Skip to main content

Theory and Modern Applications

Some identities of Barnes-type special polynomials

Abstract

In this paper, we consider Barnes-type special polynomials and give some identities of their polynomials which are derived from the bosonic p-adic integral or the fermionic p-adic integral on \(\mathbb{Z}_{p}\).

1 Introduction

As is known, the Bernoulli polynomials of order r are defined by the generating function to be

$$ {\biggl(\frac{t}{e^{t}-1}\biggr) ^{r}}e^{xt} = \sum_{n=0}^{\infty }B_{n}^{(r)}(x) \frac{t^{n}}{n!} \quad (\mbox{see [1--29]}). $$
(1)

When \(x=0\), \(B_{n}^{(r)}=B_{n}^{(r)}(0)\) are called the Bernoulli numbers of order r.

For \(a_{1},a_{2},\ldots,a_{r}\neq0\in\mathbb{C}_{p}\), the Barnes-Bernoulli polynomials are defined by the generating function to be

$$ \prod_{i=1}^{r}\biggl(\frac{t}{e^{a_{i}t}-1} \biggr)e^{xt}=\sum_{n=0}^{\infty}B_{n}(x| a_{1},a_{2},\ldots,a_{r})\frac{t^{n}}{n!}. $$

When \(x=0\), \(B_{n}(0|a_{1},a_{2},\ldots,a_{r})=B_{n}(a_{1},a_{2},\ldots,a_{r})\) are called Barnes Bernoulli numbers (see [14–33]).

Let p be a fixed odd prime number. Throughout this paper, \(\mathbb {Z}_{p}\), \(\mathbb{Q}_{p}\) and \(\mathbb{C}_{p}\) will denote the ring of p-adic integers, the field of p-adic numbers and the completion of algebraic closure of \(\mathbb{Q}_{p}\), respectively. The p-adic norm is defined as \(|p|_{p}=1/p\). Let \(UD(\mathbb{Z}_{p})\) be the space of uniformly differentiable function on \(\mathbb{Z}_{p}\). For \(f\in UD(\mathbb{Z}_{p})\), the bosonic p-adic integral on \(\mathbb{Z}_{p}\) is defined by

$$ \begin{aligned}[b] I_{0}(f)&=\int_{\mathbb{Z}_{p}}f(x)\,d\mu_{0}(x)=\lim_{N\to\infty} \sum_{x=0}^{p^{N}-1}f(x)\mu_{0} \bigl(x+p^{N}\mathbb{Z}_{p}\bigr)\\ &=\lim_{N\to\infty }\frac{1}{p^{N}}\sum _{x=0}^{p^{N}-1}f(x)\quad (\mbox{see [16, 21]}). \end{aligned} $$
(2)

From (2), we have

$$ I_{0}(f_{1})=I_{0}(f)+f'(0), $$
(3)

where \(f_{1}(x)=f(x+1)\).

By using iterative method, we get

$$ I_{0}(f_{n})=I_{0}(f)+\sum _{i=0}^{n-1}f'(i), $$
(4)

where \(f_{n}(x)=f(x+n)\) (\(n\in\mathbb{N}\)).

As is well known, the fermionic p-adic integral on \(\mathbb{Z}_{p}\) is defined by Kim to be

$$ \begin{aligned}[b] I_{-1}(f)&=\int _{\mathbb{Z}_{p}}f(x)\,d\mu_{-1}(x)=\lim_{N\to\infty} \sum_{x=0}^{p^{N}-1}f(x)\mu_{-1} \bigl(x+p^{N}\mathbb{Z}_{p}\bigr)\\ &=\lim_{N\to \infty}\sum_{x=0}^{p^{N}-1}f(x) (-1)^{x} \quad(\mbox{see [26, 27]}). \end{aligned} $$
(5)

From (5), we can derive

$$ I_{-1}(f_{n})+(-1)^{n-1}I_{-1}(f)=2 \sum_{l=0}^{n-1}(-1)^{n-l-1}f(l). $$
(6)

In particular, \(n=1\), we have

$$ I_{-1}(f_{1})+I_{-1}(f)=2f(0) \quad(\mbox{see [26, 27]}). $$
(7)

The purpose of this paper is to investigate several special polynomials related to Barnes-type polynomials and give some identities including Witt’s formula of their polynomials.

Finally, we give some identities of mixed-type Bernoulli and Euler polynomials.

2 Barnes-type polynomials

Let \(a_{1},a_{2},\ldots,a_{r}\neq0\in\mathbb{C}_{p}\). Then, by (3), we get

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb {Z}_{p}}e^{(a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{r}x_{r}+x)t}\,d\mu_{0}(x_{1})\cdots \,d \mu_{0}(x_{r}) \\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr) \biggl(\frac {t^{r}}{(e^{a_{1}t}-1)(e^{a_{2}t}-1)\cdots(e^{a_{r}t}-1)}\biggr)e^{xt}\\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr)\sum_{n=0}^{\infty}B_{n}(x|a_{1},a_{2},\ldots,a_{r})\frac{t^{n}}{n!}. \end{aligned} $$
(8)

From (8), we obtain the following Witt’s formula for the Barnes-Bernoulli polynomials.

