In this section, we present some basic definitions and preliminary results from the calculus on time scales and almost periodic functions. For more details, see [8, 9, 13, 14].
The symbol \(\mathbb{T}\) denotes a time scale, which is a nonempty closed subset of ℝ. Some examples of such time scales are
$$\mathbb{R},\qquad \mathbb{Z},\qquad \bigcup_{k \in \mathbb{Z}} [2k,2k + 1], \qquad\bigcup_{k \in \mathbb{Z}} \bigcup _{n \in \mathbb{N}} \biggl\{ k + \frac{1}{n} \biggr\} . $$
Definition 1
The forward and backward jump operators \(\sigma,\rho: \mathbb{T} \to \mathbb{T}\) and the graininess \(\mu: \mathbb{T} \to \mathbb{R}^{ +}\) are defined, respectively, by
$$\sigma (t) = \inf \{ s \in \mathbb{T}:s > t \},\qquad \rho (t) = \sup \{ s \in \mathbb{T}:s < t \},\qquad \mu (t) = \sigma (t) - t. $$
A point \(t \in \mathbb{T}\) is called left-dense if \(t > \inf \mathbb{T}\) and \(\rho (t) = t\), left-scattered if \(\rho (t) < t\), right-dense if \(t < \sup \mathbb{T}\) and \(\sigma (t) = t\), and right-scattered if \(\sigma (t) > t\).
If \(\mathbb{T}\) has a left-scattered maximum m, define \(\mathbb{T}^{k} = \mathbb{T} - \{ m \}\); otherwise, set \(\mathbb{T}^{k} = \mathbb{T}\).
If \(\mathbb{T}\) has a right-scattered minimum m, define \(\mathbb{T}_{k} = \mathbb{T} - \{ m \}\); otherwise, set \(\mathbb{T}_{k} = \mathbb{T}\).
Definition 2
A function \(f:\mathbb{T} \to \mathbb{R}\) is right-dense continuous provided it is continuous at right-dense points in \(\mathbb{T}\) and its left-side limits exist (finite) at left-dense points in \(\mathbb{T}\). If f is continuous at each right-dense point and each left-dense point, then f is said to be a continuous function on \(\mathbb{T}\).
Definition 3
For \(f:\mathbb{T} \to \mathbb{R}\), we define \(f^{\Delta} (t)\) to be the number (if it exists) with the property that for any given \(\varepsilon > 0\), there exists a neighborhood U of t such that
$$\bigl\vert \bigl( f \bigl(\sigma (t) \bigr) - f(s) \bigr) - f^{\Delta} (t) \bigl( \sigma (t) - s \bigr) \bigr\vert < \varepsilon \bigl\vert \sigma (t) - s \bigr\vert \quad \mbox{for all } s \in U. $$
We call \(f^{\Delta} (t)\) the delta (or Hilger) derivative of f at t.
If \(F^{\Delta} (t) = f(t)\), then we define the delta integral by
$$\int_{r}^{t} f(s)\Delta s = F(t) - F(r) \quad \mbox{for } t,r \in \mathbb{T}. $$
Definition 4
A function \(p:\mathbb{T} \to \mathbb{R}\) is called regressive provided \(1 + \mu (t)p(t) \ne 0\) for all \(t \in \mathbb{T}\).
The set of all regressive and rd-continuous functions \(p:\mathbb{T} \to \mathbb{R}\) will be denoted by \(\Re = \Re (\mathbb{T},\mathbb{R})\).
We define the set \(\Re^{ +} = \Re^{ +} (\mathbb{T},\mathbb{R}) = \{ p \in \Re:1 + \mu (t)p(t) > 0,\forall t \in \mathbb{T} \}\).
Definition 5
If p is a regressive function, then the generalized exponential function \(e_{p}\) is defined as the unique solution of the initial value problem \(y^{\Delta} = p(t)y\), \(y(s) = 1\), where \(s \in \mathbb{T}\).
