- Research
- Open Access
- Published:
On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation
Advances in Difference Equations volume 2015, Article number: 374 (2015)
Abstract
In this paper, we study the existence and uniqueness of solutions for a problem consisting of nonlinear Langevin equation of Riemann-Liouville type fractional derivatives with the nonlocal Katugampola fractional integral conditions. A variety of fixed point theorems are used such as Banach’s fixed point theorem, Krasnoselskii’s fixed point theorem, Leray-Schauder’s nonlinear alternative, and Leray-Schauder degree theory. Enlightening examples of the obtained results are also presented.
1 Introduction
In this manuscript, we investigate the sufficient conditions of the existence of solutions for the following fractional Langevin equation subject to the generalized nonlocal fractional integral conditions of the form:
where \(D^{p_{i}}\) denote the Riemann-Liouville fractional derivative of order \(p_{i}\), \(i=1,2\), \(0< p_{1},p_{2}\leq1\), \(1< p_{1}+p_{2}\leq2\), λ is a given constant, \({^{\rho_{i}}}I^{q_{i}}\) are the generalized fractional integral of orders \(q_{i}>0\), \(\rho_{i}>0\), η, \(\xi_{i}\) arbitrary, with \(\eta,\xi_{i} \in(0,T)\), \(\alpha_{i}\in\mathbb{R}\), which are satisfied (2.3) for all \(i=1,2,\ldots,n\) and \(f: [0,T]\times{\mathbb {R}}\to{\mathbb {R}}\) is a continuous function.
The subject of fractional differential equations has recently evolved as an interesting and popular field of research; see the interesting paper [1]. In fact, fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. More and more researchers have found that fractional differential equations play important roles in many research areas, such as physics, chemical technology, population dynamics, biotechnology, and economics. For examples and recent developments of the topic, see [2–16] and the references cited therein.
In fractional calculus, the fractional derivatives are defined via fractional integrals. There are several known forms of fractional integrals, which have been studied extensively for their applications. Two of the best known fractional integrals are the Riemann-Liouville and the Hadamard fractional integral.
A new fractional integral, called generalized Riemann-Liouville fractional integral, which generalizes the Riemann-Liouville and the Hadamard integrals into a single form, was introduced in [17]. See Definition 2.3 below. The corresponding fractional derivatives were introduced in [18]. The Mellin transforms of both the fractional integral and derivatives were studied in [19]. This integral is now known as the ‘Katugampola fractional integral’ see for example [20], pp.15,123. The existence and uniqueness results for the Caputo-Katugampola derivative are given in [21]. For some recent work with this new operator and similar operators, for example, see [22–25] and the references cited therein.
The Langevin equation (first formulated by Langevin in 1908 to give an elaborate description of Brownian motion) is found to be an effective tool to describe the evolution of physical phenomena in fluctuating environments [26]. For instance, Brownian motion is well described by the Langevin equation (or generalized Langevin equation) when the random fluctuation force is assumed to be white noise (or non-white noise). For systems in complex media, the ordinary Langevin equation does not provide a correct description of the dynamics. As a result, various generalizations of Langevin equations have been offered to describe dynamical processes in a fractal medium. One such generalization is the generalized Langevin equation which incorporates the fractal and memory properties with a dissipative memory kernel into the Langevin equation. For some new developments on the fractional Langevin equation, see, for example, [27–32].
In this paper we study the boundary value problem (1.1) with generalized fractional integral boundary conditions. Several new existence and uniqueness results are proved by using a variety of fixed point theorems (such as the Banach contraction principle, the Krasnoselskii fixed point theorem, the Leray-Schauder nonlinear alternative, and Leray-Schauder degree theory).
The rest of the paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel. In Section 3 we present our existence and uniqueness results. Examples illustrating the obtained results are presented in Section 4.
2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [2, 3] and present preliminary results needed in our proofs later.
Definition 2.1
[3]
The Riemann-Liouville fractional integral of order \(p > 0\) of a continuous function \(f:(0,\infty)\rightarrow\mathbb{R}\) is defined by
provided the right-hand side is point-wise defined on \((0,\infty)\), where Γ is the gamma function defined by \(\Gamma(p)=\int _{0}^{\infty} e^{-s}s^{p-1}\,ds\).
