- Research
- Open access
- Published:
Oscillation results for difference equations with oscillating coefficients
Advances in Difference Equations volume 2015, Article number: 53 (2015)
Abstract
Sufficient conditions which guarantee the oscillation of all solutions of difference equations with oscillating coefficients and several deviating arguments are presented. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
1 Introduction
In the present paper, we study the oscillatory behavior of the solutions of the difference equation
and the (dual) advanced difference equation
where \(m\in\mathbb{N}\), \(\{ p_{i} ( n ) \} _{n\in \mathbb{N}_{0}}\), \(1\leq i\leq m\), are real sequences with oscillating terms, \(\{\tau_{i}(n) \} _{n\in\mathbb{N}_{0}}\), \(1\leq i\leq m\), are sequences of integers such that
and \(\{\sigma_{i}(n) \} _{n\in \mathbb{N}}\), \(1\leq i\leq m\), are sequences of integers such that
Here, as usual, Δ denotes the forward difference operator \(\Delta x(n)=x(n+1)-x(n)\) and ∇ denotes the backward difference operator \(\nabla x(n)=x(n)-x(n-1)\).
By a solution of (ER), we mean a sequence of real numbers \(\{x(n) \} _{n\geq-w}\) which satisfies (ER) for all \(n\in\mathbb{N}_{0}\). Here,
It is clear that, for each choice of real numbers \(c_{-w}, c_{-w+1},\ldots, c_{-1}, c_{0}\), there exists a unique solution \(\{ x(n) \} _{n\geq-w}\) of (ER) which satisfies the initial conditions \(x(-w)=c_{-w}, x(-w+1)=c_{-w+1},\ldots, x(-1)=c_{-1}, x(0)=c_{0}\).
By a solution of (EA), we mean a sequence of real numbers \(\{ x(n) \} _{n\in\mathbb{N}_{0}}\) which satisfies (EA) for all \(n\in\mathbb{N}\).
A solution \(\{ x(n) \} _{n\geq-w}\) (\(\{ x(n) \} _{n\in\mathbb{N}_{0}} \)) of (ER) ((EA)) is called oscillatory, if the terms \(x(n)\) of the sequence are neither eventually positive nor eventually negative. Otherwise, the solution is said to be non-oscillatory.
In the last few decades, the oscillatory behavior of all solutions of difference equations has been extensively studied when the coefficients \(p_{i}(n)\) are nonnegative. However, for the general case when \(p_{i}(n)\) are allowed to oscillate, it is difficult to study the oscillation of (ER) ((EA)), since the difference \(\Delta x(n)\) (\(\nabla x(n) \)) of any non-oscillatory solution of (ER) ((EA)) is always oscillatory. Therefore, the results on oscillation of difference and differential equations with oscillating coefficients are relatively scarce. Thus, a small number of paper are dealing with this case. See, for example, [1–17] and the references cited therein.
For (ER) and (EA) with oscillating coefficients, Bohner et al. [2, 3] established the following theorems.
Theorem 1.1
([2, Theorem 2.4])
Assume that (1.1) holds and that the sequences \(\{\tau _{i}(n) \}_{n\in\mathbb{N}_{0}}\) are increasing for all \(i\in \{1,\ldots,m \}\). Suppose also that for each \(i\in \{ 1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \}_{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\) and
where
If, moreover,
where \(n(j)=\min \{ n_{i}(j):1\leq i\leq m \}\), then all solutions of (ER) oscillate.
Theorem 1.2
([2, Theorem 3.4])
Assume that (1.2) holds and that the sequences \(\{\sigma _{i}(n) \}_{n\in\mathbb{N}}\) are increasing for all \(i\in \{ 1,\ldots,m \}\). Suppose also that for each \(i\in \{ 1,\ldots ,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\) and
where
If, moreover,
where \(n(j)=\max \{n_{i}(j):1\leq i\leq m \}\), then all solutions of (EA) oscillate.
