In this section, we define the Appell-type degenerate q-Changhee polynomials which are given by
$$ \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda }e^{xt} = \sum _{n=0}^{\infty}\widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) \frac{t^{n}}{n!}. $$
(2.1)
If \(x=0\), then \(\widetilde{\operatorname{Ch}}_{n,\lambda,q} = \widetilde {\operatorname{Ch}}_{n,\lambda,q}(0)\) are called the Appell-type degenerate q-Changhee numbers. From (2.1), we note that
$$ \widetilde{\operatorname{Ch}}_{n,\lambda,q}(x) = \sum _{m=0}^{n} {n \choose m} \widetilde { \operatorname{Ch}}_{m,\lambda,q }\, x^{n-m} . $$
(2.2)
By (2.2), we obtain
$$ \frac{d}{dx}\widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) = n \widetilde {\operatorname{Ch}}_{n-1,\lambda,q }(x)\quad (n \geq1). $$
(2.3)
From (2.3), we show that
$$\begin{aligned} \int_{0}^{1} \widetilde{\operatorname{Ch}}_{n,\lambda,q}(x) \,dx &= \frac{1}{n+1} \int_{0}^{1} \frac{d}{dx}\widetilde{ \operatorname{Ch}}_{n+1,\lambda,q} (x) \,dx \\ &= \frac{1}{n+1} \bigl( \widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(1) - \widetilde {\operatorname{Ch}}_{n+1,\lambda,q} \bigr). \end{aligned}$$
(2.4)
We observe that
$$\begin{aligned} \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy &= \sum_{m=0}^{n} {n \choose m} \widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) \int_{0}^{1} y^{n+m} \,dy \\ &= \sum_{m=0}^{n} {n \choose m} \frac{\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1}. \end{aligned}$$
(2.5)
On the other hand, we derive
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \sum_{m=0}^{n} {n \choose m} \widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x+1) (-1)^{m} \int_{0}^{1} y^{n} (1-y)^{m} \,dy \\& \quad =\sum_{m=0}^{n} {n \choose m} (-1)^{m} \widetilde{\operatorname{Ch}}_{n-m,\lambda ,q}(x+1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. \end{aligned}$$
(2.6)
Thus, by (2.5) and (2.6), we give the first result.
Theorem 1
For
\(n \in\mathbb{N}\cup\{0\} \), we have
$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} = \sum _{m=0}^{n} {n \choose m} (-1)^{m} \widetilde {\operatorname{Ch}}_{n-m,\lambda,q}(x+1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. $$
In particular, \(x=0\);
$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q} }{n+m+1} = \sum _{m=0}^{n} {n \choose m} (-1)^{m} \widetilde {\operatorname{Ch}}_{n-m,\lambda,q}(1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. $$
We also observe that
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{n}{n+1} \int _{0}^{1} y^{n+1} \widetilde{ \operatorname{Ch}}_{n-1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{\widetilde {\operatorname{Ch}}_{n-1,\lambda,q} (x+1)}{n+1} \frac{n}{n+2} \\& \qquad {} +(-1)^{2} \frac{n(n-1)}{(n+1)(n+2)} \int_{0}^{1} y^{n+2} \widetilde { \operatorname{Ch}}_{n-2,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{n \widetilde {\operatorname{Ch}}_{n-1,\lambda,q} (x+1)}{(n+1)(n+2)} +(-1)^{2} \frac{n(n-1)\widetilde {\operatorname{Ch}}_{n-2,\lambda,q}(x+1)}{(n+1)(n+2)(n+3)} \\& \qquad {} + (-1)^{3} \frac{n(n-1)(n-2)}{(n+1)(n+2)(n+3)} \int_{0}^{1} y^{n+3} \widetilde{ \operatorname{Ch}}_{n-3,\lambda,q}(x+y) \,dy. \end{aligned}$$
(2.7)
Continuing this process consecutively yields
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q} (x+y)\,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q}(x+1)}{n+1} + \sum_{m=2}^{n-1} \frac{n(n-1)\cdots(n-m+2)(-1)^{m-1}}{(n+1)(n+2)\cdots(n+m)} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1) \\& \qquad {} + (-1)^{n-1}\frac{n(n-1)(n-2)\cdots2}{(n+1)(n+2)\cdots(2n-1)} \int_{0}^{1} y^{2n-1} \widetilde{ \operatorname{Ch}}_{1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q}(x+1)}{n+1} + \sum_{m=2}^{n-1} \frac{n(n-1)\cdots(n-m+2)(-1)^{m-1}}{(n+1)(n+2)\cdots(n+m)} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1) \\& \qquad {} + (-1)^{n-1} \frac{n!}{(n+1)(n+2)\cdots(2n-1)2n} \biggl( \widetilde { \operatorname{Ch}}_{1,\lambda,q}(x+1) - \frac{1}{2n+1} \biggr) \\& \quad = \sum_{m=1}^{n+1} \frac{(n)_{m-1}}{\langle n+1\rangle_{m}}(-1)^{m-1} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1), \end{aligned}$$
(2.8)
where \((n)_{m-1}=n(n-1) \cdots(n-m+2)\) and \(< n+1>_{m}=(n+1)(n+2)\cdots(n+m)\).
Thus, by (2.5) and (2.8), we give the second result.
