In this section, we study the existence and attractivity of global solutions for equation (1.1), equation (1.2), and equation (1.3), respectively.
The case of fractional integral equations
Motivated by the work in [19], for any \(\delta>0\), we define the space
$$C^{0}_{\delta}(X)=\biggl\{ x\in C(\mathbf{R}_{+}, X): \lim _{t\rightarrow\infty }\frac{\|x(t)\|}{e^{\delta t}}=0\biggr\} $$
endowed with the norm \(\|x\|_{\delta}=\sup_{t\geq0}e^{-\delta t}\| x(t)\|\).
We recall the following results of compactness of this spaces.
Lemma 3.1
([19])
A set
\(B \subset C^{0}_{\delta}(X)\)
is relatively compact in
\(C^{0}_{\delta}(X)\)
if and only if:
-
(a)
B
is equicontinuous;
-
(b)
\(\lim_{t\rightarrow\infty}e^{-\delta t}\|x(t)\|=0\), uniformly for
\(x \in B\);
-
(c)
the set
\(B(t) = \{x(t) : x \in B\}\)
is relatively compact in
X, for every
\(t \geq0\).
Let \(r > 0\), and in the following let \(V(r, g)\) denote the set \(V(r, g)=\{ t \rightarrow g(t, x(\beta(t))): x\in B_{r}(0, C(\mathbf{R}_{+}, X))\}\).
We study the fractional integral equation (1.1) with the following conditions:
- (H1):
-
\(\alpha, \beta, \gamma, \eta:\mathbf{R}_{+}\rightarrow\mathbf {R}_{+}\) is continuous, η is nondecreasing on \(\mathbf{R}_{+}\), \(\alpha(t)\rightarrow\infty\), \(\eta(t)\rightarrow\infty\), as \(t\rightarrow\infty\), and \(\alpha(t), \eta(t), \gamma(t)\leq t\).
- (H2):
-
The function \(f(t,x(\alpha(t)))\) is continuous with respect to t on \([0, +\infty)\) and there exists a continuous function \(L_{f}(t)\) such that
$$\bigl\Vert f(t, \psi_{1})-f(t, \psi_{2})\bigr\Vert \leq L_{f}(t)\Vert \psi_{1}-\psi_{2}\Vert , \quad \text{for } \psi_{1}, \psi_{2} \in C(\mathbf{R}_{+}, X), $$
where \(L^{*}_{f}=\sup_{t\geq0}L_{f}(t)<1\), \(\lim_{t\rightarrow\infty }L_{f}(t)=0\), and \(\sup_{t\geq0}\|f(t, 0)\|<\infty\).
- (H3):
-
The function \(g(t,x(\beta(t)))\) is continuous with respect to t on \([0, +\infty)\) and for every \(a>0\), \(g(t, \cdot):X\rightarrow X\) is continuous for \(t\in[0, a]\). The set \(V(r, g)\) is an equicontinuous subset of \(C(\mathbf{R}_{+}, X)\) and there exists a function \(\zeta:\mathbf{R}_{+}\rightarrow\mathbf{R}_{+}\) such that \(\|g(t,x)\|\leq\zeta(t)\) and \(\sup_{t\in[0,a]}\zeta(t)=\tilde {\zeta}_{a}<\infty\), for every \(a>0\).
- (H4):
-
The operator \(K(\cdot, s)\) is continuous in the uniform operator topology for all \(s \in\mathbf{R}_{+}\) and \(\overline{k}=\|K(t, s)\| _{\mathcal{L}(X)}<\infty\).
- (H5):
-
For any \(a>0\), the function \(h:[0,a]\times X\rightarrow X\) satisfies the following conditions:
-
(a)
the function \(h(t,\cdot):X\rightarrow X\) is continuous a.e. \(t\in[0,a]\);
-
(b)
the function \(h(\cdot,x):[0,a]\rightarrow X\) is strongly measurable for every \(x\in X\);
-
(c)
there exists \(\nu(\cdot)\in L^{1}_{\mathrm{loc}}(\mathbf{R}_{+})\) such that \(\|h(t,x)\|\leq\nu(t)\|x\|\), the function \(s\rightarrow\frac{\nu (s)}{(t-s)^{1-q}}\) belongs to \(L^{1}([0,t],\mathbf{R}_{+})\) and
$$\lim_{t\rightarrow\infty}\zeta(t) \int_{0}^{\eta(t)}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds=0; $$
-
(d)
for every \(t>0\) and \(r>0\), the set \(\{K(t,s)h(s, e^{\delta s}z):s\in[0, t), z\in B_{r}(0, C^{0}_{\delta}(X))\}\) is relatively compact in X.
