In this section, we establish the stability of (1.2) under the approximately odd condition.
Theorem 4.1
Let
\(\varphi:X\times X\times X\to[0,\infty)\)
satisfy the condition (\(\mathcal{A}_{1}\)) and
\(\psi:X\to[0,\infty)\)
satisfy the condition (\(\mathcal{A}_{2}\)). Suppose that a mapping
\(f:X\to Y\)
satisfies
$$\begin{aligned} \bigl\| Df(x,y,z) \bigr\| \leq\varphi(x,y,z) \end{aligned}$$
(4.1)
for all
\(x, y, z\in X\)
and
$$\begin{aligned} \bigl\| f(x) + f(-x) \bigr\| \leq\psi(x) \end{aligned}$$
(4.2)
for all
\(x\in X\). Then there exists a unique additive mapping
\(A:X\to Y\)
satisfying (1.4) such that
$$\begin{aligned} &\biggl\Vert f(x) - A(x) + \frac{1}{2}f(0) \biggr\Vert \\ &\quad\leq \sum_{k=1}^{\infty} \biggl[ \frac{3^{k-1} + 1}{2\cdot9^{k}} \varphi \bigl(3^{k} x, 3^{k} x, -3^{k} x\bigr) + \frac{3^{k-1}-1}{2 \cdot9^{k}} \varphi\bigl(-3^{k} x, -3^{k} x, 3^{k} x\bigr) \biggr] \end{aligned}$$
(4.3)
for all
\(x\in X\).
Proof
It follows from Lemma 2.1 and (4.2) that
$$\begin{aligned} & \biggl\Vert f(x) - \frac{f(3^{n}x)}{3^{n}} + \frac{9^{n}-1}{2\cdot9^{n}}f(0) \biggr\Vert \\ &\quad \leq \sum_{k=1}^{n} \biggl[ \frac{3^{k-1} + 1}{2\cdot9^{k}} \varphi\bigl(3^{k} x, 3^{k} x, -3^{k} x\bigr) + \frac{3^{k-1}-1}{2 \cdot9^{k}} \varphi\bigl(-3^{k} x, -3^{k} x, 3^{k} x\bigr) \biggr] \\ &\qquad{} + \frac{3^{n}-1}{2\cdot9^{n}} \psi\bigl(3^{n} x\bigr) \end{aligned}$$
(4.4)
for all \(x\in X\) and \(n\in\mathbb{N}\). From (4.4) we figure out
$$\begin{aligned} \biggl\Vert \frac{f(3^{m} x)}{3^{m}} - \frac{f(3^{n} x)}{3^{n}} \biggr\Vert ={}& \frac{1}{3^{m}} \biggl\Vert f \bigl(3^{m} x\bigr) - \frac{f(3^{n-m} \cdot3^{m} x)}{3^{n-m}} \biggr\Vert \\ \leq{}& \sum_{k=1}^{n-m} \biggl[ \frac{3^{k-1} + 1}{2\cdot3^{2k+m}} \varphi \bigl(3^{k+m} x, 3^{k+m} x, -3^{k+m}x\bigr) \\ &{} + \frac{3^{k-1} - 1}{2\cdot3^{2k+m}} \varphi \bigl(-3^{k+m} x, -3^{k+m} x, 3^{k+m}x\bigr) \biggr] \\ &{} +\frac{3^{n-m}-1}{2\cdot3^{2n-m}}\psi\bigl(3^{n} x\bigr) + \frac{9^{n-m}-1}{2\cdot3^{2n-m}} \bigl\| f(0) \bigr\| \end{aligned}$$
(4.5)
for all \(x\in X\) and \(m, n\in\mathbb{N}\) with \(n> m\). Taking the limit as \(m\to\infty\) in (4.5) we verify that the right-hand side of inequality (4.5) tends to 0. Thus, the mentioned sequence is convergent to the mapping A; that is,
