Firstly, we present the basic concepts for fuzzy numbers and fuzzy-number-valued functions.
Definition 2.1
[23]
A fuzzy number is a function \(u:{\mathbb{R}}\to[0,1]\) satisfying the following properties:
-
(i)
u is normal, i.e.
\(\exists x_{0}\in{\mathbb{R}}\) with \(u (x_{0} )=1\).
-
(ii)
u is a convex fuzzy set, i.e.
\(u(\lambda x+(1-\lambda) y)\geq\min\{u(x),u(y)\}\), \(\forall x,y \in{\mathbb{R}}\), \(\lambda\in[0,1]\).
-
(iii)
u is upper semi-continuous on ℝ.
-
(iv)
\([u]_{0}=\overline{\{x\in{\mathbb{R}}: u(x)>0\}}\) is a compact interval, where \(\overline{A}\) is the closure of the set A.
The set of all fuzzy real numbers is denoted by \({{\mathbb{R}}}_{{\mathcal{F}}}\). Any real number \(a\in{\mathbb{R}}\) can be interpreted as a fuzzy number \(\tilde{a}={\chi}_{\{a\}}\) and therefore \({\mathbb{R}}\subset{{\mathbb{R}}}_{{\mathcal{F}}}\).
For \(0< r\leq1\), we denote \({[u]}_{r}=\{x\in{\mathbb{R}}:u(x)\geq r\}\) the r-level (or simply the r-cut) set of u which is a closed interval (see [24]) and \({[u]}_{r}=[{\underline{u}}_{r},{\overline {u}}_{r}]\), \(\forall r\in[0,1]\). This leads to the usual parametric representation of a fuzzy number.
Proposition 2.1
[25]
A fuzzy number u is completely determined by any ordered pair
\(u=(\underline{u}(r),\overline{u}(r))\)
of functions
\(\underline{u},\overline{u}:[0,1]\to{\mathbb{R}}\)
defining the three conditions:
-
(i)
\(\underline{u} :r\to{\underline{u}}_{r}\in{\mathbb{R}}\)
is a bounded monotonic non-decreasing left-continuous function
\(\forall r\in\,]0,1]\)
and right-continuous for
\(r=0\);
-
(ii)
\(\overline{u} :r\to{\overline{u}}_{r}\in{\mathbb{R}} \)
is a bounded monotonic non-increasing left-continuous function
\(\forall r \in\,]0,1]\)
and right-continuous for
\(r=0\);
-
(iii)
\({\underline{u}}_{1}\le{\overline{u}}_{1}\)
for
\(r=1\), which implies
\({\underline{u}}_{r}\le{\overline{u}}_{r}\), \(\forall r\in [0,1]\).
For \(u,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\), \(k\in{\mathbb{R}}\), the addition and the scalar multiplication are defined as follows:
-
(1)
\({[u\oplus v]}_{r}={[u]}_{r}+{[v]}_{r}=[{\underline {u}}_{r}+{\underline{v}}_{r},{\overline{u}}_{r}+{\overline{v}}_{r}]\), \(\forall r\in[0,1]\),
-
(2)
\({[k\odot u]}_{r}=k\cdot{[u]}_{r}= \bigl\{ \scriptsize{\begin{array}{@{}l@{\quad}l} {[}k{\underline{u}}_{r},k{\overline{u}}_{r}],& \mbox{if }k\geq0, \\ {[}k{\overline{u}}_{r},k{\underline{u}}_{r}],& \mbox{if } k<0. \end{array}} \)
The subtraction of fuzzy numbers \(u\ominus v\) is defined as the addition \(u\oplus (-v )\) where \((-v )= (-1 )\odot v\).
The standard Hukuhara difference (H-difference \({\ominus}_{H}\)) is defined by \(u\ominus_{H}v=w\Longleftrightarrow u=v\oplus w\); if \(u\ominus_{H}v\) exists, its r-cuts are \({ [u\ominus _{H}v ]}_{r}= [{\underline{u}}_{r}-{\underline{v}}_{r},{\overline {u}}_{r}-{\overline{v}}_{r} ]\). It is well known that \(u\ominus _{H}u=\tilde{0}\) for all fuzzy numbers u, but \(u\ominus u\ne \tilde{0}\).
