0,R_{0}]}f(t,y)\), then \(0\leqslant f(t,y)\leqslant\sigma y+M\), \(0\leqslant y<+\infty\). Let \(R_{2}>\max\{p, \frac{M}{A-\sigma}\}\), for \(y\in\partial\Omega_{R_{2}}\), we have
$$\begin{aligned} \|Ty\| \leqslant& \sum_{s=0}^{b+1}G(b+ \nu,s)f\bigl(s+\nu -1,y(s+\nu-1)\bigr) \\ \leqslant& \bigl(\sigma\|y\|+M\bigr) \sum_{s=0}^{b+1}G(b+ \nu ,s) \\ =& (\sigma R_{2}+M)\cdot \frac{1}{A} \\ < & R_{2}. \end{aligned}$$
Therefore, we have \(\|Ty\|\leqslant\|y\|\) for \(y\in \partial\Omega_{R_{2}}\).
Finally, for any \(y\in\partial\Omega_{p} \), since \(\frac{1}{4}p\leqslant y(t)\leqslant p\) for \(\frac{b+\nu}{4}\leqslant t \leqslant\frac{3(b+\nu)}{4}\), we have
$$\begin{aligned} (Ty) \biggl( \biggl[ \frac{b-\nu}{2} \biggr]+\nu \biggr) =& \sum _{s=0}^{b+1}G \biggl( \biggl[ \frac {b-\nu}{2} \biggr]+\nu,s \biggr)f\bigl(s+\nu-1,y(s+\nu-1)\bigr) \\ >& B\cdot \frac{1}{4}p\sum_{s=[\frac{b+\nu}{4}-\nu +1]}^{[\frac{3(b+\nu)}{4}-\nu+1]}G \biggl( \biggl[ \frac{b-\nu }{2} \biggr]+\nu,s \biggr) \\ =& p=\|y\|, \end{aligned}$$
from which we see that \(\|Ty\|>\|y\|\) for \(y\in{\mathcal{K}}\cap{\partial\Omega_{p}}\).
By Lemma 2.6, the proof is complete. □
From the proof of Theorem 3.3, we get the following corollary.
Corollary 3.2
Assume that (H) and (H2) hold, (H4) is replaced by (\(\mathrm{H}_{4}^{*}\)). Then the FBVP (1) has at least two positive solutions.
From the proof of Theorem 3.2 and 3.3, we get some theorems and corollaries.
Theorem 3.4
Suppose that condition (H) and (H5) are satisfied. Then the FBVP (1) has at least one positive solution.
Corollary 3.3
Suppose that (H) holds. Also assume that
\(f_{0}=+\infty\), \(f^{\infty}=0\). Then the FBVP (1) has at least one positive solution.
Theorem 3.5
Suppose that (H) and (H6) hold. Then the FBVP (1) has at least one positive solution.
Corollary 3.4
Suppose that (H) holds. Also assume that
\(f^{0}=0\), \(f_{\infty}=+\infty\). Then the FBVP (1) has at least one positive solution.