Before stating and proving the main results, we introduce the following hypotheses.
-
(H1)
\(f:J\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb {R}\) is Lebesgue measurable with respect to t on J.
-
(H2)
There exists a constant \(\alpha_{1}\in[0,\alpha)\) and a real-valued function \(m(t)\in L^{\frac{1}{\alpha_{1}}}(J,\mathbb{R}_{+})\) such that
$$\bigl\vert f(t,u_{2},v_{2})-f(t,u_{1},v_{1}) \bigr\vert \leq m(t) \bigl(\vert u_{2}-u_{1}\vert +|v_{2}-v_{1}| \bigr) $$
for each \(t\in J\) and all \(u_{i},v_{i}\in\mathbb{X}\), \(i=1,2\).
-
(H3)
There exists a constant \(\alpha_{2}\in[0,\alpha)\) and a real-valued function \(h(t)\in L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})\) such that
$$\bigl\vert f(t,u,v)\bigr\vert \leq h(t) $$
for each \(t\in J\) and all \(u,v\in\mathbb{X}\).
For brevity, let \(M=\|m\|_{L^{\frac{1}{\alpha_{1}}}(J,\mathbb{R}_{+})}\) and \(H=\|h\|_{L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})}\).
Our first result is based on the Banach contraction principle.
Theorem 3.1
Assume that (H1)-(H3) hold. If
$$ \Omega= M \biggl[\frac{(1+\Lambda_{1})}{\Gamma(\alpha)(\frac{\alpha -\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}}+ \biggl(\frac{1}{\Gamma (\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}}+ \frac{\Lambda_{2}}{\Gamma(\alpha)(\frac{\alpha -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr) \biggr]< 1, $$
(3.1)
where
$$\begin{aligned}& \Lambda_{1} = \frac{2|\lambda_{1}|+|1-\lambda_{1}|+|\lambda _{2}-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}, \\& \Lambda_{2} = \frac{(|1-\lambda_{1}|+|\lambda_{2}-\lambda _{1}|)\Gamma(m)}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|\Gamma(m-\beta)}, \end{aligned}$$
then the boundary value problem (1.1) has a unique solution.
Proof
For each \(t\in J\), we have
$$\begin{aligned} \int_{0}^{t}\bigl\vert (t-s)^{\alpha-1}f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr) \bigr\vert \,ds \leq& \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ \leq& \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha _{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ \leq&\frac{H}{(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}. \end{aligned}$$
Thus \(\vert (t-s)^{\alpha-1}f(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s))\vert \) is Lebesgue integrable with respect to \(s\in[0,t]\) for all \(t\in J\) and \(u\in C(J,\mathbb{X})\). Then \((t-s)^{\alpha-1}f(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s))\) is Bochner integrable with respect to \(s\in[0,t]\) for all \(t\in J\) due to Lemma 2.7.
In the same manner we can show that \((1-s)^{\alpha -1}f(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s))\) and \((\eta-s)^{\alpha-1}f(s,u(s), {}^{\mathrm{C}}D^{\beta}u(s))\) are also Bochner integrable with respect to \(s\in [0,t]\) for all \(t\in J\) due to Lemma 2.7.
Hence, the boundary value problem (1.1) is equivalent to the following integral equation:
$$\begin{aligned} u(t) =&\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds, \quad t\in J. \end{aligned}$$
Let
$$r\geq H \biggl[\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha)(\frac {\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{1}{\Gamma (\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \biggr]. $$
Now we define the operator F on \(B_{r}:=\{ u\in C(J,\mathbb{X}):\|u\| _{\mathbb{X}}\leq r\}\) as follows:
$$\begin{aligned} (Fu) (t) =&\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \end{aligned}$$
(3.2)
for each \(t\in J\). Therefore, the existence of a solution of the fractional boundary value problem (1.1) is equivalent to the fact that the operator F has a fixed point in \(B_{r}\). We shall use the Banach contraction principle to prove that F has a fixed point. The proof is divided into two steps.