Definition 2.2
[3]
The Riemann-Liouville fractional derivative of order \(p > 0\) of a continuous function \(f:(0,\infty)\rightarrow\mathbb{R}\) is defined by
where \(n=[p]+1\), \([p]\) denotes the integer part of a real number p, provided the right-hand side is point-wise defined on \((0,\infty)\).
Lemma 2.1
[3]
Let \(p > 0\) and \(x\in C(0,T)\cap L(0,T)\). Then the fractional differential equation \(D^{p}x(t)=0\) has a unique solution
and the following formula holds:
where \(c_{i} \in\mathbb{R}\), \(i = 1,2,\ldots,n\), and \(n-1\le p< n\).
Lemma 2.2
([3], p.71)
Let \(\alpha>0\) and \(\beta>0\). Then the following properties hold:
Definition 2.3
[18]
The Katugampola fractional integral of order \(q >0\) and \(\rho>0\), of a function \(f(t)\), for all \(0< t<\infty\), is defined as
provided the right-hand side is point-wise defined on \((0,\infty)\).
Lemma 2.3
Let constants \(\rho,q > 0\) and \(p>0\). Then the following formula holds:
Proof
From Definition 2.3, we have
This completes the proof. □
For convenience we set
and
Lemma 2.4
Let \(0< p_{1},p_{2}\leq1\), \(1< p_{1}+p_{2}\leq2\), \(q_{i},\rho_{i}>0\), \(\eta, \xi_{i}\in(0, T)\), \(\alpha_{i} \in{\mathbb {R}}\) for all \(i=1,2,\ldots,n\) and \(h\in C([0,T], {\mathbb {R}})\). Then the problem
has a unique solution given by
Proof
Applying Lemma 2.1 to equation (2.4), we obtain
which gives
for \(c_{1},c_{2} \in\mathbb{R}\). It is easy to see that the condition \(x(0)=0\) implies that \(c_{2}=0\).
Thus
Combining the generalized fractional integral of order \(q_{i} >0\), \(\rho_{i} >0\) with (2.7), we have
Using the second condition of (2.5) to (2.8), we get
Solving the above equation for finding a constant \(c_{1}\), we obtain
Substituting the constant \(c_{1}\) into (2.7), we have (2.6) as desired. □
3 Main results
Let \(\mathcal{C}=C([0, T],\mathbb{R})\) denote the Banach space of all continuous functions from \([0, T]\) to \(\mathbb{R}\) endowed with the norm defined by \(\|x\|=\sup_{t\in[0, T]}|x(t)|\). Throughout this paper, for convenience, we choose the notations \(\mathcal {I}^{z}f(s,x(s))(y)\) and \({^{\rho}}I^{z} f(s,x(s))(y)\) defined by
where \(z>0\) and \(y\in[0,T]\).
To prove our results, in view of Lemma 2.4, we define an operator \(\mathcal{Q}:\mathcal {C}\rightarrow\mathcal{C}\) by
It should be noticed the boundary value problem (1.1) can be transformed into a fixed point problem \(x=\mathcal{Q}x\). Consequently the problem (1.1) has solutions if and only if the operator \(\mathcal{Q}\) has fixed points. In the following subsections we investigate sufficient conditions for the existence of solutions for the boundary value problem (1.1) by using a variety of fixed point theorems.
To simplify the notations, we use in the following constants \(\Lambda (u)\) for \(u=p_{1}\) and \(u=0\), where
3.1 Existence and uniqueness result via Banach’s fixed point theorem
Theorem 3.1
Assume that:
- (H1):
-
there exists a constant \(L>0\) such that \(|f(t,u)-f(t,v)|\leq L|u-v|\), for each \(t\in[0, T]\) and \(u, v\in \mathbb{R}\).
If
where \(\Lambda(p_{1})\), \(\Lambda(0)\) are defined by (3.2), then the problem (1.1) has a unique solution on \([0, T]\).
Proof
To accomplish this result, we consider a fixed point problem \(x=\mathcal{Q}x\), where the operator \(\mathcal{Q}\) is defined as in (3.1). By applying the Banach contraction mapping principle, we will show that \(\mathcal{Q}\) has a unique fixed point.