Theorem 1

For \(a_{1},a_{2},\ldots,a_{r}\neq0\in\mathbb{C}_{p}\), we have

$$ B_{n}(x| a_{1},\ldots,a_{r}) =\Biggl(\prod _{i=1}^{r}a_{i} \Biggr)^{-1}\int_{\mathbb {Z}_{p}}\cdots\int_{\mathbb{Z}_{p}}(a_{1}x_{1}+ \cdots+a_{r}x_{r}+x)^{n} \,d \mu _{0}(x_{1}) \cdots \,d \mu_{0}(x_{r}). $$

Note that

$$ \begin{aligned}[b] (a_{1}x_{1}+ \cdots+a_{r}x_{r})^{n}&=\sum _{l_{1}+\cdots+l_{r}=n} \binom {n}{l_{1},\ldots,l_{r}}a_{1}^{l_{1}}x_{1}^{l_{1}} \cdots a_{r}^{l_{r}}x_{r}^{l_{r}}\\ &=\sum_{l_{1}+\cdots+l_{r}=n}\binom{n}{l_{1},\ldots,l_{r}}\Biggl( \prod_{i=1}^{r}a_{i}^{l_{i}} \Biggr)x_{1}^{l_{1}}\cdots x_{r}^{l_{r}}. \end{aligned} $$
(9)

By (9) and Theorem 1, we obtain the following corollary.

Corollary 2

For \(n\geq2\), we have

$$ B_{n}(a_{1},\ldots,a_{r}) =\sum _{l_{1}+\cdots+l_{r}=n} \binom {n}{l_{1},\ldots,l_{r}}\Biggl(\prod _{i=1}^{r}a_{i}^{l_{i}-1} \Biggr)B_{l_{1}}\cdots B_{l_{r}}, $$

where \(B_{n}=B_{n}(1)\) is the nth Bernoulli number.

From (2), we can easily derive the following integral equation:

$$ \int_{\mathbb{Z}_{p}}f(x)\,d\mu_{0}(x)= \frac{1}{d} \sum_{a=0}^{d-1}\int _{\mathbb{Z}_{p}}f(a+dx)\,d\mu_{0}(x), $$
(10)

where \(d\in\mathbb{N}\).

By (10), we get

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb {Z}_{p}}e^{(a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{r}x_{r}+x)t}\,d\mu_{0}(x) \\ &\quad=\frac{1}{d^{r}} \sum_{l_{1}=0}^{d-1}\cdots \sum_{l_{r}=0}^{d-1}\int_{\mathbb{Z}_{p}} \cdots\int_{\mathbb {Z}_{p}}e^{(l_{1}a_{1}+\cdots+l_{r}a_{r}+a_{1}\,dx_{1}+\cdots+a_{r}\,dx_{r}+x)t}\,d\mu _{0}(x_{1}) \cdots d \mu_{0}(x_{r}) \\ &\quad=\sum_{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}\sum_{n=0}^{\infty} \frac{d^{n}}{d^{r}}\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb {Z}_{p}} \biggl(\frac{l_{1}a_{1}+\cdots+l_{r}a_{r}}{d}\\ &\qquad{}+a_{1}x_{1}+\cdots+a_{r}x_{r}+ \frac {x}{d}\biggr)^{n}\,d\mu_{0}(x_{1})\cdots\,d \mu_{0}(x_{r}) \frac{t^{n}}{n!}. \end{aligned} $$
(11)

By Theorem 1 and (11), we get

$$ B_{n}(x| a_{1},\ldots,a_{r})=d^{n-r} \sum_{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}B_{n}\biggl( \frac{l_{1}a_{1}+\cdots+l_{r}a_{r}+x}{d}\Big|a_{1},\ldots,a_{r}\biggr). $$
(12)

Therefore, by (12), we obtain the following distribution relation for a Barnes-type Bernoulli polynomial.

Theorem 3

For \(n\geq0\), we have

$$ B_{n}(x| a_{1},\ldots,a_{r}) =d^{n-r} \sum_{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}B_{n}\biggl( \frac{l_{1}a_{1}+\cdots+l_{r}a_{r}+x}{d}\Big|a_{1},\ldots,a_{r}\biggr). $$

From (4), we note that

$$ \int_{\mathbb{Z}_{p}}e^{a_{1}(x_{1}+n)t}\,d\mu_{0}(x_{1})-\int_{\mathbb {Z}_{p}}e^{a_{1}x_{1}t}\,d\mu_{0}(x_{1})=a_{1}t\sum _{l=0}^{n-1}e^{a_{1}lt}. $$
(13)

By (13), we get

$$ \int_{\mathbb{Z}_{p}}e^{a_{1}x_{1}t}\,d\mu_{0}(x_{1})=\frac {a_{1}t}{e^{a_{1}nt}-1}\sum _{l=0}^{n-1}e^{a_{1}lt}. $$
(14)

