Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

MATH
Google Scholar

Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

MATH
Google Scholar

Diethelm, K: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

Book
MATH
Google Scholar

Ma, S, Xu, Y, Yue, W: Numerical solutions of a variable-order fractional financial system. J. Appl. Math. **2012**, Article ID 417942 (2012). doi:10.1155/2012/417942

MathSciNet
Google Scholar

Ma, S, Xu, Y, Yue, W: Existence and uniqueness of solution for a class of nonlinear fractional differential equations. Adv. Differ. Equ. **2012**, Article ID 133 (2012)

Article
MathSciNet
Google Scholar

Xu, YF, He, ZM: Synchronization of variable-order fractional financial system via active control method. Cent. Eur. J. Phys. **11**(6), 824-835 (2013)

Article
Google Scholar

Xu, YF, Agrawal, OP: Models and numerical schemes for generalized van der Pol equations. Commun. Nonlinear Sci. Numer. Simul. **18**, 3575-3589 (2013)

Article
MathSciNet
Google Scholar

Hu, ZH, Chen, W: Modeling of macroeconomics by a novel discrete nonlinear fractional dynamical system. Discrete Dyn. Nat. Soc. **2013**, Article ID 275134 (2013)

Google Scholar

Yue, YD, He, L, Liu, GC: Modeling and application of a new nonlinear fractional financial model. J. Appl. Math. **2013**, Article ID 325050 (2013). doi:10.1155/2013/325050

MathSciNet
Google Scholar

He, JH: A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. **53**(11), 3698-3718 (2014)

Article
MATH
Google Scholar

Yang, XJ, Baleanu, D: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. **17**(2), 625-628 (2013)

Article
MathSciNet
Google Scholar

Yang, XJ, Srivastava, HM, He, JH, Baleanu, D: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A **377**(28-30), 1696-1700 (2013)

Article
MATH
MathSciNet
Google Scholar

Baleanu, D, Machado, JAT, Cattani, C, Baleanu, MC, Yang, XJ: Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators. Abstr. Appl. Anal. **2014**, Article ID 535048 (2014). doi:10.1155/2014/535048

Google Scholar

Srivastava, HM, Golmankhaneh, AK, Baleanu, D, Yang, XJ: Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. **2014**, Article ID 620529 (2014)

MathSciNet
Google Scholar

Yang, XJ, Baleanu, D, Zhong, WP: Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. **14**(2), 127-133 (2013)

MathSciNet
Google Scholar

Baleanu, D, Srivastava, HM, Yang, XJ: Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets. Progr. Fract. Differ. Appl. **1**(1), 1-11 (2015)

Google Scholar

Farmer, JD, Geanakoplos, J: Power laws in finance and their implications for economic theory. Mimeo, Santa Fe Institute, Santa Fe (2004)

Gabaix, X, Gopikrishnan, P, Plerou, V, Stanley, HE: A theory of power-law distributions in financial market fluctuations. Nature **423**(6937), 267-270 (2003)

Article
Google Scholar

Gabaix, X, Gopikrishnan, P, Plerou, V, Stanley, HE: Institutional investors and stock market volatility. Q. J. Econ. **121**(2), 461-504 (2006)

Article
MATH
Google Scholar

Rak, R, Drożdż, S, Kwapień, J, Oświȩcimka, P: Stock returns versus trading volume: is the correspondence more general? Acta Phys. Pol. B **44**(10), 2035-2050 (2013)

Article
Google Scholar

Aharon, B, Solomon, S: Power laws in cities population, financial markets and Internet sites (scaling in systems with a variable number of components. Physica A **287**(1), 279-288 (2000)

MathSciNet
Google Scholar

Chian, ACL, Borotto, FA, Rempel, EL, Rogers, C: Attractor merging crisis in chaotic business cycles. Chaos Solitons Fractals **24**(3), 869-875 (2005)

Article
MATH
Google Scholar

Ma, JH, Chen, YS: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. Appl. Math. Mech. **22**(11), 1240-1251 (2001)

Article
MATH
MathSciNet
Google Scholar

Ma, JH, Chen, YS: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. II. Appl. Math. Mech. **22**(12), 1375-1382 (2001)

Article
MATH
MathSciNet
Google Scholar

Chen, WC: Nonlinear dynamics and chaos in a fractional order financial system. Chaos Solitons Fractals **36**(5), 1305-1314 (2008)

Article
Google Scholar

Dadras, S, Momeni, HR: Control of a fractional-order economical system via sliding mode. Physica A **389**(12), 2434-2442 (2010)

Article
MathSciNet
Google Scholar

Wang, Z, Huang, X, Shi, G: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. **62**(3), 1531-1539 (2011)

Article
MATH
MathSciNet
Google Scholar

Skovranek, T, Podlubny, I: Modeling of the national economics in state-space: a fractional calculus approach. Econ. Model. **29**(4), 1322-1327 (2012)

Article
Google Scholar

Agarwal, RP: Difference Equations and Inequalities: Theory, Methods and Applications. CRC Press, Boca Raton (2000)

Google Scholar

Wu, G-C, Baleanu, D: Discrete fractional logistic map and its chaos. Nonlinear Dyn. **72**(1-2), 283-287 (2014)

Article
MathSciNet
Google Scholar

Wu, G-C, Baleanu, D: Chaos synchronization of the discrete fractional logistic map. Signal Process. **102**, 96-99 (2014)

Article
Google Scholar

Chen, W: Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals **28**(4), 923-929 (2006)

Article
MATH
Google Scholar

Chen, W, Sun, HG, Zhang, X, Korosak, D: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. **59**(5), 1754-1758 (2010)

Article
MATH
MathSciNet
Google Scholar

Tatom, FB: The relationship between fractional calculus and fractals. Fractals **3**(1), 217-229 (1995)

Article
MATH
MathSciNet
Google Scholar

Kanno, R: Representation of random walk in fractal space-time. Physica A **248**(1), 165-175 (1998)

Article
Google Scholar