- Research
- Open access
- Published:
Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals
Advances in Difference Equations volume 2016, Article number: 217 (2016)
Abstract
Classical diffusion theory is widely applied in natural science and has made a great achievement. However, the phenomenon of anomalous diffusion in discontinuous media (fractal, porous, etc.) shows that classical diffusion theory is no longer suitable. The differential equations with fractional order have recently been proved to be powerful tools for describing anomalous diffusion. Nevertheless, the analysis methods and numerical methods for fractional differential equations are still in the stage of exploration. In the paper, we consider the Sturm-Liouville problem and the numerical method of a fractional sub-diffusion equation with Dirichlet condition, respectively. We have given the series solution of equation and proved the stability and the convergence of the implicit numerical scheme. It is found that the numerical results are in satisfactory agreement with the analytical solution. Through the robustness analysis, it is also found that the diffusion processes on fractals are more sensitive to the spectral dimension than to the anomalous diffusion exponent.
1 Introduction
In recent years, more and more phenomena of anomalous diffusion were found in physics, biology, and chemistry [1–3]. The theory of diffusion or transport on both disordered systems and fractals has been extensively studied [4–7]. Nevertheless, as a new and effective tool, the fractional derivative is quite suitable for the mathematical modeling of nonlocal processes such as fractional Brown motion [8, 9], non-Newtonian fluid mechanics [10], nonequilibrium thermodynamics [11], complex ecological systems [12], etc. This is also the main advantage of fractional derivatives compared with integer order derivative models. Mathematicians and physicists have established some significant fractional diffusion equations to describe anomalous diffusion [13, 14]. The main idea is continuous time random walks (CTRWs) with long time behavior of the mean square displacement \(\langle x^{2}(t)\rangle\sim t^{\gamma}\), where γ is the diffusion exponent. If \(\gamma=1\), it corresponds to normal diffusion, otherwise, the case \(\gamma<1\) corresponds to sub-diffusion and the case \(\gamma>1\) corresponds to sup-diffusion [14–17]. The classical diffusion equation in Euclidean space with d dimensions can be expressed by
The probability density of random walker namely the solution of (1.1) is
Metzler et al. [18] have considered a random walk on fractal object with \(\gamma=2/d_{\omega}\), where \(d_{\omega}>2\) is the anomalous diffusion exponent. The probability density of the random walker’s asymptotic behavior satisfies
where \(d_{f}\) is the fractal Hausdorff dimension and c is a nonzero constant,
This kind of anomalous diffusion on fractals could be characterized by the macroscopical fractional diffusion equation
where \(d_{s}=2d_{f}/d_{\omega}\) is called the fractal spectral dimension. The operator \(\partial^{\frac{2}{d_{\omega}}}/\partial t^{\frac{2}{d_{\omega}}}\) is the Riemann-Liouville fractional derivative of order \(2/d_{w}\), which is defined by
The time fractional diffusion equation (1.5) can be regarded as a generalization of diffusion equation (1.1). If \(d_{\omega}=2\), equation (1.5) is reduced to the normal diffusion equation (1.1). In recent years, a great deal of mathematical effort in analytical and numerical method for fractional differential equations has been devoted to FPDE’s applications, for instance, the Fourier-Laplace transform [19], the Mellin transform [20, 21], the homotopy perturbation method (HPM) [22, 23], the homotopy perturbation Sumudu transform method (HPSTM) [24, 25], the Green’s function [26, 27], the Adomian decomposition method (ADM) [28], etc., but there is not one single method that can be adapted to all fractional equations. The non-locality of the fractional derivative operator makes it difficult for mathematical analysis and numerical computation. The objective of this paper is twofold. The first one is to investigate the singular Sturm-Liouville problem of (1.5) with the Dirichlet boundary condition [29–31], the other is to give an implicit numerical method for fractional diffusion equation with non-homogeneous Dirichlet boundary. Due to the relationship between Caputo and Riemann-Liouville type fractional derivatives [19], we can write the equation as
with the initial and boundary conditions
where \(\alpha=2/d_{\omega},\beta=d_{s}-1\), and \(0<\alpha,\beta<1\). The Caputo type operator \({}_{0}^{C}D_{t}^{\alpha}\) is defined by
This paper is organized as follows. In the second part, we deal with the singular Sturm-Liouville problem. In the third part, we discuss the numerical method, which contains a stability and convergence analysis; the numerical results of a concrete example and a robustness analysis are also given.
2 Sturm-Liouville problem
In this section, first of all, we consider the following homogeneous equation:
Let \(u(x,t)=X(x)T(t)\), λ denotes the eigenvalue of (2.1). Thus we have
Because of the boundary conditions, we have \(X(0)=X(L)=0\). Hence we obtain the S-L problem
The fractional order differential equation about \(T(t)\) is
Let \(p(x)=x^{\beta}\geq0\) and the root of \(p(x)\) belong to \([0,L]\), hence, the S-L problem is singular.
Lemma 2.1
Let \(u(x),v(x) \in C^{2}[0,L]\), for the linear differential operator \(N:=\frac{d}{dx} (p(x)\frac{d}{dx} )\), the following equation ideally holds:
In particular, if \(u(x),v(x) \in C_{0}^{2}[0,L]\), we have
Proof
Applying the formula of the integral by parts to the left side of (2.5), then we can obtain
The conclusion follows from equation (2.7) minus equation (2.8). The lemma is now proved. □
Theorem 2.1
The eigenvalue and eigenvector have the following properties.