Step 1. \(Fu\in B_{r}\) for every \(u\in B_{r}\).
For every \(u\in B_{r}\) and \(\delta>0\), by (H3) and Hölder’s inequality, we get
$$\begin{aligned}& \bigl\vert (Fu) (t+\delta)-(Fu) (t)\bigr\vert \\& \quad \leq \biggl\vert \int_{t}^{t+\delta} \frac{(t+\delta-s)^{\alpha -1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \biggl\vert \int_{0}^{t} \frac{((t+\delta-s)^{\alpha-1}-(t-s)^{\alpha -1})}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \biggl\vert \frac{(1-\lambda_{1})((t+\delta)^{m-1}-t^{m-1})}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \biggl\vert \frac{(\lambda_{1}-\lambda_{2})((t+\delta )^{m-1}-t^{m-1})}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \int_{0}^{t}\frac{((t+\delta-s)^{\alpha-1}-(t-s)^{\alpha -1})}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-1}}{\Gamma (\alpha)}h(s) \,ds+\int_{0}^{t}\frac{((t+\delta-s)^{\alpha -1}-(t-s)^{\alpha-1})}{\Gamma(\alpha)}h(s)\,ds \end{aligned}$$
$$\begin{aligned}& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{t}^{t+\delta}(t+ \delta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t} \bigl((t+\delta -s)^{\alpha-1}-(t-s)^{\alpha-1}\bigr)^{\frac{1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{\eta}(\eta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{t}^{t+\delta}(t+ \delta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t} \bigl((t+\delta-s)^{\frac {\alpha-1}{1-\alpha_{2}}}-(t-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\bigr)\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{\eta}(\eta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{\|h\|_{L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggl[\delta^{\alpha-\alpha_{2}}+\bigl((t+ \delta)^{\frac{\alpha-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\alpha_{2}}{1-\alpha_{2}}}\bigr)^{1-\alpha_{2}} \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}+\frac{|\lambda _{1}-\lambda_{2}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\eta^{\alpha-\alpha _{2}}\biggr] \\& \quad \leq \frac{H}{\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \biggl[\delta^{\alpha-\alpha_{2}}+\bigl((t+ \delta)^{\frac{\alpha-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\alpha_{2}}{1-\alpha_{2}}}\bigr)^{1-\alpha_{2}} \\& \qquad {} + \frac{(|1-\lambda_{1}|+|\lambda_{1}-\lambda _{2}|)}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\bigl((t+\delta)^{m-1}-t^{m-1} \bigr)\biggr], \end{aligned}$$
and in view of Lemma 2.1, we have
$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu) (t+\delta)- {}^{\mathrm{C}}D^{\beta}(Fu) (t)\bigr\vert \\& \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \int_{0}^{t}\frac{((t+\delta-s)^{\alpha-\beta-1}-(t-s)^{\alpha -\beta-1})}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr] \\ & \qquad {}\times\frac{\Gamma(m)}{\Gamma(m-\beta-1)}\bigl((t+\delta)^{m-\beta -1}-(t)^{m-\beta-1} \bigr) \\ & \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}h(s) \,ds+\int_{0}^{t}\frac{((t+\delta -s)^{\alpha-\beta-1}-(t-s)^{\alpha-\beta-1})}{\Gamma(\alpha-\beta )}h(s)\,ds \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}h(s)\,ds \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds\biggr] \\ & \qquad {}\times\frac{\Gamma (m)}{\Gamma(m-\beta-1)}\bigl((t+\delta)^{m-\beta-1}-(t)^{m-\beta-1} \bigr) \\ & \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{t}^{t+\delta }(t+ \delta-s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t} \bigl((t+\delta -s)^{\alpha-\beta-1}-(t-s)^{\alpha-\beta-1}\bigr)^{\frac{1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha -1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{\eta }( \eta-s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}}\biggr] \\ & \qquad {}\times\frac{\Gamma(m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta -1})}{\Gamma(m-\beta-1)\Gamma(\alpha)} \\ & \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{t}^{t+\delta }(t+ \delta-s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t} \bigl((t+\delta -s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}}-(t-s)^{\frac{\alpha-\beta -1}{1-\alpha_{2}}}\bigr)\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha -1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{\eta }( \eta-s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}}\biggr] \\ & \qquad {}\times\frac{\Gamma(m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta -1})}{\Gamma(m-\beta-1)\Gamma(\alpha)} \\ & \quad \leq H\biggl[\frac{\delta^{\alpha-\beta-\alpha_{2}}}{\Gamma (\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}}+\frac{((t+\delta)^{\frac{\alpha-\beta-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\beta-\alpha_{2}}{1-\alpha_{2}}})^{1-\alpha _{2}}}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \\ & \qquad {} + \frac{|1-\lambda_{1}|+|\lambda_{1}-\lambda _{2}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac {\Gamma(m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta-1})}{\Gamma(m-\beta -1)\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha _{2}}}\biggr]. \end{aligned}$$
Hence, we get
$$\begin{aligned}& \bigl\Vert (Fu) (t+\delta)-(Fu) (t)\bigr\Vert _{\mathbb{X}} \\& \quad \leq \frac{H}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggl[\delta^{\alpha-\alpha_{2}}+\bigl((t+ \delta)^{\frac{\alpha-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\alpha_{2}}{1-\alpha_{2}}}\bigr)^{1-\alpha_{2}} \\& \qquad {} + \frac{(|1-\lambda_{1}|+|\lambda_{1}-\lambda _{2}|)}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\bigl((t+\delta)^{m-1}-t^{m-1} \bigr)\biggr] \\& \qquad {} + H\biggl[\frac{\delta^{\alpha-\beta-\alpha_{2}}+((t+\delta )^{\frac{\alpha-\beta-\alpha_{2}}{1-\alpha_{2}}}-\delta^{\frac {\alpha-\beta-\alpha_{2}}{1-\alpha_{2}}}-t^{\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}}})^{1-\alpha_{2}}}{\Gamma(\alpha-\beta)(\frac {\alpha-\beta-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \\& \qquad {} + \frac{|1-\lambda_{1}|+|\lambda_{1}-\lambda_{2}|}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\frac{\Gamma (m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta-1})}{\Gamma(m-\beta -1)\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha _{2}}}\biggr]. \end{aligned}$$
It is obvious that the right-hand side of the above inequality tends to zero as \(\delta\to0\). Therefore, F is continuous on J. Moreover, for \(u\in B_{r}\) and all \(t\in J\), we get
$$\begin{aligned}& \bigl\vert (Fu) (t)\bigr\vert \\ & \quad \leq \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}_{t}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}_{t}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}_{t}u(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds + \frac{|\lambda_{1}\eta^{m-1}|+|(1-\lambda_{1})t^{m-1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\& \qquad {}+\frac{|\lambda_{1}|+|(\lambda_{2}-\lambda _{1})t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t}(t-s)^{\frac {\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\frac{|\lambda_{1}||\eta^{m-1}|+|1-\lambda _{1}||t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{1}(1-s)^{\frac {\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda _{1}||t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{\eta}( \eta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{0}^{\eta}\bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t}(t-s)^{\frac {\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha _{2}} \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{\|h\|_{L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggl(t^{\alpha-\alpha_{2}}+\frac{|\lambda_{1}|+|1-\lambda _{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}+ \frac {(|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|)\eta^{\alpha-\alpha _{2}}}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggr) \\& \quad \leq \frac{H}{\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \biggl(1+\frac{2|\lambda_{1}|+|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggr)=\frac{H(1+\Lambda_{1})}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}. \end{aligned}$$