Definition 2.2
[26]
Let \(u= (\underline{u}(r),\overline {u}(r) )\), \(v= (\underline{v}(r),\overline{v}(r) )\in {{\mathbb{R}}}_{{\mathcal{F}}}\) be fuzzy numbers with positive support (i.e.
\(\underline{u}(0)>0\), \(\underline{v}(0)>0\)). The product \(c=u\otimes v= (\underline{ (u\otimes v )}(r),\overline { (u\otimes v )}(r) ) \in C[0,1]\times C[0,1]\) is defined by \(\underline{ (u\otimes v )}(r)=\underline{u}(r)\cdot \underline{v}(r)\) and \(\overline{ (u\otimes v )}(r)=\overline {u}(r)\cdot\overline{v}(r)\), \(\forall r\in[0,1]\).
Lemma 2.1
[5, 24]
The following algebraic properties hold:
-
(i)
\(u\oplus (v\oplus w )= (u\oplus v )\oplus w\)
and
\(u\oplus v=v\oplus u\)
for any
\(u,v,w\in{{\mathbb{R}}}_{{\mathcal{F}}}\),
-
(ii)
\(u\oplus\tilde{0}=\tilde{0}\oplus u=u\)
for any
\(u\in {{\mathbb{R}}}_{{\mathcal{F}}}\),
-
(iii)
with respect to
\(\tilde{0}\), none of
\(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\backslash{\mathbb{R}}\), \(u\ne\tilde{0}\)
has an opposite in
\(({{\mathbb{R}}}_{{\mathcal{F}}},\oplus )\),
-
(iv)
for any
\(a,b\in{\mathbb{R}}\)
with
\(a,b\ge0\)
or
\(a,b\le 0\), and any
\(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\)
we have
\((a+b )\odot u=a\odot u\oplus b\odot u\),
-
(v)
for any
\(a\in{\mathbb{R}}\)
and any
\(u,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\)
we have
\(a\odot (u\oplus v )=a\odot u\oplus a\odot v\),
-
(vi)
for any
\(a,b\in{\mathbb{R}}\)
and any
\(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\)
we have
\(a\odot (b\odot u )= (ab )\odot u\)
and
\(1\odot u=u\).
As a distance between fuzzy numbers, we use the Hausdorff metric (see [13]) defined by
$$D(u,v)=\sup_{r\in[0,1]} \bigl\{ {\max \bigl(\vert {\underline {u}}_{r}-{\underline{v}}_{r}\vert ,\vert { \overline{u}}_{r}- {\overline {v}}_{r}\vert \bigr)} \bigr\} $$
for any \(u,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\).
Lemma 2.2
[24]
The Hausdorff metric has the following properties:
-
(i)
\(({{\mathbb{R}}}_{{\mathcal{F}}},D )\)
is a complete metric space,
-
(ii)
\(D (u\oplus w,v\oplus w )=D (u,v )\), \(\forall u ,v,w\in{{\mathbb{R}}}_{{\mathcal{F}}}\),
-
(iii)
\(D (u\oplus v,w\oplus e )\le D (u,w )+D (v,e )\), \(\forall u ,v,w,e\in{{\mathbb{R}}}_{{\mathcal{F}}}\),
-
(iv)
\(D (u\oplus v,\tilde{0} )\le D (u,\tilde {0} )+D (v,\tilde{0} )\), \(\forall u ,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\),
-
(v)
\(D (k\odot u,k\odot v )=\vert k\vert D (u,v )\), \(\forall u ,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\), \(\forall k\in{\mathbb{R}}\).
