Klimek, M, Agrawal, OP: Fractional Sturm-Liouville problem. Comput. Math. Appl. **66**, 795-812 (2013)

Article
MathSciNet
Google Scholar

Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

MATH
Google Scholar

Podlubny, I: Fractional Differential Equations. Academic, New York (1999)

MATH
Google Scholar

Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

MATH
Google Scholar

Kilbas, A, Srivastava, HM, Trujillo, JJ: Theory and Application of Fractional Differential Equations, vol. 204, pp. 45-50. Elsevier, Amsterdam (2006)

Google Scholar

Caputo, M, Fabrizio, M: Damage and fatigue described by a fractional derivative model. J. Comput. Phys. **293**, 401-408 (2014)

MathSciNet
Google Scholar

Mainardi, F: Fractional Calculus and Waves in Linear Viscoelasticity, an Introduction to Mathematical Models, pp. 2-192. World Scientific, Singapore (2010)

Book
MATH
Google Scholar

Baleanu, D, Octavian, GM, Agarwal, RP: An existence result for a super linear fractional differential equation. Appl. Math. Lett. **23**(9), 1129-1132 (2010)

Article
MathSciNet
MATH
Google Scholar

Shaed, MEL: A fractional calculus model of semilunar heart valve vibrations. International Design Engineering Technical **5**, 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C, Chicago, Illinois, USA, September 2-6, 711-714 (2003)

Google Scholar

Baleanu, D, Muslih, SI, Rabei, E: On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. **53**(1-2), 67-74 (2008)

Article
MathSciNet
MATH
Google Scholar

Baleanu, D, Muslih, SI, Tas, K: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. **47**(10), Article ID 103503 (2006)

Article
MathSciNet
MATH
Google Scholar

Baleanu, D, Avkar, T: Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B **119**(1), 73-79 (2005)

Google Scholar

Zavada, P: Relativistic wave equations with fractional derivatives and pseudo differential operators. J. Appl. Math. **2**(4), 164-196 (2002)

Article
MathSciNet
MATH
Google Scholar

Fabrizio, M: Fractional rheological models for thermomechanical systems dissipation and free energies. Fract. Calc. Appl. Anal. **17**(1), 206-222 (2014)

Article
MathSciNet
MATH
Google Scholar

Kaiser, HC, Neidhardt, H, Rehberg, J: On 1-dimensional dissipative Schrödinger-type operators, their dilations and eigenfunction expansions. Math. Nachr. **252**, 51-69 (2003)

Article
MathSciNet
MATH
Google Scholar

Pavlov, BS: Dilation theory and spectral analysis of nonselfadjoint differential operators. In: Math. Programming and Related Questions (Proc. Seventh Winter School, Drogobych, 1974): Theory of Operators in Linear Spaces, pp. 3-69. Tsentral. Ekonom.-Mat. Inst. Akad. Nauk SSSR, Moscow (1976); English transl in Amer. Math. Soc. Transl. (2), vol. 115 (1980)

Google Scholar

Pavlov, BS: Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model. Itogi Nauki Tekh. Ser. Sovrem. Probl. Math. Fundam. Napravleniya **65**, 95-163 (1991) English transl. in Partial Differential Equations, 8, Encyc. Math. Sci., vol. 65, 1996, pp. 87-163

MATH
Google Scholar

Gohberg, IC, Krein, MG: Introduction to the Theory of Linear Nonselfadjoint Operators. Am. Math. Soc., Providence (1969)

MATH
Google Scholar

Allahverdiev, BP: On dilation theory and spectral analysis of dissipative Schrödinger operators in Weyl’s limit-circle case. Math. USSR, Izv. **36**, 247-262 (1991)

Article
MathSciNet
Google Scholar

Allahverdiev, BP, Canoglu, A: Spectral analysis of dissipative Schrödinger operators. Proc. R. Soc. Edinb. **127A**, 1113-1121 (1997)

Article
MathSciNet
MATH
Google Scholar

Allahverdiev, BP: A nonselfadjoint singular Sturm-Liouville problem with a spectral parameter in the boundary condition. Math. Nachr. **278**(7-8), 743-755 (2005)

Article
MathSciNet
MATH
Google Scholar

Allahverdiev, BP: A dissipative singular Sturm-Liouville problem with a spectral parameter in the boundary condition. J. Math. Anal. Appl. **316**, 510-524 (2006)

Article
MathSciNet
MATH
Google Scholar

Allahverdiev, BP, Bairamov, E, Ugurlu, E: Eigenparameter dependent Sturm-Liouville problems in boundary conditions with transmission conditions. J. Math. Anal. Appl. **401**, 388-396 (2013)

Article
MathSciNet
MATH
Google Scholar

Uğurlu, E, Bairamov, E: Spectral analysis of eigenparameter dependent boundary value transmission problems. J. Math. Anal. Appl. **413**, 482-494 (2014)

Article
MathSciNet
MATH
Google Scholar

Bairamov, E, Ugurlu, E: Krein’s theorems for a dissipative boundary value transmission problem. Complex Anal. Oper. Theory **7**, 831-842 (2013)

Article
MathSciNet
MATH
Google Scholar

Bairamov, E, Ugurlu, E: On the characteristic values of the real component of a dissipative boundary value transmission problem. Appl. Math. Comput. **218**, 9657-9663 (2012)

MathSciNet
MATH
Google Scholar

Uğurlu, E, Bairamov, E: Krein’s theorem for the dissipative operators with finite impulsive effects. Numer. Funct. Anal. Optim. **36**(2), 256-270 (2015)

Article
MathSciNet
MATH
Google Scholar

Guseinov, GS, Tuncay, H: The determinants of perturbation connected with a dissipative Sturm-Liouville operators. J. Math. Anal. Appl. **194**, 39-49 (1995)

Article
MathSciNet
MATH
Google Scholar

Bairamov, E, Krall, AM: Dissipative operators generated by the Sturm-Liouville expression in the Weyl limit circle case. J. Math. Anal. Appl. **254**, 178-190 (2001)

Article
MathSciNet
MATH
Google Scholar