From (14), we can derive

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} e^{(a_{1}x_{1}+\cdots +a_{r}x_{r})t}\,d\mu_{0}(x_{1})\cdots \,d\mu_{0}(x_{r}) \\ &\quad=\biggl(\frac{a_{1}t}{e^{na_{1}t}-1}\biggr)\cdots \biggl(\frac{a_{r}t}{e^{na_{r}t}-1}\biggr)\sum _{l_{1},\ldots,l_{r}=0}^{n-1}e^{(a_{1}l_{1}+\cdots+a_{r}l_{r})t}\\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr)\sum_{l_{1},\ldots,l_{r}=0}^{n-1}\Biggl(\sum _{k=0}^{\infty}B_{k}(na_{1}, \ldots,na_{r})\frac{t^{k}}{k!}\Biggr)\sum _{j=0}^{\infty}(a_{1}l_{1}+ \cdots+a_{r}l_{r})^{j}\frac{t^{j}}{j!} \\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr)\sum_{m=0}^{\infty}\Biggl\{ \sum _{l_{1},\ldots,l_{r}=0}^{n-1}\sum_{j=0}^{m}(a_{1}l_{1}+ \cdots +a_{r}l_{r})^{j}B_{m-j}(na_{1}, \ldots,na_{r})\binom{m}{j}\Biggr\} \frac{t^{m}}{m!}. \end{aligned} $$
(15)

By (15), we get

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} (a_{1}x_{1}+\cdots +a_{r}x_{r})^{m} \,d\mu_{0}(x_{1}) \cdots \,d\mu_{0}(x_{r}) \\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr)\sum_{l_{1},\ldots,l_{r}=0}^{n-1}\sum _{j=0}^{m}(a_{1}l_{1}+ \cdots+a_{r}l_{r})^{j}B_{m-j}(na_{1}, \ldots,na_{r})\binom{m}{j}, \end{aligned} $$
(16)

where \(n\in\mathbb{N}\) and \(m\in\mathbb{Z}\geq0\).

Therefore, by Theorem 1 and (16), we obtain the following theorem.

Theorem 4

For \(n\in\mathbb{N}\) and \(m\in\mathbb{Z}\) with \(m\geq0\), we have

$$ B_{m}(a_{1},\ldots, a_{r})=\sum _{l_{1},\ldots,l_{r}=0}^{n-1}\sum_{j=0}^{m}(a_{1}l_{1}+ \cdots+a_{r}l_{r})^{j}B_{m-j}(na_{1}, \ldots,na_{r})\binom{m}{j}. $$

Moreover,

$$ B_{m}(x|a_{1},\ldots, a_{r})=\sum _{l_{1},\ldots,l_{r}=0}^{n-1}\sum_{j=0}^{m}(a_{1}l_{1}+ \cdots+a_{r}l_{r}+x)^{j}B_{m-j}(na_{1}, \ldots ,na_{r})\binom{m}{j}. $$

From (15), we observe that

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} e^{(a_{1}x_{1}+\cdots +a_{r}x_{r})t}\,d\mu_{0}(x_{1}) \cdots \,d\mu_{0}(x_{r}) \\ &\quad=\biggl(\frac{a_{1}t}{e^{na_{1}t}-1}\biggr)\cdots\biggl(\frac{a_{r}t}{e^{na_{r}t}-1}\biggr)\sum _{l_{1},\ldots,l_{r}=0}^{n-1}e^{(a_{1}l_{1}+\cdots+a_{r}l_{r})t} \\ &\quad=\sum_{l_{1},\ldots,l_{r}=0}^{n-1}\frac{a_{1}t\cdots {a_{r}t}}{(e^{na_{1}t}-1)\cdots(e^{na_{r}t}-1)}e^{(\frac{a_{1}l_{1}+\cdots +a_{r}l_{r}}{n})nt} \\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr)\sum_{l_{1},\ldots,l_{r}=0}^{n-1}\sum _{m=0}^{\infty}B_{m}\biggl(\frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big|a_{1}, \ldots ,a_{r}\biggr)n^{m}\frac{t^{m}}{m!} \\ &\quad=\sum_{m=0}^{\infty}\Biggl(\prod _{i=1}^{r}a_{i}\Biggr)n^{m}\sum _{l_{1},\ldots,l_{r}=0}^{n-1}B_{m}\biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big|a_{1},\ldots ,a_{r}\biggr) \frac{t^{m}}{m!}. \end{aligned} $$
(17)

Thus, by (17), we get

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} (a_{1}x_{1}+\cdots +a_{r}x_{r})^{m} \,d\mu_{0}(x_{1}) \cdots \,d\mu_{0}(x_{r}) \\ &\quad=\Biggl(\prod_{i=1}^{r}a_{i} \Biggr)n^{m}\sum_{l_{1},\ldots ,l_{r}=0}^{n-1}B_{m} \biggl(\frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big|a_{1},\ldots,a_{r}\biggr), \end{aligned} $$
(18)

where \(n\in\mathbb{N}\) and \(m\in\mathbb{Z}\geq0\).

Therefore, by Theorem 1 and (17), we obtain the following theorem.