Lemma 2.3
[27]
For any
\(k_{1},k_{2}\in\mathbb{R}\)
with
\(k_{1}\cdot k_{2}\ge0\)
and any
\(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\)
we have
$$D (k_{1}\odot u,k_{2}\odot u )=\vert k_{1}-k_{2} \vert D (u,\tilde {0} ). $$
Remark 2.1
The properties (iv) in Lemma 2.2 suggest the definition of a function \(\Vert \cdot \Vert :{{\mathbb{R}}}_{{\mathcal{F}}}\to {\mathbb{R}}\) by \(\Vert u\Vert =D (u,\tilde{0} )\), which has the properties of the usual norms. In [5] the properties of this function are presented as follows:
-
(i)
\(\Vert u\Vert \ge0\), \(\forall u\in{{\mathbb{R}}}_{{\mathcal{F}}}\), and \(\Vert u\Vert =0\) iff \(u=\tilde{0}\),
-
(ii)
\(\Vert \lambda\odot u\Vert =\vert \lambda \vert \cdot \Vert u\Vert \) and \(\Vert u\oplus v\Vert \le \Vert u\Vert +\Vert v\Vert \), \(\forall u ,v\in{{\mathbb{R}}}_{{\mathcal{F}}} \), \(\forall\lambda\in{\mathbb{R}}\),
-
(iii)
\(\vert \Vert u\Vert -\Vert v\Vert \vert \le D (u,v )\) and \(D (u,v )\le \Vert u\Vert +\Vert v\Vert \), \(\forall u ,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\).
We see that \(({{\mathbb{R}}}_{{\mathcal{F}}},\oplus,\odot, \Vert \cdot \Vert )\) is not a normed space because \(({{\mathbb{R}}}_{{\mathcal{F}}},\oplus )\) is not a group.
Definition 2.3
[25]
Given two fuzzy numbers \(u ,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\), the generalized Hukuhara difference (gH-difference for short) is the fuzzy number w, if it exists, such that
$$ u\ominus_{gH}v=w\quad\Longleftrightarrow\quad \begin{cases} (\mathrm{i})& u=v\oplus w, \mbox{ or}\\ (\mathrm{ii})& v=u\ominus w. \end{cases} $$
It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.
In terms of r-cuts we have \({ [u\ominus_{gH}v ]}_{r}= [\min\{{\underline{u}}_{r}-{\underline{v}}_{r},{\overline {u}}_{r}-{\overline{v}}_{r}\},\max\{{\underline{u}}_{r}-{\underline {v}}_{r},{\overline{u}}_{r}-{\overline{v}}_{r}\} ]\), and if the H-difference exists, then \(u\ominus_{H}v=u\ominus_{gH}v\); the conditions for the \(w=u\ominus_{gH}v\in\mathbb{R}_{{\mathcal{F}}}\) are
$$ \begin{aligned} &\mbox{case (i) }\quad \begin{cases} {\underline{w}}_{r}={\underline{u}}_{r}-{\underline{v}}_{r} \mbox{ and } {\overline{w}}_{r}={\overline{u}}_{r}-{\overline{v}}_{r} \\ \mbox{with } { \underline{w}}_{r} \mbox{ increasing}, {\overline{w}}_{r} \mbox{ decreasing}, {\underline{w}}_{r}\leq{\overline{w}}_{r},\quad \forall r\in[0,1], \end{cases} \\ &\mbox{case (ii)}\quad \begin{cases} {\underline{w}}_{r}={\overline{u}}_{r}-{\overline{v}}_{r} \ \mbox{ and } {\overline{w}}_{r}={\underline{u}}_{r}-{\underline{v}}_{r} \\ \mbox{with } { \underline{w}}_{r} \mbox{ increasing}, {\overline{w}}_{r} \mbox{ decreasing}, {\underline{w}}_{r}\leq{\overline{w}}_{r},\quad \forall r\in[0,1]. \end{cases} \end{aligned} $$
(2.1)
Proposition 2.2
[28]
Let
\(u ,v\in{{\mathbb{R}}}_{{\mathcal{F}}}\)
be two fuzzy numbers; then
-
(a)
if the gH-difference exists, it is unique,
-
(b)
\(u\ominus_{gH}v=u\ominus_{H}v\)
or
\(u\ominus _{gH}v=- (v\ominus_{H}u )\)
whenever the expressions on the right exist; in particular, \(u\ominus_{gH}u=u\ominus_{H}u=\tilde{0}\),
-
(c)
if
\(u\ominus_{gH}v\)
exists in the sense of (i), then
\(v\ominus_{gH}u\)
exists in the sense of (ii) and vice versa,
-
(d)
\((u\oplus v )\ominus_{gH}v=u\),
-
(e)
\(\tilde{0}\ominus_{gH} (u\ominus_{gH}v )=v\ominus_{gH}u\),
-
(f)
\(u\ominus_{gH}v=v\ominus_{gH}u=w\)
if and only if
\(w=-w\); furthermore, \(w=\tilde{0}\)
if and only if
\(u=v\).