In the following, we choose a constant \(\delta>0\) such that
$$ L^{*}_{f}+\sup_{t\geq0}\frac{\zeta(t)\overline{k}}{\Gamma (q)} \int_{0}^{\eta(t)}\frac{\nu(s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds< 1. $$
(3.1)
Theorem 3.2
Let the assumptions (H1)-(H5) be satisfied, then there exists a solution for equation (1.1) on the space
\(C^{0}_{\delta}(X)\).
Proof
For \(x\in C^{0}_{\delta}(X)\), we consider the operator \(\mathcal{M}\) of the form
$$ (\mathcal{M}x) (t)=(\mathcal{F}x) (t)+(\mathcal{G}x) (t), $$
where
$$ (\mathcal{F}x) (t)=f\bigl(t,x\bigl(\alpha(t)\bigr)\bigr),\qquad (\mathcal{G}x) (t)=\frac{g(t,x(\beta(t)))}{\Gamma(q)} \int_{0}^{\eta (t)}\frac{K(t,s)h(s,x(\gamma(s)))}{(t-s)^{1-q}}\,ds. $$
From our assumptions, it is easy to see that \(\mathcal{G}x\in C(\mathbf {R}_{+}, X)\) and
$$\begin{aligned} e^{-\delta t}\bigl\Vert (\mathcal{G}x) (t)\bigr\Vert \leq& \frac{\overline{k}\zeta (t)e^{-\delta t}}{\Gamma(q)} \int_{0}^{\eta(t)}\frac{\nu(s)e^{\delta\gamma (s)} e^{-\delta\gamma(s)}\Vert x(\gamma(s))\Vert }{(t-s)^{1-q}}\,ds \\ \leq&\frac{\overline{k}\zeta(t)}{\Gamma(q)} \int_{0}^{\eta(t)}\frac{\nu (s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds\cdot \Vert x \Vert _{\delta}\rightarrow0,\quad t\rightarrow\infty, \end{aligned}$$
and we conclude that \(\mathcal{G}x\in C^{0}_{\delta}(X)\) and \(\mathcal {G}\) is a function from \(C^{0}_{\delta}(X)\) to \(C^{0}_{\delta}(X)\).
Applying condition (H2), we get
$$ \frac{\Vert (\mathcal{F}x)(t)\Vert }{e^{\delta t}} \leq \frac{1}{e^{\delta t}} \bigl[\bigl\Vert f\bigl(t,x\bigl( \alpha(t)\bigr)\bigr)-f(t,0)\bigr\Vert +\bigl\Vert f(t, 0)\bigr\Vert \bigr] \leq L_{f}(t)\Vert x\Vert _{\delta}+\frac{\Vert f(t, 0)\Vert }{e^{\delta t}}. $$
Hence, \(\mathcal{F}\) is \(C^{0}_{\delta}(X)\)-valued. Moreover, \({\|\mathcal{F}x-\mathcal{F}y\|_{\delta}\leq L^{*}_{f} \|x-y\|_{\delta}}\), which implies that \(\mathcal{F}\) is a contraction on \(C^{0}_{\delta}(X)\).