Theorem 5

For \(n\in\mathbb{N}\) and \(m\geq0\), we have

$$ B_{m}(a_{1},\ldots, a_{r})=n^{m}\sum _{l_{1},\ldots,l_{r}=0}^{n-1}B_{m}\biggl( \frac {a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big|a_{1},\ldots,a_{r}\biggr). $$

Moreover,

$$ B_{m}(x|a_{1},\ldots, a_{r})=n^{m}\sum _{l_{1},\ldots ,l_{r}=0}^{n-1}B_{m}\biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}+x}{n}\Big|a_{1},\ldots,a_{r}\biggr). $$

Remark

Let \(a_{1}=1\) and \(r=1\). Then we have

$$ \int_{\mathbb{Z}_{p}}e^{(x+n)t}\,d\mu_{0}(x)-\int _{\mathbb{Z}_{p}}e^{xt}\,d\mu_{0}(x)=t\sum _{l=0}^{n-1}e^{lt}. $$

Thus, we have

$$ \sum_{m=0}^{\infty}\biggl\{ \int _{\mathbb{Z}_{p}}(x+n)^{m}\,d\mu _{0}(x)-\int _{\mathbb{Z}_{p}}x^{m}\,d\mu_{0}(x)\biggr\} \frac{t^{m}}{m!}(x)=t\sum_{l=0}^{n-1}\sum _{m=0}^{\infty}l^{m}\frac{t^{m}}{m!}. $$
(19)

By (19), we get

$$ \frac{1}{m+1}\biggl\{ \int_{\mathbb{Z}_{p}}(x+n)^{m+1}\,d\mu_{0}(x)-\int_{\mathbb {Z}_{p}}x^{m+1}\,d\mu_{0}(x)\biggr\} =\sum_{l=0}^{n-1}l^{m}, $$
(20)

where \(n\in\mathbb{N}\) and \(m\in\mathbb{Z}\geq0\).

It is easy to show that

$$ \int_{\mathbb{Z}_{p}}e^{(x+y)t}\,d\mu_{0}(y) =\frac{t}{e^{t}-1}e^{xt}=\sum _{n=0}^{\infty}B_{n}(x)\frac{t^{n}}{n!}, $$
(21)

where \(B_{n}(x)\) is the nth Bernoulli polynomial.

Thus, by (21), we get

$$ \int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{0}(y)=B_{n}(x)\quad (n\geq0). $$
(22)

From (20) and (21), we note that

$$ \frac{1}{m+1}\bigl\{ B_{m+1}(n)-B_{m+1}\bigr\} =\sum _{l=0}^{n-1}l^{m}, $$

where \(m\in\mathbb{Z}\geq0\) and \(n\in\mathbb{N}\).

From (5) and (6), we can derive the following equation:

$$ \int_{\mathbb{Z}_{p}}e^{(x+1)t}\,d\mu_{-1}(x)+\int _{\mathbb{Z}_{p}}e^{xt}\,d\mu_{-1}(x)=2. $$

Thus, we have

$$ \int_{\mathbb{Z}_{p}}e^{(x+y)t}\,d\mu_{-1}(y)= \frac{2}{e^{t}+1}e^{xt}=\sum_{n=0}^{\infty}E_{n}(x) \frac{t^{n}}{n!}, $$

where \(E_{n}(x)\) is the nth Euler polynomial.

Witt’s formula for the Euler polynomials is given by

$$ \int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{-1}(y)=E_{n}(x)\quad (n\geq0)\ (\mbox{see [26, 27]}). $$
(23)

When \(x=0\), \(E_{n}=E_{n}(0)\) are called the Euler numbers.

For \(r\in\mathbb{N}\), the generating function of higher-order Euler polynomials can be derived from the multivariate p-adic fermionic integral on \(\mathbb{Z}_{p}\) as follows:

$$ \begin{aligned}[b] \int_{\mathbb{Z}_{p}}\cdots\int _{\mathbb{Z}_{p}}e^{(x_{1}+\cdots+x_{r}+x)t}\,d\mu_{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r})&=\biggl(\frac{2}{e^{t}+1} \biggr)^{r}e^{xt} \\ &=\sum_{n=0}^{\infty}E^{(r)}_{n}(x) \frac{t^{n}}{n!}. \end{aligned} $$

Thus we get

$$ \int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}}(x_{1}+ \cdots+x_{r}+x)^{n} \,d\mu _{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r})=E^{(r)}_{n}(x)\quad (n \in\mathbb{Z}\geq0). $$
(24)

It is easy to show that

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}}(x_{1}+\cdots+x_{r}+x)^{n}\,d\mu _{-1}(x_{1})\cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\sum_{l_{1}+\cdots+l_{r}=n}\binom{n}{l_{1},\ldots,l_{r}}\int _{\mathbb {Z}_{p}}x^{l_{1}}_{1} \,d\mu_{-1}(x_{1}) \cdots\int_{\mathbb {Z}_{p}}x^{l_{r-1}}_{r-1}\,d\mu_{-1}(x_{r-1}) \\ &\qquad{}\times\int_{\mathbb{Z}_{p}}(x_{r}+x)^{l_{r}}\,d\mu_{-1}(x_{r}) \\ &\quad=\sum_{l_{1}+\cdots+l_{r}=n}\binom{n}{l_{1},\ldots ,l_{r}}E_{l_{1}}E_{l_{2}} \cdots E_{l_{r-1}}E_{l_{r}}(x). \end{aligned} $$
(25)

From (24) and (25), we have

$$ E^{(r)}_{n}(x)=\sum _{l_{1}+\cdots+l_{r}=n}\binom{n}{l_{1},\ldots ,l_{r}}E_{l_{1}}\cdots E_{l_{r-1}}E_{l_{r}}(x). $$
(26)

When \(x=0\), \(E^{(r)}_{n}=E^{(r)}_{n}(0)\) are called the higher-order Euler numbers.