Definition 2.4
For any fuzzy-number-valued function \(f:I\subset {\mathbb{R}}\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) we can define the functions \({\underline{f}}_{r},{\overline{f}}_{r}:I\subset{\mathbb{R}}\longrightarrow{\mathbb{R}}\), \(r\in[0,1]\) by \({\underline{f}}_{r} (t )={\underline{ (f(t) )}}_{r}\), \({\overline{f}}_{r} (t )={\overline{ (f(t) )}}_{r}\), \(\forall t\in[0,1]\). These functions are the left and right r-level functions of f.
Definition 2.5
[29]
A fuzzy-number-valued function \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) is said to be continuous at \(t_{0}\in[a,b]\) if for each \(\varepsilon>0\) there is \(\delta>0\) such that \(D (f (t ),f (t_{0} ) )<\varepsilon\) whenever \(\vert t-t_{0}\vert <\delta\). If f is continuous for each \(t\in[a,b]\) then we say that f is fuzzy continuous on \([a,b]\). A fuzzy number \(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\) is upper bound for a fuzzy-number-valued function \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) if \({\underline { (f(t) )}}_{r}\le{\underline{u}}_{r}\) and \({\overline{ (f(t) )}}_{r}\le{\overline{u}}_{r}\) for all \(t\in[a,b]\). A fuzzy number \(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\) is a lower bound for a fuzzy-number-valued function \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) if \({\underline{u}}_{r}\le{\underline{ (f(t) )}}_{r}\) and \({\overline{u}}_{r}\le{\overline{ (f(t) )}}_{r}\) for all \(t\in[a,b]\). A fuzzy-number-valued function \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) is said to be bounded if it has a lower and an upper bound.
Remark 2.2
The above definition of the boundedness of a fuzzy-number-valued function can be expressed in the following equivalent form: \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) is bounded iff there is \(M\ge0\) such that \(D (f (t ),\tilde{0} )\le M\) for all \(t\in[a,b]\). The constant M can be chosen as \(M\ge{\max \{\vert {\underline{u}}_{0}\vert ,\vert {\overline{u}}_{0}\vert \} }\).
Lemma 2.4
[29]
If
\(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\)
is continuous then it is bounded and its supremum
\(\sup_{t\in[a,b]} f(t)\)
must exist and is determined by
\(u\in{{\mathbb{R}}}_{{\mathcal{F}}}\)
with
\({\underline{u}}_{r}= \sup_{t\in[a,b]} {\underline{f}}_{r} (t )\)
and
\({\overline {u}}_{r}=\sup_{t\in[a,b]} {\overline{f}}_{r} (t ) \). A similar conclusion for the infimum is also true.
Let \(C_{{\mathcal{F}}}[a,b]\), be the space of fuzzy continuous functions with the metric
$$D^{*}(f,g)=\sup_{a\le t\le b} D \bigl(f(t),g(t) \bigr), \quad \forall f,g\in C_{{\mathcal{F}}}[a,b], $$
which is called the uniform distance between fuzzy-number-valued functions. We see that \((C_{{\mathcal{F}}}[a,b],D^{*} )\) is a complete metric space and using Lemma 2.2 and Lemma 2.3 we can derive the corresponding properties of the metric \(D^{*}\).