Now, we show that \(\mathcal{G}\) is continuous. Let \(\{x_{n}\}_{n\in \mathbf{N}}\) be a sequence in \(C^{0}_{\delta}(X)\) such that \(x_{n}\rightarrow x\) in \(C^{0}_{\delta}(X)\) as \(n\rightarrow\infty\), that is, for arbitrary \(\varepsilon>0\) such that \(\|x_{n}-x\|_{\delta }<\varepsilon\) for sufficient large n. We can see
$$\begin{aligned}& e^{-\delta t}\bigl\Vert (\mathcal{G}x_{n}) (t)-(\mathcal{G}x) (t)\bigr\Vert \\& \quad \leq \frac{\overline{k}\Vert g(t, x_{n}(\beta(t)))-g(t, x(\beta(t)))\Vert \cdot \Vert x_{n}\Vert _{\delta}}{\Gamma(q)} \int_{0}^{\eta(t)}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds \\& \qquad {}+\frac{\overline{k}\zeta(t)}{\Gamma(q)e^{\delta t}} \int_{0}^{\eta (t)}\frac{\Vert h(s,x_{n}(\gamma(s)))-h(s,x(\gamma(s)))\Vert }{(t-s)^{1-q}}\,ds \\& \quad = I_{1}(t)+I_{2}(t). \end{aligned}$$
From condition (H5)(c) there exists \(T>0\), for \(t\geq\eta(t)\geq T\) such that
$$ \frac{\overline{k}\zeta(t)}{\Gamma(q)} \int_{0}^{\eta(t)}\frac {\nu(s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds< \frac{\varepsilon}{8(\varepsilon +2\|x\|_{\delta})}. $$
(3.2)
Moreover, noting that \(\|x_{n}\|_{\delta}\leq\varepsilon+\|x\|_{\delta}\) and from (H3), there exists \(N^{1}_{\varepsilon}\in\mathbf{N}\) such that
$$\begin{aligned}& \bigl\Vert g\bigl(t, x_{n}\bigl(\beta(t)\bigr) \bigr)-g\bigl(t, x\bigl(\beta(t)\bigr)\bigr)\bigr\Vert \\& \quad \leq { \frac {\varepsilon\Gamma(q)}{4\overline{k}(\varepsilon+\Vert x\Vert _{\delta})\int _{0}^{T}\frac{\nu(s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds}},\quad t\in[0, T], n>N^{1}_{\varepsilon}, \end{aligned}$$
(3.3)
then
$$ \bigl\Vert I_{1}(t)\bigr\Vert < \frac{\varepsilon}{4}, \quad \text{for } t\in[0,T], n>N^{1}_{\varepsilon}, $$
(3.4)
on the other hand, for \(t\geq\eta(t)\geq T\), \(N^{1}_{\varepsilon}\in\mathbf {N}\), noting that (3.2) and (3.3), we have
$$\begin{aligned} \bigl\Vert I_{1}(t)\bigr\Vert \leq& \frac{\overline{k}\Vert g(t, x_{n}(\beta(t)))-g(t, x(\beta (t)))\Vert \cdot \Vert x_{n}\Vert _{\delta}}{\Gamma(q)} \int_{0}^{T}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds \\ &{}+\frac{2\overline{k}\zeta(t)\Vert x_{n}\Vert _{\delta}}{\Gamma(q)} \int_{T}^{\eta (t)}\frac{\nu(s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds \\ < & \frac{\varepsilon}{2}, \end{aligned}$$
then
$$ \bigl\Vert I_{1}(t)\bigr\Vert < \frac{\varepsilon}{2}, \quad \text{for } t\geq\eta (t)\geq T, n>N^{1}_{\varepsilon}. $$
(3.5)
For \(I_{2}(t)\), from the Lebesgue dominated convergence theorem and (H5)(a), there exists \(N^{2}_{\varepsilon}\in\mathbf{N}\) such that
$$ \frac{\overline{k}}{\Gamma(q)} \int_{0}^{T}\frac{\| h(s,x_{n}(\gamma(s)))-h(s,x(\gamma(s)))\|}{(t-s)^{1-q}}\,ds< \frac {\varepsilon}{4\tilde{\zeta}_{T}},\quad n>N^{2}_{\varepsilon}, $$
(3.6)
then we have
$$ \bigl\| I_{2}(t)\bigr\| < \frac{\varepsilon}{4}, \quad \text{for } t \in[0,T], n>N^{2}_{\varepsilon}, $$
(3.7)
on the other hand, for \(t\geq\eta(t)\geq T\) and \(n>N^{2}_{\varepsilon}\), noting that