Theorem 1.3
([3, Theorem 2.1])
Assume that (1.1) holds and that the sequences \(\{\tau _{i}(n) \}_{n\in\mathbb{N}_{0}}\) are increasing for all \(i\in \{1,\ldots,m \}\). Suppose also that for each \(i\in \{ 1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
and
If, moreover,
then all solutions of (ER) oscillate.
Theorem 1.4
([3, Theorem 3.1])
Assume that (1.2) holds and that the sequences \(\{\sigma _{i}(n) \}_{n\in\mathbb{N}}\) are increasing for all \(i\in \{ 1,\ldots,m \}\). Suppose also that for each \(i\in \{1,\ldots ,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
and
If, moreover,
then all solutions of (EA) oscillate.
Recently, Berezansky et al. [1] and Chatzarakis et al. [4] established the following theorems.
Theorem 1.5
([1, Theorem 8] and [4, Theorem 2.1])
Assume that (1.1) holds and the sequences \(\{\tau_{i}(n) \}_{n\in\mathbb{N}_{0}}\) are increasing for all \(i\in \{ 1,\ldots,m \}\) and the sequence τ is defined by (1.4). Suppose also that for each \(i\in \{ 1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow \infty}n_{i}(j)=\infty\),
Set
where \(n(j)=\min \{ n_{i}(j):1\leq i\leq m \}\).
If \(0<\alpha\leq1/2\), and
or
then all solutions of (ER) oscillate.
Theorem 1.6
([1, Theorem 9] and [4, Theorem 3.1])
Assume (1.2) holds and the sequences \(\{\sigma_{i}(n) \}_{n\in\mathbb{N}}\) are increasing for all \(i\in \{1,\ldots ,m \}\) and the sequence σ is defined by (1.7). Suppose also that for each \(i\in \{1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
Set
where \(n(j)=\max \{ n_{i}(j):1\leq i\leq m \}\).
If \(0<\alpha\leq1/2\), and
or
then all solutions of (EA) oscillate.
The authors study further (ER) and (EA) and derive new sufficient oscillation conditions. These conditions are the analogues of the oscillation conditions for the corresponding difference equations with positive coefficients, which were studied by Chatzarakis et al. [5]. Examples illustrate cases when the results of the paper imply oscillation while previously known results fail.
2 Oscillation criteria
2.1 Retarded difference equations
We present new sufficient conditions for the oscillation of all solutions of (ER), under the assumption that the sequences \(\tau_{i}\) are increasing for all \(i\in \{ 1,\ldots,m \}\).
Theorem 2.1
Assume that (1.1) holds, the sequences \(\{\tau_{i}(n) \}_{n\in\mathbb{N}_{0}}\) are increasing for all \(i\in \{1,\ldots ,m \}\) and the sequence τ is defined by (1.4). Suppose also that for each \(i\in \{1,\ldots,m \}\) there exists a sequence \(\{n_{i}(j) \}_{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
with
If, moreover,
where \(n(j)=\min \{ n_{i}(j):1\leq i\leq m \} \), then all solutions of (ER) oscillate.
Proof
Assume, for the sake of contradiction, that \(\{ x(n) \} _{n\geq-w}\) is an eventually positive solution of (ER). Then there exists \(j_{0}\in\mathbb{N}\) such that
Therefore, by (ER) we have
for every \(n\in\bigcap _{i=1}^{m} [\tau(\tau (n_{i}(j_{0}))),n_{i}(j_{0}) ] \cap\mathbb{N}\). This guarantees that the sequence x is strictly decreasing on \(\bigcap _{i=1}^{m} [\tau(\tau(n_{i}(j_{0}))),n_{i}(j_{0}) ]\cap\mathbb{N}\).
Set
and
with
It is obvious that
Dividing both sides of (ER) by \(x(n(j_{0}))\), we obtain
or
Summing up (2.5) from \(\tau_{\rho}(n(j_{0}))\) to \(n(j_{0})-1\) for \(\rho =1,2,\ldots,m\), we find
But
or
Combining (2.6) and (2.7), we obtain
or
Now we will show that \(\varphi_{i}<\infty\) for \(i=1,2,\ldots,m\). Indeed, assume that \(\varphi_{i}=\infty\) for some i, \(i=1,2,\ldots,m\). By using (2.5) we have
or
Consequently,
and therefore
or
In view of (2.1) and taking into account the fact that \(\varphi _{i}=\infty\) for some i, the above inequality is false. Hence \(\varphi_{i}<\infty\) for \(i=1,2,\ldots,m\).