An explicit formula for \(e_{p}(t,s)\) is given by
$$e_{p}(t,s) = \exp \biggl\{ \int_{s}^{t} \xi_{\mu (\tau )} \bigl( p(\tau ) \bigr)\Delta \tau \biggr\} \quad\mbox{for all } s,t \in \mathbb{T}, $$
where
$$\xi_{h}(z) = \left \{ \begin{array}{@{}l@{\quad}l} \frac{\operatorname{Log}(1 + hz)}{h}, & \mbox{if } h \ne 0, \\ z, & \mbox{if }h = 0. \end{array} \right . $$
Definition 6
Let \(p,q:\mathbb{T} \to \mathbb{R}\) be two regressive functions, define
$$p \oplus q = p + q + \mu pq, \qquad\ominus p = - \frac{p}{1 + \mu p},\qquad p \ominus q = p \oplus ( \ominus q). $$
Lemma 1
Assume that
\(p,q:\mathbb{T} \to \mathbb{R}\)
are two regressive functions, then
-
(i)
\(e_{0}(t,s) \equiv 1\), \(e_{p}(t,t) \equiv 1\);
-
(ii)
\(e_{p}(\sigma (t),s) = ( 1 + \mu (t)p(t) )e_{p}(t,s)\);
-
(iii)
\(\frac{1}{e_{p}(t,s)} = e_{ \ominus p}(t,s)\), \(e_{p}(t,s) = \frac{1}{e_{p}(s,t)} = e_{ \ominus p}(s,t)\);
-
(iv)
\(e_{p}(t,s)e_{p}(s,r) = e_{p}(t,r)\), \(e_{p}(t,s)e_{q}(t,s) = e_{p \oplus q}(t,s)\);
-
(v)
\(( e_{p}(t,s) )^{\Delta} = pe_{p}(t,s)\);
-
(vi)
If
\(a,b,c \in \mathbb{T}\), then
\(\int_{a}^{b} p(s)e_{p}(c,\sigma (s))\Delta s = e_{p}(c,a) - e_{p}(c,b)\).
Definition 7
[13]
Let Γ be a collection of sets which is constructed by subsets of ℝ. A time scale \(\mathbb{T}\) is called an almost periodic time scale with respect to Γ if
$$\Gamma^{ *} = \biggl\{ \pm \tau \in \bigcap _{\Lambda \in \Gamma} \Lambda:t \pm \tau \in \mathbb{T},\forall t \in \mathbb{T} \biggr\} \ne \emptyset $$
and \(\Gamma^{ *}\) is called the smallest almost periodic set of \(\mathbb{T}\).
Definition 8
[13]
Let \(\mathbb{T}\) be an almost periodic time scale with respect to Γ. A function \(f(t) \in C ( \mathbb{T},\mathbb{R}^{n} )\) is called almost periodic if for any given \(\varepsilon > 0\), the set \(E(f,\varepsilon ) = \{ \tau \in \Gamma^{ *}:\vert f(t + \tau ) - f(t) \vert < \varepsilon,\forall t \in \mathbb{T} \}\) is relatively dense in \(\mathbb{T}\); that is, for any given \(\varepsilon > 0\), there exists a real number \(l = l(\varepsilon ) > 0\) such that each interval of length l contains at least one \(\tau = \tau (\varepsilon ) \in E(f,\varepsilon )\) satisfying \(\vert f(t + \tau ) - f(t) \vert < \varepsilon\), \(\forall t \in \mathbb{T}\).
The set \(E(f,\varepsilon )\) is called ε-translation set of \(f(t)\), τ is called ε-translation number of \(f(t)\), and \(l(\varepsilon )\) is said to contain interval length of \(E(f,\varepsilon )\).
