Yue, Q: Dynamics of a modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge. SpringerPlus 5, Article ID 461 (2016)
Article
Google Scholar
Wu, Y, Chen, F, Chen, W, Lin, Y: Dynamic behaviors of a nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response. Discrete Dyn. Nat. Soc. 2012, Article ID 508962 (2012)
MathSciNet
MATH
Google Scholar
Chen, F, Wu, Y, Ma, Z: Stability property for the predator-free equilibrium point of predator-prey systems with a class of functional response and prey refuges. Discrete Dyn. Nat. Soc. 2012, Article ID 148942 (2012)
MathSciNet
MATH
Google Scholar
Chen, W, Gong, X, Zhao, L, Zhang, H: Dynamics of a non-autonomous discrete Leslie-Gower predator-prey system with prey refuge. J. Fuzhou Univ. 43(1), 6-10 (2015)
MathSciNet
Google Scholar
Wu, Y, Chen, WL, Zhang, HY: On permanence and global attractivity of a nonautonomous modified Leslie-Gower predator-prey system incorporating a prey refuge. J. Minjiang Univ. 33(5), 13-16 (2012)
Google Scholar
Ma, ZZ, Chen, FD, Wu, CQ, Chen, WL: Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Appl. Math. Comput. 219(15), 7945-7953 (2013)
Article
MathSciNet
MATH
Google Scholar
Chen, FD, Ma, ZZ, Zhang, HY: Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges. Nonlinear Anal., Real World Appl. 13(6), 2790-2793 (2012)
Article
MathSciNet
MATH
Google Scholar
Yang, R, Zhang, C: The effect of prey refuge and time delay on a diffusive predator-prey system with hyperbolic mortality. Complexity 50(3), 105-113 (2016)
Google Scholar
Yang, R, Zhang, C: Dynamics in a diffusive predator-prey system with a constant prey refuge and delay. Nonlinear Anal., Real World Appl. 31, 1-22 (2016)
Article
MathSciNet
MATH
Google Scholar
Wu, Y, Chen, F, Ma, Z: Extinction of predator species in a non-autonomous predator-prey system incorporating prey refuge. Appl. Math.-J. Chinese Univ. Ser. A 27(3), 359-365 (2012)
MathSciNet
MATH
Google Scholar
Wu, Y, Chen, F, Ma, Z, Lin, Y: Permanence and extinction of a non-autonomous predator-prey system incorporating prey refuge and Rosenzweig functional response. J. Biomath. 29(4), 727-731 (2014)
MathSciNet
Google Scholar
Kar, TK: Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. J. Comput. Appl. Math. 185, 19-33 (2006)
Article
MathSciNet
MATH
Google Scholar
Wang, Y, Wang, JZ: Influence of prey refuge on predator-prey dynamics. Nonlinear Dyn. 67, 191-201 (2012)
Article
MathSciNet
Google Scholar
Sih, A: Prey refuges and predator-prey stability. Theor. Popul. Biol. 31(1), 1-12 (1987)
Article
MathSciNet
Google Scholar
González-Olivares, E, Ramos-Jiliberto, R: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135-146 (2003)
Article
Google Scholar
Kar, TK: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681-691 (2005)
Article
MathSciNet
MATH
Google Scholar
Chen, FD, Chen, LJ, Xie, XD: On a Leslie-Gower predator-prey model incorporating a prey refuge. Nonlinear Anal., Real World Appl. 10(5), 2905-2908 (2009)
Article
MathSciNet
MATH
Google Scholar
Sih, A, Petranka, JW, Kats, LB: The dynamics of prey refuge use: a model and tests with sunfish and salamander larvae. Am. Nat. 132(4), 464-483 (1988)
Article
Google Scholar
McNair, JN: The effects of refuges on predator-prey interactions: a reconsideration. Theor. Popul. Biol. 29(1), 38-63 (1986)
Article
MathSciNet
MATH
Google Scholar
McNair, JN: Stability effects of prey refuge with entry-exit dynamics. J. Theor. Biol. 125, 449-464 (1987)
Article
MathSciNet
Google Scholar
Chen, LJ, Chen, FD, Chen, LJ: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11(1), 246-252 (2010)
Article
MathSciNet
MATH
Google Scholar
Chen, LJ, Chen, FD: Global analysis of a harvested predator-prey model incorporating a constant prey refuge. Int. J. Biomath. 3(2), 205-223 (2010)
Article
MathSciNet
Google Scholar
Ji, LL, Wu, CQ: Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11(4), 2285-2295 (2010)
Article
MathSciNet
MATH
Google Scholar
Kar, TK, Misra, S: Influence of prey reserve in a prey-predator fishery. Nonlinear Anal. 65(9), 1725-1735 (2006)
Article
MathSciNet
MATH
Google Scholar
Tao, YD, Wang, X, Song, XY: Effect of prey refuge on a harvested predator-prey model with generalized functional response. Commun. Nonlinear Sci. Numer. Simul. 16(2), 1052-1059 (2011)
Article
MathSciNet
MATH
Google Scholar