In view of Lemma 2.1, we have
$$\begin{aligned}& \bigl|{}^{\mathrm{C}}D^{\beta}(Fu) (t)\bigr| \\& \quad \leq \int_{0}^{t} \frac{(t-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr] {}^{\mathrm{C}}D^{\beta}t^{m-1} \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha -\beta)}h(s)\,ds+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds\biggr]\frac{\Gamma (m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha _{2}} \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}}\biggr] \\& \qquad {}\times \frac{\Gamma (m)t^{m-\beta-1}}{\Gamma(m-\beta)} \\& \quad \leq H \biggl[\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{(|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|)\Gamma(m)}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|\Gamma(m-\beta)\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr] \\& \quad = H \biggl(\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{\Lambda_{2}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr). \end{aligned}$$
Therefore,
$$\|Fu\|_{\mathbb{X}}\leq H \biggl(\frac{1}{\Gamma(\alpha-\beta )(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac {1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha)(\frac{\alpha-\alpha _{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr)\leq r. $$
Notice that \((Fu)(t)\) and \({}^{\mathrm{C}}D^{\beta}(Fu)(t)\) are continuous on J. Thus, we can conclude that for all \(u\in B_{r}\), \(Fu\in B_{r}\), i.e., \(F:B_{r}\rightarrow B_{r}\).
Step 2. F is a contraction mapping on \(B_{r}\).
For \(u,v\in B_{r}\) and any \(t\in J\), using (H2) and Hölder’s inequality, we get
$$\begin{aligned}& \bigl\vert (Fu) (t)-(Fv) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f \bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times\int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta }v(s) \bigr)\bigr\vert \,ds \\& \qquad {} + \biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times\int _{0}^{\eta}\frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta }v(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta}v(s) \bigr\vert \bigr)\,ds \\& \qquad {} + \frac{|\lambda_{1}\eta^{m-1}|+|(1-\lambda _{1})t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \\& \qquad {}\times\int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta}v(s)\bigr\vert \bigr)\,ds \\& \qquad {} + \frac{|\lambda_{1}+|(\lambda_{2}-\lambda_{1})t^{m-1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)-{}^{\mathrm{C}}D^{\beta}v(s)\bigr\vert \bigr)\,ds \\& \quad \leq \biggl[\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}m(s)\,ds +\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}m(s)\,ds \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}m(s)\,ds \biggr]\|u-v\|_{\mathbb {X}} \\& \quad \leq \biggl[\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha_{1}}} \,ds \biggr)^{1-\alpha _{1}} \biggl(\int_{0}^{1} \bigl(m(s)\bigr)^{\frac{1}{\alpha_{1}}}\,ds \biggr)^{\alpha _{1}} \\& \qquad {}+ \frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{1}}} \,ds \biggr)^{1-\alpha _{1}} \biggl(\int_{0}^{1} \bigl(m(s)\bigr)^{\frac{1}{\alpha_{1}}}\,ds \biggr)^{\alpha _{1}} \\& \qquad {}+ \frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{1}}}\,ds \biggr)^{1-\alpha_{1}} \biggl(\int_{0}^{\eta} \bigl(m(s)\bigr)^{\frac {1}{\alpha_{1}}}\,ds \biggr)^{\alpha_{1}}\biggr] \\& \qquad {}\times\|u-v \|_{\mathbb{X}} \\& \quad \leq \frac{\|m\|_{L^{\frac{1}{\alpha_{1}}}(J,\mathbb{R}_{+})}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}} \biggl[t^{\alpha-\alpha_{1}}+\frac{|\lambda_{1}|+|1-\lambda _{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}+ \frac {(|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|)\eta^{\alpha-\alpha _{1}}}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggr] \\& \qquad {}\times\|u-v\|_{\mathbb{X}} \\& \quad \leq \frac{M}{\Gamma(\alpha)(\frac{\alpha-\alpha_{1}}{1-\alpha _{1}})^{1-\alpha_{1}}} \biggl[1+\frac{2|\lambda_{1}|+|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggr]\|u-v \|_{\mathbb{X}} \\& \quad = \frac{M(1+\Lambda_{1})}{\Gamma(\alpha)(\frac{\alpha-\alpha _{1}}{1-\alpha_{1}})^{1-\alpha_{1}}}\|u-v\|_{\mathbb{X}}. \end{aligned}$$