Taking the limit inferiors on both sides of the above inequalities (2.8), we obtain
and by adding we find
Set
Clearly
Since
for
the function f has a maximum at the critical point
because the quadratic form
Since \(f ( \varphi_{1},\varphi_{2},\ldots,\varphi_{m} ) \geq0\), the maximum of f at the critical point should be nonnegative. That is,
i.e.,
Hence
or
which contradicts (2.2).
The proof of the theorem is complete. □
Theorem 2.2
Assume that (1.1) holds, the sequences \(\{\tau_{i}(n) \}_{n\in\mathbb{N}_{0}}\) are increasing for all \(i\in \{1,\ldots ,m \}\) and the sequence τ is defined by (1.4). Suppose also that for each \(i\in \{ 1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
with
If, moreover,
where \(n(j)=\min \{ n_{i}(j):1\leq i\leq m \}\), then all solutions of (ER) oscillate.
Proof
Assume, for the sake of contradiction, that \(\{ x(n) \} _{n\geq-w}\) is an eventually positive solution of (ER). Then there exists \(j_{0}\in\mathbb{N}\) such that
Therefore, by (ER) we have
for every \(n\in\bigcap _{i=1}^{m} [ \tau(\tau (n_{i}(j_{0}))),n_{i}(j_{0}) ] \cap\mathbb{N}\). This guarantees that the sequence x is strictly decreasing on \(\bigcap _{i=1}^{m} [ \tau(\tau(n_{i}(j_{0}))),n_{i}(j_{0}) ] \cap\mathbb{N}\).
Taking into account the fact that \(\varphi_{i}<\infty\) for \(i=1,2,\ldots ,m \) (see Theorem 2.1), by using (2.9) and the fact that
we obtain
Adding these inequalities we have
or
which contradicts (2.10).
The proof of the theorem is complete. □
A slight modification in the proofs of Theorem 2.1 or Theorem 2.2 leads to the following result about retarded difference inequalities.
Theorem 2.3
Assume that all conditions of Theorem 2.1 or Theorem 2.2 hold. Then
-
(i)
the difference inequality
$$ \Delta x(n)+\sum_{i=1}^{m}p_{i}(n)x \bigl(\tau_{i}(n)\bigr)\leq0,\quad n\in\mathbb{N}_{0}, $$has no eventually positive solutions;
-
(ii)
the difference inequality
$$ \Delta x(n)+\sum_{i=1}^{m}p_{i}(n)x \bigl(\tau_{i}(n)\bigr)\geq0, \quad n\in\mathbb{N}_{0}, $$
has no eventually negative solutions.
2.2 Advanced difference equations
Similar oscillation theorems for the (dual) advanced difference equation (EA) can be derived easily. The proofs of these theorems are omitted, since they follow a similar procedure as in Section 2.1.
Theorem 2.4
Assume that (1.2) holds, the sequences \(\{\sigma _{i}(n) \} _{n\in\mathbb{N}}\) are increasing for all \(i\in \{ 1,\ldots,m \}\) and the sequence σ is defined by (1.7). Suppose also that for each \(i\in \{ 1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
with
If, moreover,
where \(n(j)=\max \{ n_{i}(j):1\leq i\leq m \}\), then all solutions of (EA) oscillate.
Theorem 2.5
Assume that (1.2) holds, the sequences \(\{\sigma _{i}(n) \}_{n\in\mathbb{N}}\) are increasing for all \(i\in \{ 1,\ldots,m \}\) and the sequence σ is defined by (1.7). Suppose also that for each \(i\in \{1,\ldots,m \}\) there exists a sequence \(\{ n_{i}(j) \} _{j\in\mathbb{N}}\) such that \(\lim_{j\rightarrow\infty}n_{i}(j)=\infty\),
with
If, moreover,
where \(n(j)=\max \{ n_{i}(j):1\leq i\leq m \}\), then all solutions of (EA) oscillate.