Huang, YJ, Chen, FD, Li, Z: Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182, 672-683 (2006)
Article
MathSciNet
MATH
Google Scholar
Ko, W, Ryu, K: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534-550 (2006)
Article
MathSciNet
MATH
Google Scholar
Shuai, ZS, Miao, CM, Zhang, WP, et al.: Model of a three interacting prey-predator with refuges. J. Biomath. 19(1), 65-71 (2004) (in Chinese)
MathSciNet
Google Scholar
Zhu, J, Liu, HM: Permanence of the two interacting prey-predator with refuges. J. Northwest Univ. National. (Nat. Sci.) 27(62), 1-3 (2006) (in Chinese)
Google Scholar
Xu, GM, Chen, XH: Persistence and periodic solution for three interacting predator-prey system with refuges. Yinshan Academic J. 23(1), 14-17 (2009) (in Chinese)
Google Scholar
Xu, GM, Jia, JW: Stability analysis of a predator-prey system with refuges. J. Shanxi Normal Univ. (Nat. Sci. Ed.) 21(4), 4-7 (2007) (in Chinese)
MathSciNet
Google Scholar
Yu, SP, Xiong, WT, Qi, H: A ratio-dependent one predator-two competing prey model with delys and refuges. Math. Appl. 23(1), 198-203 (2010)
MathSciNet
MATH
Google Scholar
Zhang, YB, Wang, WX, Duan, YH: Analysis of prey-predator with Holling III functional response and prey refuge. Math. Pract. Theory 40(24), 149-154 (2010) (in Chinese)
Google Scholar
Zhuang, KJ, Wen, ZH: Dynamical behaviors in a discrete predator-prey model with a prey refuge. Int. J. Comput. Math. Sci. 5(4), 194-197 (2011)
MathSciNet
Google Scholar
Krivan, V: On the Gause predator-prey model with a refuge: a fresh look at the history. J. Theor. Biol. 274(1), 67-73 (2011)
Article
MathSciNet
MATH
Google Scholar
Ma, ZH, Li, WL, Zhao, Y, et al.: Effects of prey refuges on a predator-prey model with a class of functional response: the role of refuges. Math. Biosci. 218, 73-79 (2009)
Article
MathSciNet
MATH
Google Scholar
Ma, ZH, Li, WD, Wang, SF: The effect of prey refuge in a simple predator-prey model. Ecol. Model. 222(18), 3453-3454 (2011)
Article
Google Scholar
Cressman, R, Garay, J: A predator-prey refuge system: evolutionary stability in ecological systems. Theor. Popul. Biol. 76(4), 248-257 (2009)
Article
Google Scholar
Yu, S: Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response. Adv. Differ. Equ. 2014, Article ID 84 (2014)
Article
MathSciNet
Google Scholar
Yu, S: Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Discrete Dyn. Nat. Soc. 2012, Article ID 208167 (2012)
MathSciNet
MATH
Google Scholar
Chen, J, Yu, S: Permanence for a discrete ratio-dependent predator-prey system with Holling type III functional response and feedback controls. Discrete Dyn. Nat. Soc. 2013, Article ID 326848 (2013)
MathSciNet
Google Scholar
Li, Z, Han, M, Chen, F: Global stability of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes. Int. J. Biomath. 5, Article ID 1250057 (2012)
Article
MathSciNet
MATH
Google Scholar
Zhang, N, Chen, F, Su, Q, et al.: Dynamic behaviors of a harvesting Leslie-Gower predator-prey model. Discrete Dyn. Nat. Soc. 2011, Article ID 473949 (2011)
MathSciNet
MATH
Google Scholar
Chen, LJ, Chen, FD: Global stability of a Leslie-Gower predator-prey model with feedback controls. Appl. Math. Lett. 22(9), 1330-1334 (2009)
Article
MathSciNet
MATH
Google Scholar
Wu, R, Lin, L: Permanence and global attractivity of the discrete predator-prey system with Hassell-Varley-Holling III type functional response. Discrete Dyn. Nat. Soc. 2009, Article ID 393729 (2009)
MathSciNet
MATH
Google Scholar
Chen, FD, Li, Z, Huang, YJ: Note on the permanence of a competitive system with infinite delay and feedback controls. Nonlinear Anal., Real World Appl. 8, 680-687 (2007)
Article
MathSciNet
MATH
Google Scholar
Barbălat, I: Systèmes d’équations differential d’oscillations nonlinéaires. Rev. Roum. Math. Pures Appl. 4(2), 267-270 (1959)
MATH
Google Scholar
Chen, FD, You, MS: Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey. Nonlinear Anal., Real World Appl. 9(2), 207-221 (2008)
Article
MathSciNet
MATH
Google Scholar
Chen, FD, Shi, JL: On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion. Appl. Math. Comput. 192(2), 358-369 (2007)
Article
MathSciNet
MATH
Google Scholar
Chen, FD, Huang, AM: On a nonautonomous predator-prey model with prey dispersal. Appl. Math. Comput. 184(2), 809-822 (2007)
Article
MathSciNet
MATH
Google Scholar