First of all, we let \(\sup_{t \in[0,T]}|f(t,0)|=M< \infty \) and choose
Now, we show that \(\mathcal{Q} B_{R} \subset B_{R}\), where \(B_{R}=\{x \in {\mathcal{C}}: \|x\|\le R \}\). For any \(x \in B_{R}\), we have
This implies that \(\|\mathcal{Q}x\|\leq R\) for \(x \in B_{R}\). Therefore, \(\mathcal{Q}\) maps bounded subsets of \(B_{R}\) into bounded subsets of \(B_{R}\).
Next, we let \(x, y\in\mathcal{C}\). Then for \(t\in[0,T]\), we have
which implies that \(\|\mathcal{Q}x-\mathcal{Q}y\|\leq [L\Lambda (p_{1})+|\lambda|\Lambda(0) ]|x-y\|\). As \([L\Lambda (p_{1})+|\lambda|\Lambda(0) ]<1\), \(\mathcal{Q}\) is a contraction. Therefore, by the Banach contraction mapping principle, we deduce that \(\mathcal{Q}\) has a fixed point which is the unique solution of problem (1.1). The proof is completed. □
3.2 Existence result via Leray-Schauder’s nonlinear alternative
Theorem 3.2
(Nonlinear alternative for single valued maps) [33]
Let E be a Banach space, C a closed, convex subset of E, U an open subset of C, and \(0\in U\). Suppose that \(F:\overline{U}\to C\) is a continuous, compact (that is, \(F(\overline {U})\) is a relatively compact subset of C) map. Then either
-
(i)
F has a fixed point in U̅, or
-
(ii)
there is a \(u\in\partial U\) (the boundary of U in C) and \(\xi\in(0,1)\) with \(u=\xi F(u)\).
Theorem 3.3
Assume that:
- (H2):
-
there exists a continuous nondecreasing function \(\Upsilon: [0,\infty) \to (0,\infty)\) and a function \(\beta\in C([0,T],\mathbb{R}^{+})\) such that
$$\bigl|f(t,u)\bigr|\le\beta(t)\Upsilon\bigl(|u|\bigr) \quad \textit{for each } (t,u) \in[0,T] \times \mathbb{R}; $$ - (H3):
-
there exists a constant \(M>0\) such that
$$\begin{aligned} \frac{M}{\|\beta\|\Upsilon (M )\Lambda(p_{1})+|\lambda|M\Lambda (0)}> 1, \end{aligned}$$where \(\Lambda(p_{1})\) and \(\Lambda(0)\) are defined by (3.2).
Then the problem (1.1) has at least one solution on \([0,T]\).
Proof
Let the operator \(\mathcal{Q}\) be defined by (3.1). We first show that \(\mathcal{Q}\) maps bounded sets (balls) into bounded sets in \(C([0,T], \mathbb{R})\). For a constant \(R>0\), we set the ball \(B_{R} = \{x \in C([0,T], \mathbb{R}): \|x\| \le R \}\) to be a bounded ball in \(C([0,T], \mathbb{R})\). Then for \(t\in [0,T]\) we have
and consequently,
Next we will show in the second step that \(\mathcal{Q}\) maps bounded sets into equicontinuous sets of \(C([0,T], \mathbb{R})\) . Let \(t_{1}, t_{2} \in[0,T]\) with \(t_{1}< t_{2}\) and \(x \in B_{R}\). Then we have
We see that the right-hand side of the above inequality tends to zero independently of \(x\in B_{R}\) as \(t_{2}-t_{1}\rightarrow0\). Therefore, by the conclusion of the Arzelá-Ascoli theorem [34], the operator \(\mathcal{Q}: C([0,T], \mathbb{R}) \to C([0,T], \mathbb{R})\) is completely continuous.
Let x be a solution. Then, for \(t\in[0,T]\), and using a similar method to the computation of the first step, we have
which leads to
In view of (H3), there exists a positive constant M such that \(\| x\|\ne M\). Let us set
Then the operator \(\mathcal{Q}:\overline{U}\rightarrow C([0, T], \mathbb {R})\) is continuous and completely continuous. From the choice of U, there is no \(x\in\partial U\) such that \(x=\mu\mathcal{Q}x\) for some \(\mu\in(0,1)\). Consequently, by the nonlinear alternative of Leray-Schauder type, we deduce that \(\mathcal{Q}\) has a fixed point \(x\in\overline{U}\), which is a solution of the problem (1.1). This completes the proof. □
3.3 Existence result via Krasnoselskii’s fixed point theorem
The next result is based on the following fixed point theorem.