A slight modification in the proofs of Theorems 2.4 or Theorem 2.5 leads to the following result about advanced difference inequalities.
Theorem 2.6
Assume that all conditions of Theorem 2.4 or Theorem 2.5 hold. Then
-
(i)
the difference inequality
$$ \nabla x(n)-\sum_{i=1}^{m}p_{i}(n)x \bigl(\sigma_{i}(n)\bigr)\geq0,\quad n\in\mathbb{N}, $$has no eventually positive solutions;
-
(ii)
the difference inequality
$$ \nabla x(n)-\sum_{i=1}^{m}p_{i}(n)x \bigl(\sigma_{i}(n)\bigr)\leq0,\quad n\in\mathbb{N}, $$has no eventually negative solutions.
2.3 Special cases
In the case where \(p_{i}\), \(i=1,2,\ldots,m\), are oscillating real constants and \(\tau_{i}\) are constant retarded arguments of the form \(\tau _{i}(n)=n-k_{i}\), (\(\sigma_{i}\) are constant advanced arguments of the form \(\sigma_{i}(n)=n+k_{i}\)), \(k_{i}\in\mathbb{N}\), \(i=1,2,\ldots,m\), (ER) ((EA)) takes the form
For this equation, as a consequence of Theorem 2.1 (Theorem 2.4) and Theorem 2.2 (Theorem 2.5), we have the following corollary.
Corollary 2.1
Assume that
or
Then all solutions of (E) oscillate.
3 Examples
The following two examples illustrate that the conditions for oscillations (2.14) and (2.15) are independent. They are chosen in such a way that only one of them is satisfied. Also, in Example 3.1, Theorem 1.1 [2], Theorem 1.3 [3] and Theorem 1.5 [1, 4] do not imply oscillation, and neither do Theorem 1.2 [2], Theorem 1.4 [3] and Theorem 1.6 [1, 4] in Example 3.2. According to conditions (2.14) and (2.15) oscillation is established in Example 3.1 and Example 3.2, respectively.
Example 3.1
Consider the retarded difference equation
where \(p_{1}(n)\) and \(p_{2}(n)\) are oscillating coefficients, as shown in Figure 1.
In view of (1.4), it is obvious that \(\tau(n)=n-1\). Observe that for
we have \(p_{1}(n)>0\) for every \(n\in A\), where
Also, for
we have \(p_{2}(n)>0\) for every \(n\in B\), where
Therefore
that is, (1.3) is satisfied. Moreover, the computation immediately implies that
that is, condition (2.14) of Corollary 2.1 is satisfied and therefore all solutions of (3.1) oscillate. Observe, however, that
that is, condition (2.15) of Corollary 2.1 is not satisfied.
Also,
Observe that
Therefore the conditions (1.5), (1.16), and (1.17) are not satisfied.
On the other hand, \(p_{1}(n)>0\) for every \(n\in A^{\prime}=A\) and \(p_{2}(n)>0\) for every \(n\in B^{\prime}\), where
Hence
that is, condition (1.9) is satisfied. In view of this, we have
that is, condition (1.11) is not satisfied.
Example 3.2
Consider the advanced difference equation
where \(p_{1}(n)\) and \(p_{2}(n)\) are oscillating coefficients, as shown in Figure 2.
In view of (1.7), it is obvious that \(\sigma(n)=n+1\). Observe that for
we have \(p_{1}(n)>0\) for every \(n\in A\), where
Also, for
we have \(p_{2}(n)>0\) for every \(n\in B\), where
Therefore
that is, (1.6) is satisfied. Moreover, the computation immediately implies that
that is, condition (2.15) of Corollary 2.1 is satisfied and therefore all solutions of (3.2) oscillate. Observe, however, that
that is, condition (2.14) of Corollary 2.1 is not satisfied.