Similarly, we can get
$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu) (t)-{}^{\mathrm{C}}D^{\beta}(Fv) (t)\bigr\vert \\& \quad \leq\int_{0}^{t}\frac {(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha-\beta)} \bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f \bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \biggr] \frac{\Gamma(m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha -\beta)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta}v(s) \bigr\vert \bigr)\,ds \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta }v(s)\bigr\vert \bigr)\,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)-{}^{\mathrm{C}}D^{\beta}v(s)\bigr\vert \bigr)\,ds\biggr] \frac{\Gamma(m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-\beta-1}{1-\alpha_{1}}} \,ds \biggr)^{1-\alpha_{1}} \biggl(\int_{0}^{t} \bigl(m(s)\bigr)^{\frac{1}{\alpha _{1}}}\,ds \biggr)^{\alpha_{1}}\|u-v\|_{\mathbb{X}} \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{1}}}\,ds \biggr)^{1-\alpha _{1}} \biggl(\int_{0}^{1} \bigl(m(s)\bigr)^{\frac{1}{\alpha_{1}}}\,ds \biggr)^{\alpha _{1}} \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{1}}}\,ds \biggr)^{1-\alpha_{1}} \biggl(\int_{0}^{\eta} \bigl(m(s)\bigr)^{\frac {1}{\alpha_{1}}}\,ds \biggr)^{\alpha_{1}}\biggr] \\& \qquad {}\times\frac{\Gamma(m)}{\Gamma {(m-\beta)}}\|u-v\|_{\mathbb{X}} \\& \quad \leq \biggl[\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}}+\frac{(|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|)\Gamma(m)}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|\Gamma(m-\beta)\Gamma (\alpha)(\frac{\alpha-\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}} \biggr] \\& \qquad {}\times M\|u-v \|_{\mathbb{X}} \\& \quad = \biggl(\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{\Lambda_{2}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr)M\|u-v \|_{\mathbb{X}}. \end{aligned}$$
So we obtain \(\|Fu-Fv\|_{\mathbb{X}}\leq\Omega\|u-v\|_{\mathbb {X}}\). Thus, F is a contraction due to condition (3.1). By the Banach contraction principle, we can deduce that F has a unique fixed point which is just the unique solution of the fractional boundary value problem (1.1). □
Our second result is based on the well-known Schaefer’s fixed point theorem. We make the following assumptions:
-
(H4)
\(f:J\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb {R}\) is continuous.
-
(H5)
There exists a constant \(L>0\) such that
$$\bigl\Vert f(t,u,v)\bigr\Vert \leq L\bigl(1+\vert u\vert +|v|\bigr) $$
for each \(t\in J\) and all \(u,v\in\mathbb{X}\), with
$$L \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda _{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr)\neq1. $$
Theorem 3.2
Assume that (H4) and (H5) hold and there exists a constant
\(M^{*}>0\)
such that
$$M^{*}\geq\frac{L (\frac{1}{\Gamma(\alpha-\beta+1)}+\frac {1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}{1-L (\frac {1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma (\alpha+1)} )}. $$
Then the fractional boundary value problem (1.1) has at least one solution on
J.
Proof
Transform the fractional boundary value problem (1.1) into a fixed point problem. Consider the operator \(F: C(J,\mathbb{X})\to C(J,\mathbb{X})\) defined as (3.2). It is obvious that F is well defined due to (H4).
For the sake of convenience, we subdivide the proof into several steps.
Step 1. F is continuous.