Definition 2.6
[30]
A fuzzy-number-valued function \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) is said to be uniformly continuous on \([a,b]\), if for each \(\varepsilon>0\) there is \(\delta>0\) such that \(D(f(t),f(t'))<\varepsilon\) whenever \(t,t'\in [a,b]\) with \(|t-t'|<\delta\).
Definition 2.7
[30]
A fuzzy-number-valued function \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) is said to level-continuous at \(t_{0}\in[a,b]\), if \(\lim_{t\to t_{0}} {\underline{ (f(t) )}}_{r} ={\underline{ (f(t_{0}) )}}_{r}\) and \(\lim_{t\to t_{0}} {\overline{ (f(t) )}}_{r} ={\overline{ (f(t_{0}) )}}_{r}\) for all \(r\in[0,1]\). If f is level-continuous at each \(t\in[a,b]\), then we say that f is level-continuous on \([a,b]\).
It is obvious that the continuity of a fuzzy-number-valued function implies the level-continuity, but the converse does not hold. However, the boundedness property holds for both types of continuity.
Definition 2.8
[5]
Let \(f:[a,b]\longrightarrow{{\mathbb{R}}}_{{\mathcal{F}}}\) be a bounded mapping. Then the function \({\omega }_{[a,b]}(f,\cdot):{{\mathbb{R}}}_{+}\cup{0}\to{{\mathbb{R}}}_{+}\)
$${\omega}_{[a,b]} (f,\delta )={\sup \bigl\{ D \bigl(f(x),f(y) \bigr):x,y \in[a,b],\vert x-y\vert \le\delta \bigr\} } $$
is said to be the modulus of oscillation of f on \([a,b]\).
If \(f\in C_{{\mathcal{F}}}[a,b]\), then \({\omega}_{[a,b]} (f,\delta )\) is called uniform modulus of continuity of f.
Some properties of the modulus of oscillation are given below.
Proposition 2.3
[5]
The following statements are true:
-
(i)
\(D (f(x),f(y) )\le{\omega}_{[a,b]} (f,\vert x-y\vert )\)
for any
\(x,y\in[a,b]\),
-
(ii)
\({\omega}_{[a,b]} (f,\delta )\)
is a non-decreasing mapping in
δ,
-
(iii)
\({\omega}_{[a,b]} (f,0 )=0\),
-
(iv)
\({\omega}_{[a,b]} (f,{\delta}_{1}+{\delta}_{2} )\le {\omega}_{[a,b]} (f,{\delta}_{1} )+{\omega}_{[a,b]} (f,{\delta}_{2} )\)
for any
\({\delta}_{1},{\delta}_{2}\ge0\),
-
(v)
\({\omega}_{[a,b]} (f,n\delta )\le n{\omega}_{[a,b]} (f,\delta )\)
for any
\(\delta\ge0\)
and
\(n\in{\mathbb{N}}\),
-
(vi)
\({\omega}_{[a,b]} (f,\lambda\delta )\le (\lambda+1 ){\omega}_{[a,b]} (f,\delta )\)
for any
\(\delta,\lambda\ge0\),
-
(vii)
If
\([c,d ]\subseteq[a,b]\)
then
\({\omega }_{[c,d]} (f,\delta )\le{\omega}_{[a,b]} (f,\delta )\).
Based on the gH-difference, we obtain the following definition.
Definition 2.9
[25]
Let \(x_{0}\in\,]a,b[\) and h be such that \(x_{0}+h\in\,]a,b[\), then the gH-derivative of a function \(f:\,]a,b[\,\to{{\mathbb{R}}}_{{\mathcal{F}}}\) at \(x_{0}\) is defined as
$$ f'_{gH} (x_{0} )=\lim _{h\to0} \frac{1}{h} \bigl[f (x_{0}+h ) \ominus_{gH}f (x_{0} ) \bigr] . $$
(2.2)
If \(f'_{gH} (x_{0} )\in{{\mathbb{R}}}_{{\mathcal{F}}}\) satisfying Eq. (2.2) exists, we say that f is generalized Hukuhara differentiable (gH-differentiable for short) at \(x_{0}\).