From (6), we note that

$$ \int_{\mathbb{Z}_{p}}e^{(x+n)t}\,d\mu_{-1}(x)+(-1)^{n-1}\int_{\mathbb {Z}_{p}}e^{xt}\,d\mu_{-1}(x)=2\sum_{l=0}^{n-1}(-1)^{n-1-l}e^{lt}\quad (n\in\mathbb{N}). $$
(27)

Thus, by (27), we get

$$ \int_{\mathbb{Z}_{p}}e^{xt}\,d\mu_{-1}(x)=\frac{2}{e^{nt}+(-1)^{n-1}} \sum_{l=0}^{n-1}(-1)^{n-1-l}e^{lt}, $$
(28)

and

$$ \begin{aligned}[b] &\sum_{m=0}^{\infty} \biggl\{ \int_{\mathbb{Z}_{p}}(x+n)^{m} \,d\mu _{-1}(x)+(-1)^{n-1} \int_{\mathbb{Z}_{p}}x^{m} \,d\mu_{-1}(x)\biggr\} \frac{t^{m}}{m!}\\ &\quad=\sum_{m=0}^{\infty}\Biggl\{ 2\sum _{l=0}^{n-1}(-1)^{n-1-l}l^{m}\Biggr\} \frac{t^{m}}{m!}\quad (n\in\mathbb{N}). \end{aligned} $$
(29)

By comparing the coefficients on the both sides of (29), we get

$$ \int_{\mathbb{Z}_{p}}(x+n)^{m} \,d\mu_{-1}(x)+(-1)^{n-1}\int_{\mathbb {Z}_{p}}x^{m} \,d\mu_{-1}(x) =2\sum_{l=0}^{n-1}(-1)^{n-1-l}l^{m}, $$
(30)

where \(n\in\mathbb{N}\) and \(m\in\mathbb{Z}\geq0\).

Therefore, by (23) and (30), we obtain the following lemma.

Lemma 6

For \(m\geq0\), \(n\in\mathbb{N}\), we have

$$ E_{m}(n)+(-1)^{n-1}E_{m} =2\sum _{l=0}^{n-1}(-1)^{n-1-l}l^{m}. $$

Let us assume that \(n\in\mathbb{N}\) with \(n\equiv1\ (\operatorname{mod}2)\).

Then, by (28), we get

$$ \int_{\mathbb{Z}_{p}}e^{xt}\,d\mu_{-1}(x)=\frac{2}{e^{nt}+1}\sum_{l=0}^{n-1}(-1)^{l}e^{lt}. $$
(31)

Now, we consider the multivariate p-adic fermionic integral on \(\mathbb{Z}_{p}\) related to the higher-order Euler numbers as follows:

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} e^{(x_{1}+x_{2}+\cdots +x_{r})t}\,d\mu_{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\biggl(\frac{2}{e^{nt}+1}\biggr)^{r}\sum _{l_{1}=0}^{n-1}\cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}e^{(l_{1}+\cdots+l_{r})t} \\ &\quad=\Biggl(\sum_{l=0}^{\infty}E^{(r)}_{l}n^{l} \frac{t^{l}}{l!}\Biggr)\sum_{l_{1}=0}^{n-1} \cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}\sum _{k=0}^{\infty}(l_{1}+ \cdots+l_{r})^{k}\frac{t^{k}}{k!} \\ &\quad=\sum_{l_{1}=0}^{n-1}\cdots\sum _{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}\sum _{m=0}^{\infty}\Biggl\{ \sum_{k=0}^{m} \binom{m}{k}(l_{1}+\cdots+l_{r})^{k}n^{m-k}E^{(r)}_{m-k} \Biggr\} \frac{t^{m}}{m!} \\ &\quad=\sum_{m=0}^{\infty}\Biggl\{ \sum _{l_{1}=0}^{n-1}\cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}} \sum_{k=0}^{m}\binom {m}{k}n^{m-k}E^{(r)}_{m-k}(l_{1}+ \cdots+l_{r})^{k}\Biggr\} \frac{t^{m}}{m!}. \end{aligned} $$
(32)

Thus, from (32), we can derive the following equation:

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} {(x_{1}\cdots+x_{r})^{m}}\,d\mu _{-1}(x_{1})\cdots \,d\mu_{-1}(x_{r})\\ &\quad=\sum_{l_{1}=0}^{n-1}\cdots\sum _{l_{r}=0}^{n-1}\sum_{k=0}^{m}(-1)^{l_{1}+\cdots+l_{r}} \binom {m}{k}E^{(r)}_{m-k}n^{m-k}(l_{1}+ \cdots+l_{r})^{k}, \end{aligned} $$
(33)

where \(m\geq0\) and \(n\in\mathbb{N}\) with \(n\equiv1\ (\operatorname{mod}2)\).