$$\begin{aligned}& \bigl\Vert h\bigl(t,x_{n}\bigl(\gamma(t)\bigr)\bigr)-h\bigl(t,x \bigl(\gamma(t)\bigr)\bigr)\bigr\Vert \\& \quad \leq \nu(t) \bigl(\bigl\Vert x_{n}\bigl(\gamma (t)\bigr)-x\bigl(\gamma(t)\bigr)\bigr\Vert +2\bigl\Vert x\bigl(\gamma(t)\bigr)\bigr\Vert \bigr) \\& \quad \leq \nu(t)e^{\delta t}\bigl(\varepsilon+2\Vert x\Vert _{\delta} \bigr), \end{aligned}$$
and (3.2), (3.6), we obtain
$$\begin{aligned} \bigl\Vert I_{2}(t)\bigr\Vert \leq& \frac{\tilde{\zeta}_{T}\overline {k}}{\Gamma(q)e^{\delta t}} \int_{0}^{T}\frac{\Vert h(s,x_{n}(\gamma (s)))-h(s,x(\gamma(s)))\Vert }{(t-s)^{1-q}}\,ds \\ &{}+\frac{\zeta(t)\overline{k}}{\Gamma(q)e^{\delta t}} \int_{T}^{\eta (t)}\frac{\Vert h(s,x_{n}(\gamma(s)))-h(s,x(\gamma(s)))\Vert }{(t-s)^{1-q}}\,ds \\ < &\frac{\varepsilon}{4}+\frac{\zeta(t)\overline{k}}{\Gamma(q)} \int _{T}^{\eta(t)}\frac{\nu(s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds\cdot \bigl( \varepsilon+2\Vert x\Vert _{\delta}\bigr) \\ < &\frac{\varepsilon}{2},\quad t\geq\eta(t)\geq T, n>N^{2}_{\varepsilon}. \end{aligned}$$
(3.8)
Now, from (3.4) and (3.7), we have
$$ \sup \bigl\{ e^{-\delta t}\bigl\Vert (\mathcal{G}x_{n}) (t)-( \mathcal{G}x) (t)\bigr\Vert :t\in [0, T], n>\max\bigl\{ N^{1}_{\varepsilon}, N^{2}_{\varepsilon}\bigr\} \bigr\} \leq \varepsilon, $$
and from (3.5) and (3.8), we obtain
$$ \sup \bigl\{ e^{-\delta t}\bigl\Vert (\mathcal{G}x_{n}) (t)-( \mathcal{G}x) (t)\bigr\Vert :t\geq \eta(t)\geq T, n>\max\bigl\{ N^{1}_{\varepsilon}, N^{2}_{\varepsilon}\bigr\} \bigr\} \leq \varepsilon. $$
Now, we can conclude that \(\mathcal{G}\) is continuous.
Next, we show that \(\mathcal{G}\) is completely continuous. Let \(r>0\) and \(B_{r}=B_{r}(0,C^{0}_{\delta}(X))\), we first of all show that the set \(\mathcal{G}(B_{r})\) is equicontinuous. For any \(\varepsilon>0\), \(t_{1},t_{2}\geq0\), we may assume that \(t_{1}< t_{2}\) without loss of generality, for \(x\in B_{r}\), we get
$$\begin{aligned}& \bigl\Vert (\mathcal{G}x) (t_{2})-(\mathcal{G}x) (t_{1}) \bigr\Vert \\& \quad \leq \frac{\overline{k}e^{\delta t_{2}}r\Vert g(t_{2},x(\beta (t_{2})))-g(t_{1},x(\beta(t_{1})))\Vert }{\Gamma(q)} \int_{0}^{\eta(t_{2})}\frac{\nu (s)}{(t_{2}-s)^{1-q}}\,ds \\& \qquad {}+\frac{e^{\delta t_{2}}r\zeta(t_{1})}{\Gamma(q)} \biggl\{ \int_{0}^{\eta (t_{1})-\varepsilon} \biggl(\frac{\Vert K(t_{1},s)-K(t_{2},s)\Vert _{\mathcal {L}(X)}}{(t_{1}-s)^{1-q}}+\overline{k} \biggl[\frac{1}{(t_{1}-s)^{1-q}}-\frac{1}{(t_{2}-s)^{1-q}}\biggr] \biggr) \\& \qquad {}\times\nu(s)\,ds+\overline{k} \int_{\eta(t_{1})-\varepsilon}^{\eta(t_{1})} \biggl(\frac{\nu (s) }{(t_{1}-s)^{1-q}}+ \frac{\nu(s) }{(t_{2}-s)^{1-q}} \biggr)\,ds+\overline {k} \int_{\eta(t_{1})}^{\eta(t_{2})}\frac{\nu(s)}{(t_{2}-s)^{1-q}}\,ds \biggr\} . \end{aligned}$$
Under the conditions (H3) and (H4), \(\|(\mathcal{G}x)(t_{2})-(\mathcal {G}x)(t_{1})\|\rightarrow0\) as \(t_{2}\rightarrow t_{1}\) and \(\varepsilon \rightarrow0\), that is, the set \(\mathcal{G}(B_{r})\) is equicontinuous.