Lemma 3.1
(Krasnoselskii’s fixed point theorem) [35]
Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let A, B be the operators such that (a) \(Ax+By \in M\) whenever \(x, y \in M\); (b) A is compact and continuous; (c) B is a contraction mapping. Then there exists \(z \in M\) such that \(z=Az+Bz\).
Theorem 3.4
Suppose that:
- (H4):
-
\(|f(t,u)|\le\psi(t)\), \(\forall(t,u) \in[0,T] \times{\mathbb {R}}\), and \(\psi\in C([0,T], {\mathbb {R}}^{+})\).
If
then the problem (1.1) has at least one solution on \([0,T]\).
Proof
To prove our result, we set \(\sup_{t\in[0, T]}|\psi(t)|=\|\psi\|\) and choose
(where \(\Lambda(p_{1})\) and \(\Lambda(0)\) are defined by (3.2)). Let \(B_{R}=\{x\in\mathcal{C}([0, T], \mathbb {R}):\|x\|\leq R\}\). We define the two operators \(\mathcal{Q}_{1}\) and \(\mathcal{Q}_{2}\) on \(B_{R}\) by
For any \(x,y\in B_{R}\), we have
which implies that \(\|\mathcal{Q}_{1}x+\mathcal{Q}_{2}y\|\leq R\). This shows that \(\mathcal{Q}_{1}x+\mathcal{Q}_{2}y\in B_{R}\).
Using (3.4) for \(x,y \in\mathcal{C}\) and for each \(t \in[0, T]\), we have
which implies that \(\mathcal{Q}_{2}\) is a contraction mapping. The continuity of f implies that the operator \(\mathcal{Q}_{1}\) is continuous. Also, \(\mathcal{Q}_{1}\) is uniformly bounded on \(B_{R}\) as
Next we will prove the compactness of the operator \(\mathcal{Q}_{1}\).
Define \(\sup_{(t,x) \in(0,T) \times B_{R}}|f(t,x)|=\overline{f}< \infty\). Consequently we have
which is independent of x and tends to zero as \(t_{2}-t_{1}\to0\). Thus, \(\mathcal{Q}_{1}\) is equicontinuous. So \(\mathcal{Q}_{1}\) is relatively compact on \(B_{R}\). Hence, by the Arzelá-Ascoli theorem, \(\mathcal{Q}_{1}\) is compact on \(B_{R}\). Thus all the assumptions of Lemma 3.1 are satisfied. So the conclusion of Lemma 3.1 implies that the problem (1.1) has at least one solution on \([0,T]\). □
3.4 Existence result via Leray-Schauder degree
Theorem 3.5
Assume that:
- (H5):
-
There exist constants \(0\leq L < [1-|\lambda |\Lambda(0) ][\Lambda(p_{1})]^{-1}\) and \(M>0\) such that
$$\bigl|f(t,x)\bigr|\leq L |x|+M \quad \textit{for all } (t,x) \in[0,T] \times\mathbb{R}, $$where \(\Lambda(p_{1})\) and \(\Lambda(0)\) are given by (3.2).
Then the problem (1.1) has at least one solution on \([0,T]\).
Proof
We are considering the fixed point problem
where operator \(\mathcal{Q}:\mathcal{C}\rightarrow\mathcal{C}\) is defined by (3.1).
To prove our result, it is sufficient to show that \(\mathcal{Q}:\overline{B}_{R}\rightarrow\mathcal{C}\) satisfies
where \(B_{R}=\{x\in\mathcal{C}:\sup_{t\in[0,T]}|x(t)|< R, R>0\}\). We define a mapping
As previously proved in Theorem 3.3, we see that the operator \(\mathcal{Q}\) is continuous, uniformly bounded, and equicontinuous. Then, by applying the Arzelá-Ascoli Theorem, a continuous mapping \(h_{\kappa}\) defined by \(h_{\kappa}(x)=x-H(\kappa,x) =x-\kappa\mathcal{Q}x\) is completely continuous. If (3.7) is true, then the following Leray-Schauder degrees are well defined and by the homotopy invariance of topological degree [36], it follows that
where I denotes the identity operator. By the nonzero property of the Leray-Schauder degree, \(h_{1}(x)=x-\mathcal{Q}x=0\) for at least one \(x\in B_{R}\). In order to prove (3.7), we assume that \(x=\kappa \mathcal{Q}x\) for some \(\kappa\in[0,1]\). Then
By direct computation for \(\|x\|=\sup_{t\in[0,T]} |x(t)|\), we have
If \(R=\frac{M\Lambda(p_{1})}{1-L\Lambda(p_{1})-|\lambda |\Lambda(0)}+1\), then inequality (3.7) holds. This completes the proof. □
4 Examples
In this section, we present some examples to illustrate our results.