Remark
If \(\Gamma = \{ \mathbb{R} \}\) and \(\mathbb{T} = \mathbb{R}\), then \(\Gamma^{ *} = \mathbb{R}\), in this case, Definition 8 is equivalent to the definition of almost periodic function in [11]. If \(\Gamma = \{ \mathbb{Z} \}\) and \(\mathbb{T} = \mathbb{Z}\), then \(\Gamma^{ *} = \mathbb{Z}\), in this case, Definition 8 is equivalent to the definition of almost periodic sequence in [15].
Definition 9
[13, 16]
Let \(Q(t)\) be an \(n \times n\) rd-continuous matrix function on \(\mathbb{T}\).
The linear system
$$ x^{\Delta} (t) = Q(t)x(t),\quad t \in \mathbb{T} $$
(2.1)
is said to admit an exponential dichotomy on \(\mathbb{T}\) if there exist positive constants k, α, projection P and the fundamental solution matrix \(X(t)\) of (2.1) satisfying
$$\begin{aligned}& \bigl\Vert X(t)PX^{ - 1} \bigl(\sigma (s) \bigr) \bigr\Vert \le ke_{ \ominus \alpha} \bigl(t,\sigma (s) \bigr) \quad\mbox{for } t \ge \sigma (s), s,t \in \mathbb{T}, \\& \bigl\Vert X(t) (I - P)X^{ - 1} \bigl(\sigma (s) \bigr) \bigr\Vert \le ke_{ \ominus \alpha} \bigl(\sigma (s),t \bigr) \quad\mbox{for } t \le \sigma (s), s,t \in \mathbb{T}. \end{aligned}$$
Consider the almost periodic system
$$ x^{\Delta} (t) = Q(t)x(t) + g(t),\quad t \in \mathbb{T}, $$
(2.2)
where \(Q(t)\) is an almost periodic matrix function, \(g(t)\) is an almost periodic vector function.
Lemma 2
[13, 14]
If the linear system (2.1) admits an exponential dichotomy, then the almost periodic system (2.2) has a unique almost periodic solution
\(x(t)\)
as follows:
$$x(t) = \int_{ - \infty}^{t} X(t)PX^{ - 1} \bigl( \sigma (s) \bigr)g(s)\Delta s - \int_{t}^{ + \infty} X(t) (I - P)X^{ - 1} \bigl(\sigma (s) \bigr)g(s)\Delta s. $$
Lemma 3
[8]
Let
\(Q(t)\)
be a regressive
\(n \times n\)
matrix-valued function on
\(\mathbb{T}\). Let
\(t_{0} \in \mathbb{T}\)
and
\(x_{0} \in \mathbb{R}^{n}\), then the initial value problem
$$x^{\Delta} (t) = Q(t)x(t),\qquad x(t_{0}) = x_{0} $$
has a unique solution
\(x(t)\)
as follows:
$$x(t) = e_{Q}(t,t_{0})x_{0}. $$
Lemma 4
[13]
Let
\(c_{i}(t)\)
be an almost periodic function on
\(\mathbb{T}\), where
\(c_{i}(t) > 0\), \(- c_{i}(t) \in \Re^{ +}\), \(\forall t \in \mathbb{T}\)
and
$$\min_{1 \le i \le n} \Bigl\{ \inf_{t \in \mathbb{T}}c_{i}(t) \Bigr\} > 0. $$
Then the linear system
$$x^{\Delta} (t) = \operatorname{diag} \bigl( - c_{1}(t), - c_{2}(t), \ldots, - c_{n}(t) \bigr)x(t) $$
admits an exponential dichotomy on
\(\mathbb{T}\).
By Lemma 3, we can get the following.
Lemma 5
Let
\(- C = \operatorname{diag} ( - c_{1}(t), - c_{2}(t), \ldots, - c_{n}(t) )\), then
\(X(t) = e_{ - C}(t,t_{0})\)
is a fundamental solution matrix of the linear system
\(x^{\Delta} (t) = \operatorname{diag} ( - c_{1}(t), - c_{2}(t), \ldots, - c_{n}(t) )x(t)\).