Theorem 2
For
\(n \in\mathbb{N}\)
with
\(n \geq3\), we have
$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} =\sum _{m=0}^{n} \frac{(n)_{m}}{\langle n+1\rangle _{m+1}}(-1)^{m}{ \operatorname{Ch}}_{n-m,\lambda,q}(x+1). $$
For \(n \in\mathbb{N}\), we have
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1}- \frac{n}{n+1} \int _{0}^{1} y^{n-1} \widetilde{ \operatorname{Ch}}_{n+1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} \int_{0}^{1} (1-y)^{m} y^{n-1} \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} B(n,m+1). \end{aligned}$$
(2.9)
Therefore, by (2.5) and (2.9), we obtain the third result.
Theorem 3
For
\(n \in\mathbb{N}\), we have
$$\begin{aligned}& \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} B(n,m+1), \end{aligned}$$
where
\(B(n,m+1)\)
is a beta function.
Now, we observe that, for \(n \in\mathbb{N}\cup\{0\}\), \(m \in\mathbb{N}\),
$$\begin{aligned}& \int_{0}^{1} \widetilde{\operatorname{Ch}}_{m,\lambda,q}(x) \widetilde{\operatorname{Ch}}_{n,\lambda ,q}(x) \,dx \\& \quad = \sum_{l=0}^{n} {n \choose l} \widetilde{\operatorname{Ch}}_{l,\lambda,q} \sum_{k=0}^{m} {m \choose k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) (-1)^{m-k} \int _{0}^{1} x^{n-l} (1-x)^{m-k} \,dx \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} (-1)^{m-k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{ \operatorname{Ch}}_{l,\lambda,q} B(n-l+1, m-k+1) \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} (-1)^{m-k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{ \operatorname{Ch}}_{l,\lambda,q} \frac{ \Gamma(n-l+1) \Gamma(m-k+1)}{\Gamma(n+m-l-k+2)} \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} \frac{{n \choose l} {m \choose k}}{{n+m-l-k \choose n-l}} (-1)^{m-k} \frac{\widetilde{\operatorname{Ch}}_{k,\lambda ,q}(1) \widetilde{\operatorname{Ch}}_{l,\lambda,q}}{n+m-l-k+1}. \end{aligned}$$
(2.10)
On the other hand,
$$ \int_{0}^{1} \widetilde{\operatorname{Ch}}_{m,\lambda,q}(x) \widetilde{\operatorname{Ch}}_{n,\lambda ,q}(x) \,dx = \sum _{l=0}^{n} \sum_{k=0}^{m} {n \choose l} {m \choose k} \frac {\widetilde{\operatorname{Ch}}_{m-k,\lambda,q}\widetilde{\operatorname{Ch}}_{n-l,\lambda,q}}{k+l+1}. $$
(2.11)
Thus, by (2.10) and (2.11), we give the fourth result.
Theorem 4
For
\(n \in\mathbb{N} \cup\{0\}\), \(m \in\mathbb{N}\), we have
$$\begin{aligned}& \sum_{l=0}^{n} \sum _{k=0}^{m} \frac{{n \choose l} {m \choose k}}{{n+m-l-k \choose n-l}} (-1)^{m-k} \frac{\widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{\operatorname{Ch}}_{l,\lambda,q}}{n+m-l-k+1} \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} \frac{\widetilde{\operatorname{Ch}}_{m-k,\lambda ,q}\widetilde{\operatorname{Ch}}_{n-l,\lambda,q}}{k+l+1}. \end{aligned}$$
By replacing t to \(\frac{1}{\lambda} ( e^{\lambda t}-1)\) in (2.1), we get
$$\begin{aligned} \frac{1+q}{q(1+t)+1}e^{\frac{x}{\lambda} ( e^{\lambda t}-1 )} &= \Biggl( \sum _{m=0}^{\infty}\operatorname{Ch}_{m,q} \frac{t^{m}}{m!} \Biggr) \Biggl( \sum_{l=0}^{\infty}\operatorname{Bel}_{l}\biggl(\frac{x}{\lambda}\biggr) \frac{ (\lambda t )^{l}}{l!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{m,q} \operatorname{Bel}_{n-m} \biggl(\frac{x}{\lambda}\biggr) \lambda^{n-m} \Biggr) \frac{t^{n}}{n!} \end{aligned}$$
(2.12)
(see [6]). On the other hand,
$$\begin{aligned}& \sum_{m=0}^{\infty}\widetilde{ \operatorname{Ch}}_{m,\lambda,q }(x) \frac{1}{m!}\frac {1}{\lambda^{m}} \bigl( e^{\lambda t}-1 \bigr)^{m} \\& \quad = \sum_{m=0}^{\infty}\widetilde{ \operatorname{Ch}}_{m, \lambda,q }(x)\frac{1}{\lambda ^{m}} \sum _{n=m}^{\infty}S_{2}(n,m)\lambda^{n} \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \widetilde{\operatorname{Ch}}_{m,\lambda, q }(x) S_{2}(n,m) \lambda^{n-m} \Biggr) \frac{t^{n}}{n!}, \end{aligned}$$
(2.13)
where \(S_{2}(n,m)\) is for the Stirling numbers of the second kind, given by
$$ \bigl( e^{t} -1 \bigr)^{m}=m! \sum _{n=m}^{\infty}S_{2}(n,m) \frac{t^{n}}{n!}. $$
By (2.12) and (2.13), we give the fifth result.
Theorem 5
For
\(n \in\mathbb{N} \cup\{0\}\), we have
$$ \sum_{m=0}^{n} \widetilde{ \operatorname{Ch}}_{m,\lambda,q }(x) S_{2}(n,m) \lambda^{-m} = \sum_{m=0}^{n} {n \choose m} \operatorname{Ch}_{m,q} \operatorname{Bel}_{l} \biggl( \frac{x}{\lambda}\biggr)\lambda^{l}. $$