Next, we prove that the set \(U(t)=\{\mathcal{G} x(t):x\in B_{r}, t\in[0, a]\}\) is a relatively compact subset of X for every \(a\in(0, +\infty)\). For arbitrary \(\varepsilon\in(0, \eta(t))\), define an operator \(\mathcal{G}_{\varepsilon}\) as follows:
$$ (\mathcal{G}_{\varepsilon}x) (t)=\frac{g(t,x(\beta(t)))}{\Gamma(q)} \int _{0}^{\eta(t)-\varepsilon}\frac{K(t,s)h(s,x(\gamma(s)))}{(t-s)^{1-q}}\,ds. $$
Noting that (H5)(c) and (H3), for \(x \in B_{r}\), from the mean value theorem for the Bochner integral (see [17], Lemma 2.1.3), we obtain
$$ (\mathcal{G}_{\varepsilon}x) (t) \in\frac{(t-\varepsilon)\tilde{\zeta}_{a}}{\Gamma(q)} \overline{ \operatorname{co}\bigl\{ (t-s)^{q-1}K(t,s)h(s, x):s\in[0, t-\varepsilon], x\in B_{r}\bigr\} }, $$
where \(\operatorname{co}(\cdot)\) denotes the convex hull. Using (H5)(d), we infer that the set \(\{\mathcal{G}_{\varepsilon} x(t):x\in B_{r}\}\) is relatively compact in X for arbitrary \(\varepsilon\in(0, \eta(t))\).
Moreover, for \(x\in B_{r}\), \(t\in[0, a]\), we get
$$\begin{aligned} \bigl\Vert (\mathcal{G}x) (t)-(\mathcal{G}_{\varepsilon}x) (t)\bigr\Vert =&\frac{\Vert g(t,x(\beta(t)))\Vert }{\Gamma(q)} \int_{\eta(t)-\varepsilon }^{\eta(t)}\frac{\Vert K(t,s)h(s,x(\gamma(s)))\Vert }{(t-s)^{1-q}}\,ds \\ \leq&\frac{e^{\delta a}r\tilde{\zeta}_{a}\overline{k}}{\Gamma(q)} \int _{\eta(t)-\varepsilon}^{\eta(t)}\frac{\nu(s)}{(t-s)^{1-q}}\,ds. \end{aligned}$$
Hence, there are relatively compact sets arbitrarily close to the set \(U(t)\), \(t\geq0\). This proves that the set \(U(t)\), \(t\geq0\) is relatively compact in X.
Moreover, for \(x\in B_{r}\), we obtain
$$e^{-\delta t}\bigl\Vert (\mathcal{G}x) (t)\bigr\Vert \leq \frac{\overline{k}\zeta (t)r}{\Gamma(q)} \int_{0}^{\eta(t)}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds \rightarrow0,\quad t\rightarrow\infty. $$
Now, from Lemma 3.1, we can conclude that \(\mathcal{G}(B_{r})\) is relatively compact in \(C^{0}_{\delta}(X)\). Thus, \(\mathcal{G}\) is completely continuous.
Next, we prove that there exists \(r>0\) such that \(\mathcal{M}B_{r}\subset B_{r}\), where \(B_{r}=B_{r}(0,C^{0}_{\delta}(X))\). Suppose on the contrary that, for each \(r>0\), there exist \(x^{*}\in B_{r}\) and some \(t^{*}\geq0\) such that \(e^{-\delta t^{*}}\|(\mathcal{M}x^{*})(t^{*})\|>r\). Then
$$\begin{aligned} r < & e^{-\delta t^{*}}\bigl\Vert \bigl(\mathcal{M}x^{*}\bigr) \bigl(t^{*}\bigr)\bigr\Vert \\ \leq& L_{f}\bigl(t^{*}\bigr)\bigl\Vert x^{*}\bigr\Vert _{\delta}+e^{-\delta t^{*}}\bigl\Vert f\bigl(t^{*},0\bigr)\bigr\Vert + \frac{\zeta (t^{*})\overline{k}}{\Gamma(q)} \int_{0}^{\eta(t^{*})}\frac{\nu(s)e^{-\delta (t^{*}-s)}}{(t^{*}-s)^{1-q}}\,ds\cdot\bigl\Vert x^{*}\bigr\Vert _{\delta} \\ \leq& \biggl(L_{f}\bigl(t^{*}\bigr)+\frac{\zeta(t^{*})\overline{k}}{\Gamma(q)} \int _{0}^{\eta(t^{*})}\frac{\nu(s)e^{-\delta(t^{*}-s)}}{(t^{*}-s)^{1-q}}\,ds \biggr) r+ e^{-\delta t^{*}}\bigl\Vert f\bigl(t^{*},0\bigr)\bigr\Vert . \end{aligned}$$
(3.9)
Dividing both sides of (3.9) by r and taking \(r\rightarrow \infty\), we obtain
$$L_{f}\bigl(t^{*}\bigr)+\frac{\zeta(t^{*})\overline{k}}{\Gamma(q)} \int_{0}^{\eta(t^{*})}\frac {\nu(s)e^{-\delta(t^{*}-s)}}{(t^{*}-s)^{1-q}}\,ds\geq1. $$
This contradicts (3.1). This shows that there exists \(r>0\) such that \(\mathcal{M}\) is a condensing map from \(B_{r}\) into \(B_{r}\). Now from Lemma 2.5 we see that the operator \(\mathcal{M}\) has a fixed point and thus equation (1.1) has at least one solution on \(C^{0}_{\delta}(X)\).