$$\begin{aligned} A(x) := \lim_{n\to\infty} 3^{-n} f\bigl(3^{n} x \bigr) \end{aligned}$$
for all \(x\in X\). Replacing x, y, z by \(3^{n} x\), \(3^{n} y\), \(3^{n} z\) in (4.1) and dividing both sides by \(3^{n}\), and after taking the limit in the resulting inequality, we see that
$$\begin{aligned} &9A \biggl( \frac{x+y+z}{3} \biggr) + 4 \biggl[ A \biggl( \frac{x-y}{2} \biggr) + A \biggl(\frac{y-z}{2} \biggr) + A \biggl( \frac{z-x}{2} \biggr) \biggr] \\ &\quad= 3 \bigl[ A(x)+A(y)+A(z) \bigr] \end{aligned}$$
(4.6)
for all \(x,y,z\in X\). By virtue of (4.2) we have \(A(-x)=-A(x)\) for all \(x\in X\). Setting \(y=x\), \(z=-x\) in (4.6) yields \(3A(\frac{x}{3})=A(x)\) for all \(x\in X\). Similarly, putting \(y=0\), \(z=-x\) in (4.6) gives \(2A(\frac {x}{2})=A(x)\) for all \(x\in X\). Thus, we can rewrite (4.6) as
$$\begin{aligned} 3A(x+y+z) + 2 \bigl[ A(x-y)+A(y-z)+A(z-x) \bigr] = 3 \bigl[ A(x)+A(y)+A(z) \bigr] \end{aligned}$$
(4.7)
for all \(x,y,z\in X\). Replacing z by −x in (4.7) we have
$$\begin{aligned} A(x+y)+A(x-y)=2A(x) \end{aligned}$$
(4.8)
for all \(x,y\in X\). Replacing x, y by \(\frac{x+y}{2}\), \(\frac{x-y}{2}\) in (4.8) we see that A satisfies the Cauchy functional equation (1.4). Letting \(n\to\infty\) in (4.4) we finally obtain the result (4.3).
To show the uniqueness of A we assume that \(A':X\to Y\) be another quadratic mapping satisfying (4.3). Obviously, we have \(A(3^{n} x)=3^{n} A(x)\) and \(A'(3^{n} x)=3^{n} A'(x)\) for all \(x\in X\). According to the additive property of A and \(A'\) we figure out
$$\begin{aligned} & \bigl\| A(x) - A'(x) \bigr\| \\ &\quad = \frac{1}{3^{n}} \bigl\| A\bigl(3^{n} x\bigr) - A' \bigl(3^{n}x\bigr) \bigr\| \\ &\quad \leq\frac{1}{3^{n}} \biggl\Vert A\bigl(3^{n} x\bigr) - f \bigl(3^{n} x\bigr) - \frac {1}{2}f(0) \biggr\Vert + \frac{1}{3^{n}} \biggl\Vert f\bigl(3^{n} x\bigr) - A' \bigl(3^{n} x\bigr) + \frac{1}{2}f(0) \biggr\Vert \\ & \quad\leq \frac{2}{3^{n}} \sum_{k=1}^{\infty} \biggl[ \frac{3^{k-1} + 1}{2\cdot9^{k}} \varphi \bigl(3^{k+n} x, 3^{k+n} x, -3^{k+n} x\bigr) + \frac{3^{k-1}-1}{2 \cdot9^{k}} \varphi\bigl(-3^{k+n} x, -3^{k+n} x, 3^{k+n} x\bigr) \biggr] \end{aligned}$$
for all \(n\in\mathbb{N}\) and \(x\in X\), which means the uniqueness of A. □
From the theorem above we obtain the following corollaries immediately.