Observe that
Now
Also
Observe that
Therefore the conditions (1.8), (1.19), and (1.20) are not satisfied.
On the other hand, \(p_{1}(n)>0\) for every \(n\in A^{\prime}=A\) and \(p_{2}(n)>0\) for every \(n\in B^{\prime}\), where
Therefore
that is, condition (1.12) is satisfied. In view of this, we have
that is, condition (1.14) is not satisfied.
References
Berezansky, L, Chatzarakis, GE, Domoshnitsky, A, Stavroulakis, IP: Oscillations of difference equations with several oscillating coefficients. Abstr. Appl. Anal. 2014, Article ID 392097 (2014)
Bohner, M, Chatzarakis, GE, Stavroulakis, IP: Qualitative behavior of solutions of difference equations with several oscillating coefficients. Arab. J. Math. 3, 1-13 (2014)
Bohner, M, Chatzarakis, GE, Stavroulakis, IP: Oscillation in difference equations with deviating arguments and variable coefficients. Bull. Korean Math. Soc. 52(1), 159-172 (2015)
Chatzarakis, GE, Lafci, M, Stavroulakis, IP: Oscillation results for difference equations with several oscillating coefficients. Appl. Math. Comput. 251, 81-91 (2015)
Chatzarakis, GE, Péics, H, Stavroulakis, IP: Oscillation in difference equations with deviating arguments and variable coefficients. Abstr. Appl. Anal. 2014, Article ID 902616 (2014)
Fukagai, N, Kusano, T: Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl. 136, 95-117 (1984)
Grammatikopoulos, MK, Koplatadze, R, Stavroulakis, IP: On the oscillation of solutions of first-order differential equations with retarded arguments. Georgian Math. J. 10, 63-76 (2003)
Kulenovic, MR, Grammatikopoulos, MK: First order functional differential inequalities with oscillating coefficients. Nonlinear Anal. 8, 1043-1054 (1984)
Ladas, G, Sficas, G, Stavroulakis, IP: Functional-differential inequalities and equations with oscillating coefficients. In: Trends in Theory and Practice of Nonlinear Differential Equations. Lecture Notes in Pure and Appl. Math., vol. 90, pp. 277-284. Dekker, New York (1984)
Ladas, G, Stavroulakis, IP: Oscillations caused by several retarded and advanced arguments. J. Differ. Equ. 44, 134-152 (1982)
Li, X, Zhu, D, Wang, H: Oscillation for advanced differential equations with oscillating coefficients. Int. J. Math. Math. Sci. 33, 2109-2118 (2003)
Qian, C, Ladas, G, Yan, J: Oscillation of difference equations with oscillating coefficients. Rad. Mat. 8, 55-65 (1992)
Tang, XH, Cheng, SS: An oscillation criterion for linear difference equations with oscillating coefficients. J. Comput. Appl. Math. 132, 319-329 (2001)
Xianhua, T: Oscillation of first order delay differential equations with oscillating coefficients. Appl. Math. J. Chin. Univ. Ser. B 15, 252-258 (2000)
Yan, W, Yan, J: Comparison and oscillation results for delay difference equations with oscillating coefficients. Int. J. Math. Math. Sci. 19, 171-176 (1996)
Yu, JS, Tang, XH: Sufficient conditions for the oscillation of linear delay difference equations with oscillating coefficients. J. Math. Anal. Appl. 250, 735-742 (2000)
Yu, JS, Zhang, BG, Qian, XZ: Oscillations of delay difference equations with oscillating coefficients. J. Math. Anal. Appl. 177, 432-444 (1993)
Acknowledgements
The research of Hajnalka Péics is supported by the Serbian Ministry of Science, Technology and Development for Scientific Research Grant no. III44006.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
This paper is the result of the joint efforts of all the authors. All authors read and approved the final manuscript.
Rights and permissions
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
About this article
Cite this article
Chatzarakis, G.E., Péics, H., Pinelas, S. et al. Oscillation results for difference equations with oscillating coefficients. Adv Differ Equ 2015, 53 (2015). https://doi.org/10.1186/s13662-015-0391-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-015-0391-0