Moreover, the solutions of equation (1.1) are lying in the ball \(B_{r}\), and for any solutions x, y of equation (1.1) and \(x, y\in B_{r}\), we obtain
$$\begin{aligned} e^{-\delta t}\bigl\Vert x(t)-y(t)\bigr\Vert \leq& L_{f}(t) \bigl(\Vert x\Vert _{\delta}+\Vert y\Vert _{\delta}\bigr) \\ &{}+ \frac{\overline{k}\Vert x\Vert _{\delta}}{\Gamma(q)}\bigl\Vert g\bigl(t, x\bigl(\beta(t)\bigr)\bigr)-g\bigl(t, y \bigl(\beta(t)\bigr)\bigr)\bigr\Vert \int_{0}^{\eta(t)}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds \\ &{}+\frac{\overline{k}\zeta(t)e^{-\delta t}}{\Gamma(q)} \int_{0}^{\eta (t)}\frac{\Vert h(s,x(\gamma(s)))-h(s,y(\gamma(s)))\Vert }{(t-s)^{1-q}}\,ds \\ \leq& 2rL_{f}(t)+\frac{4r \overline{k}\zeta(t)}{\Gamma(q)} \int_{0}^{\eta (t)}\frac{\nu(s)e^{-\delta(t-s)}}{(t-s)^{1-q}}\,ds \rightarrow0, \quad t\rightarrow\infty, \end{aligned}$$
then the solutions of equation (1.1) are uniformly locally attractive by Definition 2.6 (or equivalently that solutions of (1.1) are asymptotically stable). □
From the proof of Theorem 3.2, we can immediately study equation (1.1) on \(X=\mathbf{R}\) under the following assumptions:
- (H1′):
-
\(\alpha, \beta, \gamma, \eta:\mathbf{R}_{+}\rightarrow \mathbf{R}_{+}\) is continuous, η is nondecreasing on \(\mathbf{R}_{+}\), \(\alpha(t)\rightarrow\infty\), \(\eta(t)\rightarrow\infty\), as \(t\rightarrow\infty\) and \(\alpha(t), \eta(t), \gamma(t)\leq t\).
- (H2′):
-
The function \(f(t,x(\alpha(t)))\) is continuous with respect to t on \([0, +\infty)\) and there exists a continuous function \(L_{f}(t)\) such that
$$\bigl\vert f(t, \psi_{1})-f(t, \psi_{2})\bigr\vert \leq L_{f}(t)\vert \psi_{1}-\psi_{2}\vert ,\quad \text{for } \psi _{1}, \psi_{2} \in C(\mathbf{R}_{+}, \mathbf{R}), $$
where \(L^{*}_{f}=\sup_{t\geq0}L_{f}(t)<1\), \(\lim_{t\rightarrow\infty }L_{f}(t)=0\), and \(\sup_{t\geq0}|f(t, 0)|<\infty\).
- (H3′):
-
The function \(g(t,x(\beta(t)))\) is continuous with respect to t on \([0, +\infty)\) and for every \(a>0\), \(g(t, \cdot):\mathbf {R}\rightarrow\mathbf{R}\) is continuous for \(t\in[0, a]\). The set \(V(r, g)\) is an equicontinuous subset of \(C(\mathbf{R}_{+}, \mathbf{R})\) and there exists a function \(\zeta:\mathbf{R}_{+}\rightarrow\mathbf {R}_{+}\) such that \(|g(t,x)|\leq\zeta(t)\) and \(\sup_{t\in[0,a]}\zeta(t)=\tilde{\zeta }_{a}<\infty\), for every \(a>0\).