Definition 2.10
[25]
Let \(x_{0}\in\,]a,b[\) and h be such that \(x_{0}+h\in\,]a,b[\), then the level-wise gH-derivative (LgH-derivative for short) of a function \(f:\,]a,b[\,\to{{\mathbb{R}}}_{{\mathcal{F}}}\) at \(x_{0}\) is defined as the set of interval-valued gH-derivatives, if they exist,
$$ f'_{LgH}{ (x_{0} )}_{r}=\lim_{h\to0} \frac{1}{h} \bigl({ \bigl[f (x_{0}+h ) \bigr]}_{r}\ominus_{gH}{ \bigl[f (x_{0} ) \bigr]}_{r} \bigr). $$
(2.3)
If \(f'_{LgH}{ (x_{0} )}_{r}\) is a compact interval for all \(r\in [0,1]\), we say that f is level-wise generalized Hukuhara differentiable (LgH-differentiable for short) at \(x_{0}\) and the family of intervals \(\{f'_{LgH}{ (x_{0} )}_{r}:r\in[0,1] \}\) is the LgH-derivative of f at \(x_{0}\), denoted by \(f'_{LgH} (x_{0} )\).
Consequently, LgH-differentiability, as is level-wise continuity, is a necessary condition for gH-differentiability; but from Eq. (2.1), it is not sufficient.
The next result gives the analogous expression of the fuzzy gH-derivative in terms of the derivatives of the endpoints of the level sets. This result extends the result given in [31, Theorem 5] and it is a characterization of the gH-differentiability for an important class of fuzzy functions.
Proposition 2.4
[25]
Let
\(f:\,]a,b[\,\to{{\mathbb{R}}}_{{\mathcal{F}}}\)
be such that
\({ [f(x) ]}_{r}= [{\underline{f}}_{r}(x),{\overline{f}}_{r}(x) ]\). Suppose that the functions
\({\underline{f}}_{r}(x)\)
and
\({\overline{f}}_{r}(x)\)
are real-valued functions, differentiable w.r.t. x, uniformly w.r.t. \(r\in [0,1]\). Then the function
\(f(x)\)
is gH-differentiable at a fixed
\(x\in \,]a,b[\)
if and only if one of the following two cases holds:
-
(a)
\({ ({\underline{f}}_{r} )}'(x)\)
is increasing, \({ ({\overline{f}}_{r} )}'(x)\)
is decreasing as a function of r, and
\({ ({\underline{f}}_{1} )}'(x)\le{ ({\overline {f}}_{1} )}'(x)\), or
-
(b)
\({ ({\underline{f}}_{r} )}'(x)\)
is decreasing, \({ ({\overline{f}}_{r} )}'(x)\)
is increasing as a function of r, and
\({ ({\overline{f}}_{1} )}'(x)\le{ ({\underline{f}}_{1} )}'(x)\).
Also, \(\forall r\in[0,1]\)
we have
$$ { \bigl[f'_{gH}(x) \bigr]}_{r}= \bigl[{\min \bigl\{ { ({\underline {f}}_{r} )}'(x),{ ({ \overline{f}}_{r} )}'(x) \bigr\} ,{\max \bigl\{ { ({ \underline{f}}_{r} )}'(x),{ ({\overline {f}}_{r} )}'(x) \bigr\} } } \bigr]. $$
(2.4)
Definition 2.11
[25]
Let \(f: [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\) and \(x_{0}\in\,]a,b[\) with \({\underline {f}}_{r} (x )\) and \({\overline{f}}_{r}(x)\) both differentiable at \(x_{0}\).
We say that
It is possible that \(f:[a,b]\to{{\mathbb{R}}}_{{\mathcal{F}}}\) is gH-differentiable at \(x_{0}\) and not (i)-gH-differentiable nor (ii)-gH-differentiable, as illustrated by Example 27 in [2].