Therefore, by (24) and (33), we obtain the following theorem.

Theorem 7

For \(m\geq0\) and \(n\in\mathbb{N}\) with \(n\equiv1\ (\operatorname{mod}2)\), we have

$$ E^{(r)}_{m}=\sum_{l_{1}=0}^{n-1} \cdots\sum_{l_{r}=0}^{n-1}\sum _{k=0}^{m}(-1)^{l_{1}+\cdots+l_{r}}\binom {m}{k}E^{(r)}_{m-k}n^{m-k}(l_{1}+ \cdots+l_{r})^{k}, $$

Moreover,

$$ E^{(r)}_{m}(x)=\sum_{l_{1}=0}^{n-1} \cdots\sum_{l_{r}=0}^{n-1}\sum _{k=0}^{m}(-1)^{l_{1}+\cdots+l_{r}}\binom {m}{k}E^{(r)}_{m-k}n^{m-k}(l_{1}+ \cdots+l_{r}+x)^{k}. $$

From (32), we note that

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} e^{(x_{1}+\cdots +x_{r})t}\,d\mu_{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\biggl(\frac{2}{e^{nt}+1}\biggr)^{r}\sum _{l_{1}=0}^{n-1}\cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}e^{(l_{1}+\cdots+l_{r})t} \\ &\quad=\sum_{l_{1}=0}^{n-1}\cdots\sum _{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}\biggl( \frac{2}{e^{nt}+1}\biggr)^{r}e^{(\frac {l_{1}+\cdots+l_{r}}{n})nt} \\ &\quad=\sum_{m=0}^{\infty}\sum _{l_{1}=0}^{n-1}\cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}E^{(r)}_{m} \biggl(\frac{l_{1}+\cdots +l_{r}}{n}\biggr)n^{m}\frac{t^{m}}{m!}, \end{aligned} $$
(34)

where \(n\in\mathbb{N}\) with \(n\equiv1\ (\operatorname{mod}2)\).

Thus, by (34), we get

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} (x_{1}+\cdots+x_{r})^{m} \,d\mu _{-1}(x_{1})\cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\sum_{l_{1}=0}^{n-1}\cdots\sum _{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}E^{(r)}_{m} \biggl(\frac{l_{1}+\cdots+l_{r}}{n}\biggr)n^{m}, \end{aligned} $$
(35)

where \(m\in\mathbb{Z}\geq0\), \(n\in\mathbb{N}\) with \(n\equiv1 \ (\operatorname{mod}2)\).

Therefore by (24) and (35), we obtain the following theorem.

Theorem 8

For \(m\in\mathbb{Z}\geq0\), \(n\in\mathbb{N}\) with \(n\equiv1 \ (\operatorname{mod}2)\), we have

$$ E^{(r)}_{m}=n^{m}\sum_{l_{1}=0}^{n-1} \cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}E^{(r)}_{m} \biggl(\frac{l_{1}+\cdots+l_{r}}{n}\biggr), $$

Moreover,

$$ E^{(r)}_{m}(x)=n^{m}\sum _{l_{1}=0}^{n-1}\cdots\sum_{l_{r}=0}^{n-1}(-1)^{l_{1}+\cdots+l_{r}}E^{(r)}_{m} \biggl(\frac{l_{1}+\cdots+l_{r}+x}{n}\biggr). $$

For \(a_{1}, a_{2},\ldots, a_{r}\in\mathbb{C}_{p}\backslash\{0\}\), let us consider the Barnes-type multiple Euler polynomials as follows:

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} e^{(a_{1}x_{1}+\cdots +a_{r}x_{r}+x)t}\,d\mu_{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\biggl(\frac{2}{e^{a_{1}t}+1}\biggr)\times\cdots\times\biggl(\frac {2}{e^{a_{r}t}+1} \biggr)e^{xt} \\ &\quad=\sum_{n=0}^{\infty}E_{n}(x|a_{1}, \ldots,a_{r})\frac{t^{n}}{n!}. \end{aligned} $$
(36)

When \(x=0\), \(E_{n}(a_{1},\ldots,a_{r})=E_{n}(0|a_{1},\ldots,a_{r})\) is called the nth Barnes-type Euler number.