Let \(\{u_{n}\}\) be a sequence such that \(u_{n}\to u\) in \(C(J,\mathbb{X})\). Then, for each \(t\in J\), we have
$$\begin{aligned}& \bigl\vert (Fu_{n}) (t)-(Fu) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr) \bigr\vert \,ds \\& \qquad {}+ \biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times\int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f \bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times \int _{0}^{\eta}\frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f \bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\bigr\vert \,ds \\& \quad \leq \biggl[\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )} \,ds+\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\,ds \\& \qquad {}+ \frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\,ds\biggr] \\& \qquad {}\times\sup_{t\in J} \bigl\vert f \bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta}u(t)\bigr)\bigr\vert \\& \quad \leq \biggl(\frac{1+\Lambda_{1}}{\Gamma(\alpha+1)} \biggr)\sup_{t\in J}\bigl\vert f\bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta }u(t)\bigr)\bigr\vert . \end{aligned}$$
Also, we can get
$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu_{n}) (t)-{}^{\mathrm{C}}D^{\beta}(Fu) (t)\bigr\vert \\& \quad \leq\int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha-\beta)} \bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta }u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta }u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \biggr] \frac{\Gamma(m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \biggl[\int_{0}^{t} \frac{(t-s)^{\alpha-\beta-1}}{\Gamma (\alpha-\beta)}\,ds+\frac{\Gamma(m)}{\Gamma{(m-\beta)}}\biggl(\frac {|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\,ds\biggr)\biggr] \\& \qquad {}\times\sup_{t\in J}\bigl\vert f \bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta }u(t)\bigr)\bigr\vert \\& \quad \leq \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\Lambda _{2}}{\Gamma(\alpha+1)} \biggr)\sup _{t\in J} \bigl\vert f\bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta}u(t)\bigr)\bigr\vert . \end{aligned}$$
Thus, we get
$$\begin{aligned}& \bigl\Vert (Fu_{n}) (t)-(Fu) (t)\bigr\Vert _{\mathbb{X}} \\& \quad \leq \biggl(\frac{1}{\Gamma(\alpha -\beta+1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) {\sup_{t\in J}} \bigl\vert f\bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta }u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta}u(t)\bigr)\bigr\vert . \end{aligned}$$
Since f is continuous, then \(\|(Fu_{n})(t)-(Fu)(t)\|_{\mathbb{X}}\to 0\) as \(n\to\infty\).
Step 2. F maps bounded sets into bounded sets in \(C(J,\mathbb{X})\).
Indeed, it is enough to show that for any \(r'>0\), there exists \(l>0\) such that for each \(u\in B_{r'}=\{u\in C(J,\mathbb{X}):\|u\|_{\mathbb{X}}< r'\}\), we have \(\|Fu\|_{\mathbb{X}}\leq l\).
Then, for each \(t\in J\) and (H5), we have
$$\begin{aligned} \bigl\vert (Fu) (t)\bigr\vert \leq&\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ &{}+\biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ &{}+\biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ \leq&\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}L\bigl(1+ \bigl\vert u(s)\bigr\vert +\bigl|{}^{\mathrm{C}}D^{\beta}u(s)\bigr|\bigr)\,ds \\ &{}+\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)\bigr\vert \bigr)\,ds \\ &{}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds \\ \leq&\frac{L(1+\Lambda_{1})}{\Gamma(\alpha+1)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned}$$
Also, we can get
$$\begin{aligned}& \bigl\vert \bigl({}^{\mathrm{C}}D^{\beta}Fu\bigr) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr) \bigr\vert \,ds \\& \qquad {}+\biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr) \bigr\vert \,ds \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr]\frac{\Gamma(m)t^{m-\beta-1}}{\Gamma {(m-\beta)}} \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha -\beta)}L\bigl(1+ \bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\& \qquad {}+\biggl[\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds\biggr] \frac{\Gamma(m)}{\Gamma{(m-\beta)}} \\& \quad \leq L \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\Lambda _{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u \Vert _{\mathbb{X}}\bigr). \end{aligned}$$
Hence, we get
$$\bigl\Vert (Fu) (t)\bigr\Vert _{\mathbb{X}}\leq L \biggl( \frac{1}{\Gamma(\alpha-\beta +1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr):=l. $$
Step 3. F maps bounded sets into equicontinuous sets of \(C(J,\mathbb{X})\).