- (H4′):
-
The function \(K:\mathbf{R}_{+}\times\mathbf{R}_{+} \rightarrow\mathbf{R}\) is continuous and \(|K(t,s)|\leq\overline{k}\).
- (H5′):
-
For every \(a>0\), the function \(h:[0,a]\times \mathbf {R}\rightarrow\mathbf{R}\) satisfies the following conditions:
-
(a)
the function \(h(t,\cdot):\mathbf{R}\rightarrow\mathbf{R}\) is continuous a.e. \(t\in[0,a]\);
-
(b)
the function \(h(\cdot,x):[0,a]\rightarrow\mathbf{R}\) is strongly measurable for every \(x\in\mathbf{R}\);
-
(c)
there exists \(\nu(\cdot)\in L^{1}_{\mathrm{loc}}(\mathbf{R}_{+})\) such that \(|h(t,x)|\leq\nu(t)|x|\), the function \(s\rightarrow\frac{\nu (s)}{(t-s)^{1-q}}\) belongs to \(L^{1}([0,t],\mathbf{R}_{+})\) and
$$\lim_{t\rightarrow\infty}\zeta(t) \int_{0}^{\eta(t)}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds=0. $$
We choose \(\delta>0\) such that (3.1) holds, then we have the following result.
Theorem 3.3
Assume that (H1′)-(H5′) hold, then there exists a solution on the space
\(C^{0}_{\delta}(\mathbf{R})\)
for equation (1.1). Moreover, the solutions of equation (1.1) are uniformly locally attractive (or, equivalently, the solutions are asymptotically stable).
Application to fractional differential equations
Motivated by the proof of Theorem 3.2, we can immediately obtain the global existence of a mild solution for the fractional differential equation as follows:
$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{c}}D_{t}^{q} (x(t)- m(t, x(t)))= A (x(t)-m(t, x(t))) +h(t, x(t)),\quad t>0, \\ x(0)=x_{0}, \end{array}\displaystyle \right . $$
(3.10)
where \(0< q<1\), \(m(0, x(0))=0\), A is the infinitesimal generator of an analytic semigroup of linear operators \(\{T(t)\}_{t\geq0}\) in X with \(\|T(t)\| \leq M\).
It is well known that a function \(x\in C(\mathbf{R}_{+}, X)\) and
$$ x(t)=Q(t)x_{0}+m\bigl(t,x(t)\bigr)+ \int_{0}^{t} (t-s)^{q-1}R(t-s)h\bigl(s, x(s) \bigr)\,ds, \quad t\geq0, $$
(3.11)
is the mild solution of (3.10), where
$$\begin{aligned}& Q(t) = \int_{0}^{\infty} \xi_{q}(\sigma) T \bigl(t^{q}\sigma\bigr)\, d\sigma\quad \text{and}\quad \bigl\Vert Q(t)\bigr\Vert \leq M, \\& R(t) = q \int_{0}^{\infty} \sigma\xi_{q}(\sigma)T \bigl(t^{q}\sigma \bigr)\, d\sigma\quad \text{and}\quad \bigl\Vert R(t)\bigr\Vert \leq\frac{M}{\Gamma(q)}, \end{aligned}$$
and \(\xi_{q}\) is a probability density function defined on \((0, \infty)\) (see [6]) such that
$$\xi_{q}(\sigma)=\frac{1}{\pi}\sum_{n=1}^{\infty} (-1)^{n-1} \sigma^{n-1}\frac{\Gamma(nq)}{(n-1)!}\sin(n\pi q)\geq0, \quad \sigma \in(0,\infty). $$
For more details, we refer to [6, 7].
Set \(f(t, x)=Q(t)x_{0}+m(t,x(t))\), \(K(t-s)=R(t-s)\), we can study the existence of solution for equation (3.11) by Theorem 3.2. To this end, for every \(a>0\), \(\delta>0\), we make the following assumptions:
- (A1):
-
The function \(m(t,x(t))\) is continuous with respect to t on \([0, +\infty)\) and there exists a continuous function \(m_{f}(t)\) such that
$$\bigl\Vert m(t, \psi_{1})-m(t, \psi_{2})\bigr\Vert \leq m_{f}(t)\Vert \psi_{1}-\psi_{2}\Vert ,\quad \text{for } \psi_{1}, \psi_{2} \in C(\mathbf{R}_{+}, X), $$
where \(m^{*}_{f}=\sup_{t\geq0}m_{f}(t)<1\), \(\lim_{t\rightarrow\infty }m_{f}(t)=0\), and \(\sup_{t\geq0}\|m(t, 0)\|<\infty\).