For \(d\in\mathbb{N}\) with \(d\equiv1\ (\operatorname{mod}2)\), we observe that

$$ \int_{\mathbb{Z}_{p}}f(x)\,d\mu_{-1}(x)=\sum _{a=0}^{d-1}(-1)^{a}\int _{\mathbb{Z}_{p}}f(a+dx)\,d\mu_{-1}(x). $$
(37)

From (37), we can derive the following equation:

$$\begin{aligned} &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} e^{(a_{1}x_{1}+\cdots +a_{r}x_{r})t}\,d\mu_{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\sum_{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}\int _{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} e^{\{a_{1}l_{1}+\cdots+a_{r}l_{r}+(a_{1}x_{1}+\cdots+a_{r}x_{r})d\} t}\,d\mu_{-1}(x_{1})\cdots \,d\mu_{-1}(x_{r}) \\ &\quad=\sum_{n=0}^{\infty}d^{n}\sum _{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}\int _{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{d} \\ &\qquad{}+a_{1}x_{1}+\cdots +a_{r}x_{r} \biggr)^{n} \,d\mu_{-1}(x_{1})\cdots \,d\mu_{-1}(x_{r}) \frac{t^{n}}{n!}. \end{aligned}$$
(38)

By (38), we get

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}} (a_{1}x_{1}+\cdots +a_{r}x_{r})^{n}\,d\mu_{-1}(x_{1}) \cdots \,d\mu_{-1}(x_{r}) \\ &\quad=d^{n}\sum_{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}\int _{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{d}\\ &\qquad{}+a_{1}x_{1}+\cdots +a_{r}x_{r} \biggr)^{n} \,d\mu_{-1}(x_{1})\cdots \,d\mu_{-1}(x_{r}). \end{aligned} $$
(39)

Therefore, by (36) and (39), we obtain the following theorem.

Theorem 9

For \(d\in\mathbb{N}\) with \(d\equiv1\ (\operatorname{mod}2)\), \(n\geq0\), we have

$$ E_{n}(a_{1},\ldots,a_{r})=d^{n}\sum _{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}E_{n}\biggl( \frac{a_{1}l_{1}+\cdots +a_{r}l_{r}}{d}\Big|a_{1},\ldots,a_{r}\biggr). $$

Moreover,

$$ E_{n}(x|a_{1},\ldots,a_{r})=d^{n}\sum _{l_{1}=0}^{d-1}\cdots\sum _{l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}E_{n}\biggl( \frac{x+a_{1}l_{1}+\cdots +a_{r}l_{r}}{d}\Big|a_{1},\ldots,a_{r}\biggr). $$

Remark

Note that

$$ \begin{aligned}[b] E_{n}(x|a_{1}, \ldots,a_{r})&=\sum_{l=0}^{n} \binom {n}{l}x^{l}E_{n-l}(a_{1}, \ldots,a_{r}) \\ &=\sum_{l=0}^{n}\binom{n}{l}x^{n-l}E_{l}(a_{1}, \ldots,a_{r}). \end{aligned} $$

Thus, we have

$$ \begin{aligned}[b] &\int_{\mathbb{Z}_{p}}\cdots \int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb {Z}_{p}} (a_{1}x_{1}+\cdots+a_{r}x_{r}\\ &\qquad{}+b_{1}y_{1}+ \cdots+b_{s}y_{s})^{n} \,d\mu _{-1}(y_{1}) \cdots \,d\mu_{-1}(y_{s}) \,d\mu_{0}(x_{1})\cdots \,d\mu_{0}(x_{r}) \\ &\quad=\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}}E_{n}(a_{1}x_{1}+ \cdots +a_{r}x_{r}|b_{1},\ldots,b_{s})\,d\mu_{0}(x_{1})\cdots \,d\mu_{0}(x_{r}) \\ &\quad=\sum_{l=0}^{n}\binom{n}{l}E_{n-l}(b_{1}, \ldots,b_{s})\int_{\mathbb {Z}_{p}}\cdots\int _{\mathbb{Z}_{p}}(a_{1}x_{1}+\cdots+a_{r}x_{r})^{l} \,d\mu _{0}(x_{1})\cdots \,d\mu_{0}(x_{r}) \\ &\quad=\sum_{l=0}^{n}\binom{n}{l}E_{n-l}(b_{1}, \ldots ,b_{s})B_{l}(a_{1},\ldots,a_{r}). \end{aligned} $$
(40)

Now, we define mixed-type Barnes-type Euler and Bernoulli numbers as follows:

$$ \begin{aligned}[b] & EB_{n}(b_{1}, \ldots,b_{s};a_{1},\ldots,a_{r}) \\ &\quad=\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}}\cdots\int _{\mathbb {Z}_{p}} (a_{1}x_{1}+\cdots+a_{r}x_{r}\\ &\qquad{}+b_{1}y_{1}+ \cdots+b_{s}y_{s})^{n} \,d\mu _{-1}(y_{1}) \cdots \,d\mu_{-1}(y_{s}) \,d\mu_{0}(x_{1})\cdots \,d\mu_{0}(x_{r}), \end{aligned} $$
(41)

where \(a_{1},\ldots,a_{r},b_{1},\ldots,b_{s}\neq0\).