Here \(C^{n}_{{\mathcal{F}}} [a,b ]\), \(n\ge1\), denotes the space of n-times fuzzy continuously gH-differentiable functions from \([a,b ]\) into \({{\mathbb{R}}}_{{\mathcal{F}}}\). (That is, there exist \(f^{ (k+1 )}(x)\in {{\mathbb{R}}}_{{\mathcal{F}}}\) such that the limits in D-distance exist and
$$f^{(k+1)}(x)=\lim_{h\to0} \frac{1}{h} \bigl[f^{(k)}(x+h)\ominus_{gH}f^{(k)}(x) \bigr] $$
for all \(k=0,1,\ldots,n-1\).)
Denote the set of all functions \(f\in C^{n}_{{\mathcal{F}}} [a,b ]\), \(n\ge1\), such that \(f^{ (k )} [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\) (\(k=0,1,\ldots,n-1 \)) is (i)-gH-differentiable on the interval \([a,b]\) by \(C^{n,1}_{{\mathcal{F}}}[a,b]\).
By Theorem 5.2 of [21], for \(f\in C^{n,1}_{{\mathcal{F}}}[a,b]\) we obtain
$${ \bigl[f^{(k)}_{gH}(x) \bigr]}_{r}= \bigl[{ ({ \underline{f}}_{r} )}^{(k)}(x),{ ({\overline{f}}_{r} )}^{(k)}(x) \bigr],\quad k=0,1,\ldots,n\ \forall r\in[0,1], \forall x \in(a,b). $$
Proposition 2.5
[25]
If
\(f: [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\)
is gH-differentiable (or right or left gH-differentiable) at
\(x_{0}\in[a,b]\)
then it is level-wise continuous (or right or left level-wise continuous) at
\(x_{0}\).
Proposition 2.6
[25]
The (i)-gH-derivative and (ii)-gH-derivative are additive operators, i.e., if f and g are both (i)-gH-differentiable or both (ii)-gH-differentiable then
-
(i)
\({ (f\oplus g )'}_{ (i )-gH}=f'_{ (i )-gH}\oplus{g'}_{ (i )-gH}\),
-
(ii)
\({ (f\oplus g )'}_{ (ii )-gH}=f'_{ (ii )-gH}\oplus{g'}_{ (ii )-gH}\).
In [24] the notion of a Henstock integral for fuzzy-number-valued functions is defined as follows.
Definition 2.12
[5]
Let \(f: [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\). For \({\triangle}_{n}:a=x_{0}< x_{1}<\cdots <x_{n-1}<x_{n}=b\) a partition of the interval \([a,b]\), we consider the points \({\xi}_{i}\in [x_{i-1},x_{i} ]\), \(i=1,\ldots,n\), and the function \(\delta: [a,b ]\to{{\mathbb{R}}}_{+}\). The partition \(P= \{ ( [x_{i-1},x_{i} ];{\xi}_{i} );i=1,\ldots,n \}\) denoted by \(P= ({\triangle}_{n},\xi )\) is called δ-fine iff \([x_{i-1},x_{i} ]\subseteq ({\xi}_{i}-\delta ({\xi}_{i} ),{\xi}_{i}+\delta({\xi}_{i}) )\). For \(I\in{{\mathbb{R}}}_{{\mathcal{F}}}\), the function f is fuzzy Henstock integrable on \([a,b]\) if for any \(\varepsilon>0\) there is a function \(\delta: [a,b ]\to{{\mathbb{R}}}_{+}\) such that for any partition δ-fine P, \(D (\sum^{n}_{i=1}{ (x_{i}-x_{i-1} )\odot f ({\xi}_{i} ),I} )<\varepsilon \). The fuzzy number I is named the fuzzy Henstock integral of f and will be denoted by \((FH)\int^{b}_{a}{f (t )\,dt}\).
When the function \(\delta:[a,b]\to{{\mathbb{R}}}_{+}\) is constant, then we obtain the Riemann integrability for fuzzy-number-valued functions (see [32]). In this case, \(I\in{{\mathbb{R}}}_{{\mathcal{F}}}\) is called the fuzzy Riemann integral of f on the interval \([a,b]\), denoted by \((FR)\int^{b}_{a}{f(t)\,dt}\). Consequently, the fuzzy Riemann integrability is a particular case of the fuzzy Henstock integrability, and therefore the properties of the integral (FH) will be valid for the integral (FR), too.