Example 4.1
Consider the following fractional Langevin equation subject to the nonlocal Katugampola fractional integral conditions:
Here \(p_{1}=1/3\), \(p_{2}=3/4\), \(\lambda=1/7\), \(\eta=3/4\), \(n=3\), \(\alpha _{1}=3/4\), \(\alpha_{2}=2/3\), \(\alpha_{3}=1/2\), \(\rho_{1}=2/3\), \(\rho_{2}=3/4\), \(\rho_{3}=4/7\), \(q_{1}=3/4\), \(q_{2}=1/2\), \(q_{3}=1/3\), \(\xi_{1}=1/2\), \(\xi _{2}=1/2\), \(\xi_{3}=3/4\), and \(f(t,x)=((3\cos^{2}\pi t)/((5-2t)^{2}))((3|x|)/(|x|+4))\). Since \(|f(t,x)-f(t,y)| \leq (1/4)|x-y|\), (H1) is satisfied with \(L=1/4\). We can show that
and
Thus \(L\Lambda(p_{1})+|\lambda|\Lambda(0)\approx 0.9462474238<1\). Hence, by Theorem 3.1, the boundary value problem (4.1) has a unique solution on \([0,1]\).
Example 4.2
Consider the following fractional Langevin equation subject to the nonlocal Katugampola fractional integral conditions:
Here \(p_{1}=2/3\), \(p_{2}=4/5\), \(\lambda=2/7\), \(\eta=2/3\), \(n=2\), \(\alpha _{1}=1/7\), \(\alpha_{2}=1/5\), \(\rho_{1}=1/3\), \(\rho_{2}=2/3\), \(q_{1}=1/4\), \(q_{2}=2/3\), \(\xi_{1}=1/4\), \(\xi_{2}=3/4\), and \(f(t,x)=((x \sin\pi t)/((3\pi +2 x^{2}\cos\pi t)^{2}))+((4\cos\pi t)/(3\pi^{2}+3 t^{2}))\). Then we get
and
Clearly,
Choosing \(\beta(t) = (4)/(9\pi^{2})\) and \(\Upsilon(|x|) = |x| + 3\), we can show that
which implies that \(M>1.632586649\). Hence, by Theorem 3.3, the boundary value problem (4.2) has at least one solution on \([0,1]\).
Example 4.3
Consider the following fractional Langevin equation subject to the nonlocal Katugampola fractional integral conditions:
Here \(p_{1}=4/5\), \(p_{2}=1/2\), \(\lambda=1/5\), \(\eta=1/2\), \(n=3\), \(\alpha _{1}=4/9\), \(\alpha_{2}=4/7\), \(\alpha_{3}=4/9\), \(\rho_{1}=4/5\), \(\rho_{2}=3/5\), \(\rho_{3}=2/3\), \(q_{1}=1/4\), \(q_{2}=2/3\), \(q_{3}=1/4\), \(\xi_{1}=5/9\), \(\xi _{2}=2/3\), \(\xi_{3}=7/9\), and \(f(t,x)=((t\sin t)/(t+2))((\arctan x)/(2|x|+3))\). Since \(|f(t,x)| \leq(t\sin t)/(2t+4)\) and we find that
Thus \(|\lambda|\Lambda(0)\approx 0.9830096921<1\). Hence, by Theorem 3.4, the boundary value problem (4.5) has at least one solution on \([0,1]\).