- (A2):
-
For every \(a>0\), the function \(h:[0,a]\times X\rightarrow X\) satisfies the following conditions:
-
(a)
the function \(h(t,\cdot):X\rightarrow X\) is continuous a.e. \(t\in[0,a]\);
-
(b)
the function \(h(\cdot,x):[0,a]\rightarrow X\) is strongly measurable for every \(x\in X\);
-
(c)
there exists \(\nu(\cdot)\in L^{1}_{\mathrm{loc}}(\mathbf{R}_{+})\) such that \(\|h(t,x)\|\leq\nu(t)\|x\|\), the function \(s\rightarrow\frac{\nu (s)}{(t-s)^{1-q}}\) belongs to \(L^{1}([0,t],\mathbf{R}_{+})\) and \({\lim_{t\rightarrow\infty}\int_{0}^{t}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds=0}\);
-
(d)
for every \(t>0\) and \(r>0\), the set \(\{T(t-s)h(s, e^{\delta s}z):s\in[0, t), z\in B_{r}(0, C^{0}_{\delta}(X))\}\) is relatively compact in X.
From the continuity of \(T(t)\) in the uniform operator topology, (A1) and (A2), it is easy to check that the assumptions in Theorem 3.2 hold. If we choose \(\delta>0\) such that
$$m^{*}_{f}+\sup_{t\geq0}\frac{M}{\Gamma(q)} \int_{0}^{t}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds< 1, $$
then we obtain the following result on the space \(C^{0}_{\delta}(X)\).
Theorem 3.4
Assume that (A1) and (A2) are satisfied, then there exists a global mild solution for (3.10) on the space
\(C^{0}_{\delta}(X)\). Moreover, the mild solutions of (3.10) are uniformly locally attractive (or equivalently, the solutions are asymptotically stable).
Next, we consider the following fractional differential equation in \(X=\mathbf{R}\):
$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{c}}D_{t}^{q} x(t)= h(t, x(t)),\quad t>0, \\ x(0)=x_{0}. \end{array}\displaystyle \right . $$
(3.12)
If \(h(t, x(t))\) is continuous with respect to t on \(\mathbf{R}_{+}\), from Remark 2.4,
$$ x(t)=x_{0}+\frac{1}{\Gamma(q)} \int_{0}^{t} (t-s)^{q-1}h\bigl(s, x(s)\bigr) \,ds $$
is equivalent to equation (3.12). For more details see [5] and the references therein.
For every \(a>0\), \(\delta>0\), assume the function \(h:[0,a]\times \mathbf {R}\rightarrow\mathbf{R}\) satisfies the following conditions:
-
(a)
the function \(h(t,\cdot):\mathbf{R}\rightarrow\mathbf{R}\) is continuous a.e. \(t\in[0,a]\);
-
(b)
the function \(h(\cdot,x):[0,a]\rightarrow\mathbf{R}\) is strongly measurable for every \(x\in\mathbf{R}\);
-
(c)
there exists \(\nu(\cdot)\in L^{1}_{\mathrm{loc}}(\mathbf{R}_{+})\) such that \(|h(t,x)|\leq\nu(t)|x|\), the function \(s\rightarrow\frac{\nu (s)}{(t-s)^{1-q}}\) belongs to \(L^{1}([0,t],\mathbf{R}_{+})\) and \({\lim_{t\rightarrow\infty}\int_{0}^{t}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds=0}\).
Using the results of Theorem 3.2, and choosing δ such that
$$\sup_{t\geq0}\frac{1}{\Gamma(q)} \int_{0}^{t}\frac{\nu(s)e^{-\delta (t-s)}}{(t-s)^{1-q}}\,ds< 1, $$
we can obtain without proof the following result on the space \(C^{0}_{\delta}(\mathbf{R})\).
Theorem 3.5
Assume that (a), (b), (c) are satisfied, then on the space
\(C^{0}_{\delta }(\mathbf{R})\), (3.12) has a global solution which is uniformly locally attractive (or, equivalently, the solution is asymptotically stable).