Corollary 4.2
Let
\(\epsilon\geq0\), \(p<1\), and
\(\psi:X\to[0,\infty)\)
satisfy the condition (\(\mathcal{A}_{2}\)). Suppose that a mapping
\(f:X\to Y\)
satisfies
$$\begin{aligned} \bigl\Vert Df(x,y,z) \bigr\Vert \leq\epsilon\bigl(\|x\|^{p}+\|y \|^{p}+\|z\|^{p}\bigr) \end{aligned}$$
for all
\(x,y,z\in X\) (\(x,y,z\in X\backslash\{0\}\)
if
\(p<0\)) and
$$\begin{aligned} \bigl\| f(x) + f(-x) \bigr\| \leq\psi(x) \end{aligned}$$
for all
\(x\in X\). Then there exists a unique additive mapping
\(A:X\to Y\)
satisfying (1.4) such that
$$\begin{aligned} \biggl\Vert f(x) - A(x) + \frac{1}{2}f(0) \biggr\Vert \leq \frac{3^{p}}{3-3^{p}} \epsilon\|x\|^{p} \end{aligned}$$
for all
\(x\in X\) (\(x\in X\backslash\{0\}\)
if
\(p<0\)).
Corollary 4.3
Let
\(\epsilon\geq0\)
and
\(\psi:X\to[0,\infty)\)
satisfy the condition (\(\mathcal{A}_{2}\)). Suppose that a mapping
\(f:X\to Y\)
satisfies
$$\begin{aligned} \bigl\Vert Df(x,y,z) \bigr\Vert \leq\epsilon \end{aligned}$$
for all
\(x,y,z\in X\)
and
$$\begin{aligned} \bigl\| f(x) + f(-x) \bigr\| \leq\psi(x) \end{aligned}$$
for all
\(x\in X\). Then there exists a unique additive mapping
\(A:X\to Y\)
satisfying (1.4) such that
$$\begin{aligned} \biggl\Vert f(x) - A(x) + \frac{1}{2}f(0) \biggr\Vert \leq \frac{1}{6}\epsilon \end{aligned}$$
for all
\(x\in X\).
We have the following result, which is analogous to Theorem 4.1.
Theorem 4.4
Let
\(\varphi:X\times X\times X\to[0,\infty)\)
satisfy the condition (\(\mathcal{B}_{1}\)) and
\(\psi:X\to[0,\infty)\)
satisfy the condition (\(\mathcal{B}_{2}\)). Suppose that a mapping
\(f:X\to Y\)
satisfies
$$\begin{aligned} \bigl\| Df(x,y,z) \bigr\| \leq\varphi(x,y,z) \end{aligned}$$
(4.9)
for all
\(x, y, z\in X\)
and
$$\begin{aligned} \bigl\| f(x) + f(-x) \bigr\| \leq\psi(x) \end{aligned}$$
(4.10)
for all
\(x\in X\). Then there exists a unique additive mapping
\(A:X\to Y\)
satisfying (1.4) such that
$$ \begin{aligned}[b] &\bigl\Vert f(x) - A(x) \bigr\Vert \\ &\quad\leq \sum _{k=0}^{\infty} \biggl[ \frac{3\cdot9^{k} + 3^{k}}{6} \varphi \biggl( \frac{x}{3^{k}}, \frac{x}{3^{k}}, -\frac{x}{3^{k}} \biggr) + \frac{3\cdot9^{k} - 3^{k}}{6} \varphi \biggl(-\frac{x}{3^{k}}, -\frac {x}{3^{k}}, \frac{x}{3^{k}} \biggr) \biggr] \end{aligned} $$
(4.11)
for all
\(x\in X\).