For \(u\in B_{r'}\) and \(t_{1},t_{2}\in J\) such that \(t_{1}< t_{2}\). Then, using (H5), we have
$$\begin{aligned}& \bigl\vert (Fu) (t_{2})-(Fu) (t_{1})\bigr\vert \\& \quad \leq \biggl\vert \int_{t_{1}}^{t_{2}} \frac{(t_{2}-s)^{\alpha-1}}{\Gamma (\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \qquad {}+ \biggl\vert \int_{0}^{t_{1}} \frac{((t_{2}-s)^{\alpha -1}-(t_{1}-s)^{\alpha-1})}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \biggr\vert \\& \qquad {}+ \biggl\vert \frac{(1-\lambda_{1})(t_{2}^{m-1}-t_{1}^{m-1})}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \biggr\vert \\& \qquad {}+ \biggl\vert \frac{(\lambda_{1}-\lambda _{2})(t_{2}^{m-1}-t_{1}^{m-1})}{(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha -1})}{\Gamma(\alpha)} \bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \frac{|(1-\lambda_{1})(t_{2}^{m-1}-t_{1}^{m-1})|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+ \frac{|(\lambda_{1}-\lambda _{2})(t_{2}^{m-1}-t_{1}^{m-1})|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac{(\eta -s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-1}}{\Gamma (\alpha)}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\& \qquad {} + \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha -1})}{\Gamma(\alpha)}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\& \qquad {}+ \frac{|1-\lambda_{1}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds \\& \qquad {} + \frac{|\lambda_{1}-\lambda _{2}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha -1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)\bigr\vert \bigr)\,ds \\& \quad \leq \biggl[\int_{t_{1}}^{t_{2}}(t_{2}-s)^{\alpha-1} \,ds+\int_{0}^{t_{1}}\bigl((t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha-1} \bigr)\,ds \\ & \qquad {} + \frac{|1-\lambda_{1}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1}(1-s)^{\alpha-1} \,ds \\ & \qquad {} + \frac{|\lambda_{1}-\lambda _{2}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|} \int_{0}^{\eta}( \eta-s)^{\alpha-1}\,ds\biggr]\frac{L}{\Gamma(\alpha)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr) \\ & \quad = \biggl[(t_{2}-t_{1})^{\alpha}+ \bigl(t_{1}^{\alpha}-t_{2}^{\alpha } \bigr)-(t_{2}-t_{1})^{\alpha}+\frac{|1-\lambda _{1}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|} \\ & \qquad {} + \frac{|\lambda_{1}-\lambda _{2}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|}\eta^{\alpha}\biggr]\frac{L}{\Gamma(\alpha +1)} \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr) \\ & \quad \leq \biggl[\bigl(t_{1}^{\alpha}-t_{2}^{\alpha} \bigr)+\frac{(|1-\lambda _{1}|+|\lambda_{1}-\lambda_{2}|)(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggr]\frac {L}{\Gamma(\alpha+1)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned}$$
Also, we can get
$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu) (t_{2})-{}^{\mathrm{C}}D^{\beta}(Fu) (t_{1})\bigr\vert \\ & \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\ & \qquad {}+ \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-\beta -1}-(t_{1}-s)^{\alpha-\beta-1})}{\Gamma(\alpha-\beta )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\ & \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ & \qquad {}+ \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr] \\ & \qquad {}\times\frac{\Gamma(m)(t_{2}^{m-\beta-1}-t_{1}^{m-\beta -1})}{\Gamma{(m-\beta)}} \\ & \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\ & \qquad {}+ \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-\beta -1}-(t_{1}-s)^{\alpha-\beta-1})}{\Gamma(\alpha-\beta )}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\ & \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)\bigr\vert \bigr)\,ds \\ & \qquad {}+ \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds\biggr] \\ & \qquad {}\times \frac{\Gamma(m)(t_{2}^{m-\beta-1}-t_{1}^{m-\beta -1})}{\Gamma{(m-\beta)}} \\ & \quad \leq \biggl[\frac{(t_{1}^{\alpha-\beta}-t_{2}^{\alpha-\beta })}{\Gamma(\alpha-\beta+1)}+\frac{(|1-\lambda_{1}|+|\lambda _{1}-\lambda_{2}|)\Gamma(m)(t_{2}^{m-\beta-1}-t_{1}^{m-\beta -1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|\Gamma (m-\beta)\Gamma(\alpha+1)} \biggr] L\bigl(1+ \Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned}$$
Hence, we get
$$\begin{aligned} \begin{aligned} &\bigl\Vert (Fu) (t_{2})-(Fu) (t_{1})\bigr\Vert _{\mathbb{X}} \\ &\quad \leq \biggl[\frac{(t_{1}^{\alpha}-t_{2}^{\alpha})}{\Gamma(\alpha +1)}+\frac{\Lambda_{2}\Gamma(m-\beta)(t_{2}^{m-1}-t_{1}^{m-1})}{\Gamma (\alpha+1)\Gamma(m)}+\frac{(t_{1}^{\alpha-\beta}-t_{2}^{\alpha-\beta })}{\Gamma(\alpha-\beta+1)}+ \frac{\Lambda_{2}(t_{2}^{m-\beta -1}-t_{1}^{m-\beta-1})}{\Gamma(\alpha+1)} \biggr] \\ &\qquad {}\times L\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned} \end{aligned}$$
Now, using the fact that the functions \(t_{1}^{\alpha}-t_{2}^{\alpha }\), \(t_{2}^{m-1}-t_{1}^{m-1}\), \(t_{1}^{\alpha-\beta}-t_{2}^{\alpha -\beta}\), and \(t_{2}^{m-\beta-1}-t_{1}^{m-\beta-1}\) are uniformly continuous on J, we conclude that the right-hand side of the above inequality tends to zero as \(t_{2}\to t_{1}\), therefore F is equicontinuous. As a consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we can conclude that F is continuous and completely continuous.
Step 4. A priori bounds.
Now it remains to show that the set \(E(F)=\{u\in C(J,\mathbb{X}): u=\lambda Fu\mbox{ for some }\lambda\in(0,1)\}\) is bounded. Let \(u\in E(F)\), then \(u = \lambda Fu\) for some \(\lambda\in(0,1)\). Thus, for each \(t\in J\), we have
$$\begin{aligned} u(t) =&\lambda\biggl[\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma (\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr]. \end{aligned}$$
For each \(t\in J\), we have
$$\bigl\vert u(t)\bigr\vert \leq\frac{L(1+\Lambda_{1})}{\Gamma(\alpha+1)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr) $$
and
$$\bigl\vert {}^{\mathrm{C}}D^{\beta}u(t)\bigr\vert \leq L \biggl( \frac{1}{\Gamma(\alpha-\beta+1)}+\frac {\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). $$
Therefore,
$$\|u\|_{\mathbb{X}}\leq L \biggl(\frac{1}{\Gamma(\alpha-\beta +1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). $$
Thus, for every \(t\in J\), we have
$$\|u\|_{\mathbb{X}}\leq\frac{L (\frac{1}{\Gamma(\alpha-\beta +1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}{1-L (\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda _{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}\leq M^{*}. $$
This shows that the set \(E(F)\) is bounded.
As a consequence of Schaefer’s fixed point theorem, we deduce that F has a fixed point which is a solution of the fractional boundary value problem (1.1). The proof is complete. □