References
Machado, JA: And I say to myself: ‘What a fractional world!’. Fract. Calc. Appl. Anal. 14(4), 635-654 (2011)
Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)
Agarwal, RP, Zhou, Y, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095-1100 (2010)
Baleanu, D, Mustafa, OG, Agarwal, RP: On \(L^{p}\)-solutions for a class of sequential fractional differential equations. Appl. Math. Comput. 218, 2074-2081 (2011)
Ahmad, B, Nieto, JJ: Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011, Article ID 36 (2011)
Ahmad, B, Ntouyas, SK, Alsaedi, A: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, Article ID 107384 (2011)
O’Regan, D, Stanek, S: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71, 641-652 (2013)
Ahmad, B, Ntouyas, SK, Alsaedi, A: A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013, Article ID 320415 (2013)
Ahmad, B, Nieto, JJ: Boundary value problems for a class of sequential integrodifferential equations of fractional order. J. Funct. Spaces Appl. 2013, Article ID 149659 (2013)
Zhang, L, Ahmad, B, Wang, G, Agarwal, RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51-56 (2013)
Liu, X, Jia, M, Ge, W: Multiple solutions of a p-Laplacian model involving a fractional derivative. Adv. Differ. Equ. 2013, Article ID 126 (2013)
Ntouyas, SK, Etemad, S: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235-243 (2015)
Ntouyas, SK, Etemad, S, Tariboon, J: Existence of solutions for fractional differential inclusions with integral boundary conditions. Bound. Value Probl. 2015, Article ID 92 (2015)
Ntouyas, SK, Etemad, S, Tariboon, J: Existence results for multi-term fractional differential inclusions. Adv. Differ. Equ. 2015, Article ID 140 (2015)
Katugampola, UN: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860-865 (2015)
Katugampola, UN: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1-15 (2014)
Katugampola, UN: Mellin transforms of the generalized fractional integrals and derivatives. Appl. Math. Comput. 257, 566-580 (2015)
Malinowska, AB, Odzijewicz, T, Torres, DFM: Advanced Methods in the Fractional Calculus of Variations. Springer, Berlin (2015)
Katugampola, UN: Existence and uniqueness results for a class of generalized fractional differential equations. Preprint. arXiv:1411.5229
Butkovskii, AG, Postnov, SS, Postnova, EA: Fractional integro-differential calculus and its control-theoretical applications in mathematical fundamentals and the problem of interpretation. Autom. Remote Control 74, 543-574 (2013)
Gaboury, S, Tremblay, R, Fugere, BJ: Some relations involving a generalized fractional derivative operator. J. Inequal. Appl. 2013, Article ID 167 (2013)
Noor, MA, Awan, MU, Noor, KI: On some inequalities for relative semi-convex functions. J. Inequal. Appl. 2013, Article ID 332 (2013)
Pooseh, S, Almeida, R, Torres, D: Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative. Numer. Funct. Anal. Optim. 33, 301-319 (2012)
Coffey, WT, Kalmykov, YP, Waldron, JT: The Langevin Equation, 2nd edn. World Scientific, Singapore (2004)
Lim, SC, Li, M, Teo, LP: Langevin equation with two fractional orders. Phys. Lett. A 372, 6309-6320 (2008)
Lim, SC, Teo, LP: The fractional oscillator process with two indices. J. Phys. A, Math. Theor. 42, 065208 (2009)
Alsaedi, A, Ntouyas, SK, Ahmad, B: Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multi-term fractional integral boundary conditions. Abstr. Appl. Anal. 2013, Article ID 869837 (2013)
Tariboon, J, Ntouyas, SK: Nonlinear second-order impulsive q-difference Langevin equation with boundary conditions. Bound. Value Probl. 2014, Article ID 85 (2014)
Tariboon, J, Ntouyas, SK, Thaiprayoon, C: Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions. Adv. Math. Phys. 2014, Article ID 372749 (2014)
Yukunthorn, W, Ntouyas, SK, Tariboon, J: Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions. Adv. Differ. Equ. 2014, Article ID 315 (2014)
Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003)
Hunter, JK, Nachtergaele, B: Applied Analysis. World Scientific, Hackensack (2001)
Krasnoselskii, MA: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123-127 (1955)
Zeidler, E: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Springer, New York (1989)
Acknowledgements
We thank the reviewers for their constructive comments that led to the improvement of the original manuscript. This research is partially supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally in this article. They read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Thaiprayoon, C., Ntouyas, S.K. & Tariboon, J. On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation. Adv Differ Equ 2015, 374 (2015). https://doi.org/10.1186/s13662-015-0712-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-015-0712-3
MSC
- 26A33
- 34A08
Keywords
- fractional differential equations
- generalized fractional integral
- Katugampola fractional integral
- nonlocal boundary conditions
- fixed point theorems