Proof
From Lemma 2.2 and the approximately odd condition (4.10) we have
$$\begin{aligned} & \biggl\Vert f(x) - 3^{n} f \biggl(\frac{x}{3^{n}} \biggr) \biggr\Vert \\ & \quad\leq \sum_{k=0}^{n-1} \biggl[ \frac{3\cdot9^{k} + 3^{k}}{6} \varphi \biggl(\frac {x}{3^{k}}, \frac{x}{3^{k}}, - \frac{x}{3^{k}} \biggr) + \frac{3\cdot9^{k} - 3^{k}}{6} \varphi \biggl(- \frac{x}{3^{k}}, -\frac {x}{3^{k}}, \frac{x}{3^{k}} \biggr) \biggr] \\ &\qquad{}+ \frac{9^{n}-3^{n}}{2} \psi \biggl(\frac{x}{3^{n}} \biggr) \end{aligned}$$
(4.12)
for all \(x\in X\) and \(n\in\mathbb{N}\). By (4.12) we obtain
$$\begin{aligned} & \biggl\Vert 3^{m} f \biggl( \frac{x}{3^{m}} \biggr) - 3^{n} f \biggl( \frac {x}{3^{n}} \biggr) \biggr\Vert \\ &\quad = 3^{m} \biggl\Vert f \biggl(\frac{x}{3^{m}} \biggr) - 3^{n-m} f \biggl(\frac {x}{3^{n-m}\cdot3^{m}} \biggr) \biggr\Vert \\ &\quad \leq \sum_{k=0}^{n-m-1} \biggl[ \frac{3\cdot3^{2k+m} + 3^{k+m}}{6} \varphi \biggl(\frac {x}{3^{k+m}}, \frac{x}{3^{k+m}}, - \frac{x}{3^{k+m}} \biggr) \\ &\qquad{} + \frac{3\cdot3^{2k+m} - 3^{k+m}}{6} \varphi \biggl(-\frac{x}{3^{k+m}}, - \frac{x}{3^{k+m}}, \frac{x}{3^{k+m}} \biggr) \biggr] + \frac{3^{2n-m}-3^{n}}{2} \psi \biggl(\frac{x}{3^{n}} \biggr) \end{aligned}$$
(4.13)
for all \(x\in X\) and \(m, n\in\mathbb{N}\) with \(n> m\). Since the right-hand side of inequality (4.13) tends to 0 as \(m\to\infty\), the sequence \(\{ 3^{n} f(3^{-n} x) \}\) is a Cauchy sequence. Thus, we can define a mapping
$$\begin{aligned} A(x) := \lim_{n\to\infty} 3^{n} f \biggl(\frac{x}{3^{n}} \biggr) \end{aligned}$$
for all \(x\in X\). Replacing x, y, z by \(\frac{x}{3^{n}}\), \(\frac{y}{3^{n}}\), \(\frac{z}{3^{n}}\) in (4.9) and multiplying both sides by \(3^{n}\), and after taking the limit in the resulting inequality, we see that A satisfies (1.2). Using a similar method to the proof of Theorem 4.1 we see that A is the unique additive mapping satisfying (1.4). Taking the limit as \(n\to\infty\) in (4.12) we finally obtain the result (4.11). □
Corollary 4.5
Let
\(\epsilon\geq0\), \(p>2\), and
\(\psi:X\to[0,\infty)\)
satisfy the condition (\(\mathcal{B}_{2}\)). Suppose that a mapping
\(f:X\to Y\)
satisfies
$$\begin{aligned} \bigl\Vert Df(x,y,z) \bigr\Vert \leq\epsilon\bigl(\|x\|^{p}+\|y \|^{p}+\|z\|^{p}\bigr) \end{aligned}$$
for all
\(x,y,z\in X\)
and
$$\begin{aligned} \bigl\| f(x) + f(-x) \bigr\| \leq\psi(x) \end{aligned}$$
for all
\(x\in X\). Then there exists a unique additive mapping
\(A:X\to Y\)
satisfying (1.4) such that
$$\begin{aligned} \bigl\Vert f(x) - A(x) \bigr\Vert \leq \frac{3^{p+1}}{3^{p}-9} \epsilon\|x \|^{p} \end{aligned}$$
for all
\(x\in X\) (\(x\in X\backslash\{0\}\)
if
\(p<0\)).