Lemma 2.5
[33]
Let
\(f: [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\). Then f is (FH) integrable if and only if
\({\underline{f}}_{r}\)
and
\({\overline{f}}_{r}\)
are Henstock integrable for any
\(r\in[0,1]\). Furthermore, for any
\(r\in[0,1]\),
$${ \biggl[(FH)\int^{b}_{a}{f(t)\,dt} \biggr]}_{r}= \biggl[(H)\int^{b}_{a}{ { \underline {f}}_{r}(t)\,dt},(H)\int^{b}_{a}{ {\overline{f}}_{r}(t)\,dt} \biggr]. $$
Remark 2.3
If \(f: [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\) is fuzzy continuous, then \({\underline{f}}_{r}\) and \({\overline{f}}_{r}\) are continuous for any \(r\in[0,1]\) and consequently, they are Henstock integrable. According to Lemma 2.5 we infer that f is (FH) integrable.
Lemma 2.6
[5]
If
f
and
g
are fuzzy Henstock integrable functions and if the function given by
\(D (f (t ),g(t) )\)
is Lebesgue integrable, then
$$D \biggl((FH)\int^{b}_{a}{f(t)\,dt},(FH)\int ^{b}_{a}{g(t)\,dt} \biggr)\le(L)\int ^{b}_{a}{D \bigl(f(t),g(t) \bigr)\,dt}. $$
Theorem 2.1
[32]
If
\(f,g:[a,b]\to{{\mathbb{R}}}_{{\mathcal{F}}}\)
are (FR) integrable fuzzy functions, and
α, β
are real numbers, then
$$(FR)\int^{b}_{a}{ \bigl(\alpha\odot f(t)\oplus \beta\odot g(t) \bigr)\,dt}=\alpha\odot(FR)\int^{b}_{a}{f(t)\,dt} \oplus\beta\odot(FR)\int^{b}_{a}{g(t)\,dt}. $$
Remark 2.4
If \(f: [a,b ]\to{{\mathbb{R}}}_{{\mathcal{F}}}\) is fuzzy continuous, for a partition \(\triangle:a=x_{0}< x_{1}<\cdots <x_{n-1}<x_{n}=b\), according to [24], the fuzzy-Riemann integral has the property
$$(FR )\int^{b}_{a}{f (t )\,dt}=\sum _{i=0}^{n-1}{}^{*}{(FR)\int^{t_{i+1}}_{t_{i}}{f (t )\,dt}}, $$
where ∑∗ means addition with respect to ⊕ in \({{\mathbb{R}}}_{{\mathcal{F}}}\).
Definition 2.13
[5]
For \(L\ge0\), a function \(f:[a,b]\to {{\mathbb{R}}}_{{\mathcal{F}}}\) is L-Lipschitz if
$$D \bigl(f(x),f(y) \bigr)\le L\vert x-y\vert $$
for any \(x,y\in[a,b]\).
We present the following fuzzy Taylor theorem in one dimension.
Theorem 2.2
(see [34, p.51])
Let
\(f\in C^{n,1}_{{\mathcal{F}}}[a,b]\), \(n\ge1\), \([\alpha,\beta]\subseteq[a,b]\subseteq{\mathbb{R}}\). Then
$$\begin{aligned} f(\beta)={}&f(\alpha)\oplus(\beta-\alpha)\odot f'( \alpha)\oplus\cdots \oplus\frac{{(\beta-\alpha)}^{n-1}}{(n-1)!}\odot f^{(n-1)}(\alpha) \\ &{}\oplus\frac{1}{(n-1)!}\odot(FR)\int^{\beta}_{\alpha}{{( \beta -t)}^{n-1}\odot f^{(n)}(t)\,dt}. \end{aligned}$$
(2.7)
The integral remainder is a fuzzy continuous function in
β.