By (40) and (41), we get

$$ EB_{n}(b_{1},\ldots,b_{s};a_{1}, \ldots,a_{r})=\sum_{l=0}^{n} \binom {n}{l}E_{n-l}(b_{1},\ldots,b_{s})B_{l}(a_{1}, \ldots,a_{r}). $$

References

  1. Agarwal, RP, Ryoo, CS: A numerical investigation on the structure of the roots of the twisted q-Bernoulli polynomials. Neural Parallel Sci. Comput. 14(1), 13-24 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Adamchik, VS: Contributions to the theory of the Barnes function. Int. J. Math. Comput. Sci. 9(1), 11-30 (2014)

    MathSciNet  Google Scholar 

  3. Adamchik, VS: On the Barnes function. In: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, pp. 15-20. ACM, New York (2001) (electronic)

    Chapter  Google Scholar 

  4. Bayad, A, Kim, T: Results on values of Barnes polynomials. Rocky Mt. J. Math. 43(6), 1857-1869 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bayad, A, Kim, T, Kim, WJ, Lee, SH: Arithmetic properties of q-Barnes polynomials. J. Comput. Anal. Appl. 15(1), 111-117 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Billingham, J, King, AC: Uniform asymptotic expansions for the Barnes double gamma function. Proc. R. Soc. Lond. Ser. A 453(1964), 1817-1829 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buschman, RG, Srivastava, HM: Convergence regions for some multiple Mellin-Barnes contour integrals representing generalized hypergeometric functions. Int. J. Math. Educ. Sci. Technol. 17(5), 605-609 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carlitz, L: Some polynomials related to the Bernoulli and Euler polynomials. Util. Math. 19, 81-127 (1981)

    MATH  Google Scholar 

  9. Carlitz, L: Some remarks on the multiplication theorems for the Bernoulli and Euler polynomials. Glas. Mat. 16(36)(1), 3-23 (1981)

    Google Scholar 

  10. Kim, DS, Kim, T, Komatsu, T, Lee, S-H: Barnes-type Daehee of the first kind and poly-Cauchy of the first kind mixed-type polynomials. Adv. Differ. Equ. 2014, 140 (2014)

    Article  MathSciNet  Google Scholar 

  11. Kim, DS, Kim, T: A study on the integral of the product of several Bernoulli polynomials. Rocky Mt. J. Math. 44(4), 1251-1263 (2014)

    Article  MATH  Google Scholar 

  12. Kim, DS, Kim, T: q-Bernoulli polynomials and q-umbral calculus. Sci. China Math. 57(9), 1867-1874 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kim, T: Barnes-type multiple q-zeta functions and q-Euler polynomials. J. Phys. A 43(25), 255201 (2010)

    Article  MathSciNet  Google Scholar 

  14. Kim, T: On Euler-Barnes multiple zeta functions. Russ. J. Math. Phys. 10(3), 261-267 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Kim, T, Rim, S-H: On Changhee-Barnes’ q-Euler numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 9(2), 81-86 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Kim, T: p-Adic q-integrals associated with the Changhee-Barnes’ q-Bernoulli polynomials. Integral Transforms Spec. Funct. 15(5), 415-420 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim, T, Dolgy, DV, Kim, DS, Rim, S-H: A note on the identities of special polynomials. Ars Comb. 113A, 97-106 (2014)

    MathSciNet  Google Scholar 

  18. Kim, T: On p-adic interpolating function for q-Euler numbers and its derivatives. J. Math. Anal. Appl. 339(1), 598-608 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kim, T: On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \(\Bbb{Z}_{p}\) at \(q=-1\). J. Math. Anal. Appl. 331(2), 779-792 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kim, T: On p-adic q-l-functions and sums of powers. J. Math. Anal. Appl. 329(2), 1472-1481 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim, T: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288-299 (2002)

    MATH  MathSciNet  Google Scholar 

  22. Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 15(1), 51-57 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kim, T: Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function. Russ. J. Math. Phys. 12(2), 186-196 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Kim, T: Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials. Russ. J. Math. Phys. 10(1), 91-98 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Kim, T: Note on the Euler q-zeta functions. J. Number Theory 129(7), 1798-1804 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kim, T: q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 14(1), 15-27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kim, T: Symmetry p-adic invariant integral on \(\Bbb{Z}_{p}\) for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 14(12), 1267-1277 (2008)

    Article  MATH  Google Scholar 

  28. Liu, FB: Barnes integral representations of some special functions. Neimenggu Daxue Xuebao Ziran Kexue 26(4), 387-395 (1995)

    MATH  MathSciNet  Google Scholar 

  29. Park, J-W: New approach to q-Bernoulli polynomials with weight or weak weight. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 39-44 (2014)

    MATH  MathSciNet  Google Scholar 

  30. Ruijsenaars, SNM: On Barnes’ multiple zeta and gamma functions. Adv. Math. 156(1), 107-132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schuster, R: A generalization of the Barnes G-function. Z. Anal. Anwend. 11(2), 229-236 (1992)

    MATH  MathSciNet  Google Scholar 

  32. Seo, J-J, Rim, SH, Kim, T, Lee, SH: Sums products of generalized Daehee numbers. Proc. Jangjeon Math. Soc. 17(1), 1-9 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Srivastava, HM, Kim, T, Simsek, Y: q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 12(2), 241-268 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors wish to express their sincere gratitude to the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghae Do.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, D., Do, Y. Some identities of Barnes-type special polynomials. Adv Differ Equ 2015, 42 (2015). https://doi.org/10.1186/s13662-015-0385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0385-y

MSC

Keywords