-
(1)
All of eigenvalues \(\lambda_{j}\) are negative real numbers.
-
(2)
Eigenvectors corresponding to different eigenvalues are orthogonal on \([0,L]\), with respect to the weight function \(x^{\beta}\), that is, if \(\lambda_{j}\neq\lambda_{k}\) and \(X_{m}\) \((m=j,k)\) are the corresponding eigenvectors, then we have
$$\int_{0}^{L}p(x)X_{j}(x)X_{k}(x)=0\quad (j\neq k). $$ -
(3)
An orthogonal basis \(\{X_{n}(x)\}\) is a complete orthogonal system in \(L_{2}^{*}[0,L]\), where
$$L_{2}^{*}[0,L]= \biggl\{ y(x) \Big| \int_{0}^{L}p(x)y^{2}(x)\,dx < \infty \biggr\} . $$
Proof
(1) If there are a complex number λ and \(\eta(x) \in C_{0}^{2}[0,L]\) such that
The conjugate λ̄ and η̄ satisfy
Following from Lemma 2.1, the next equality holds:
That is,
The fact that \(\eta(x)\neq0\) implies that \(\lambda=\bar{\lambda}\). Multiply \(\eta(x)\) at both sides of equation (2.9) and then perform the integral on the interval \([0,L]\), then we have
The eigenvalue λ must be a negative real number.
(2) By Lemma 2.1, the eigenfunctions \(X_{j}\) and \(X_{k}\) satisfy
and
Therefore,
If \(\lambda_{j}\neq\lambda_{k}\), the eigenvectors \(X_{m}\) \((m=j,k)\) are orthogonal in \(L_{2}^{*}[0,L]\).
(3) Let \(f(x)\in H^{1}[0,L]\),
Define
Then we have \(H (\delta_{N},X_{k})=0\). The Rayleigh quotient of the singular S-L problem
By the Sobolev embedding theorem \(H^{1}[0,L] \hookrightarrow C^{1}[0,L]\), \(\lim_{n \to\infty}\lambda_{n}=+\infty\), thus,
Since the Hilbert space \(H^{1}\) is dense in \(L_{2}^{*}[0,L]\), the proof is now complete. □
Let \(X(x)=x^{\nu}Y(x)\), where \(\nu=\frac{1-\beta}{2}\), suppose \(X(x)=O(x^{\nu})\), hence equation (2.3) becomes
The stretching transformation \(y(x)=Y(\frac{x}{\sqrt{\lambda}})\) is used to convert equation (2.22) into the νth order Bessel equation,
The solution of the νth order Bessel equation is
where \(C_{1}\) and \(C_{2}\) are arbitrary constants. \(J_{\nu}(x)\) and \(J_{-\nu}(x)\) are Bessel functions,
Combined with the boundary conditions, set \(\mu_{\nu}^{(n)}\) is the nth solution of the νth order Bessel function [32], and \(0<\mu_{\nu}^{(1)}<\mu_{\nu}^{(2)}<\cdots <\mu _{\nu}^{(n)}<\cdots\), \(\lim_{n \to\infty}\mu_{\nu}^{(n)}=+\infty\). Then, the eigenvalues and eigenfunctions for (2.3) are given by
Lemma 2.2
Let \(n-1< p\leq n\), the Laplace transform formula for the Caputo fractional derivative is
Laplace transform formula for the Mittag-Leffler function is
where \(F(s)\) is the Laplace transform for \(f(x)\), γ is a real number, and the Mittag-Leffler function \(E_{\alpha,\beta}(t)\) is
Proof
See [19]. □
By the Laplace transform, Lemma 2.2, and the inverse Laplace transform, the solution of (2.4) is given as
Hence the general solution of (2.1) is of the form of the following series:
We consider the initial value and Theorem 2.1; \(D_{n}\) can be determined by
For the non-homogeneous equation
Let the non-homogeneous term \(f(x,t)\) and the solution \(u(x,t)\) and the initial value \(\psi(x)\) be of the following form of a series expansion:
where \(f_{n}(t)\) is the general Fourier series of \(f(x,t)\), \(\psi_{n}\) is the general Fourier series of \(\psi(x)\). Insert series (2.31) into the non-homogeneous equation (2.30) and the initial value condition, then we have
By the Laplace transform, Lemma 2.2, and the inverse Laplace transform, \(T_{n}(t)\) is given as
Finally, we obtain the solution of the non-homogeneous equation (2.30)
where the generalized Fourier coefficients are
3 Numerical method
In the section, we propose an implicit numerical method for the Caputo type FPDE.
We use a uniform grid for spatial axis with grid spacing \(h=L/M\), the points in the grid \(x_{j}\) are given by
Likewise, we take a grid on the temporal axis with grid spacing Ï„, the grid points \(t_{n}\) are given by
Let \(u_{j}^{n}\) be the numerical approximation to the solution of (3.1) at the point \((j h,n\tau)\). Similarly, \(f_{j}^{n}=f(j h,n\tau)\). Using the forward difference, we have a finite difference approximation of the Caputo type fractional derivative,
where \(\omega_{k;\alpha}=(1+k)^{1-\alpha}-k^{1-\alpha},k=0,1,2,\ldots ,n-1\). The expression of the forward difference \(\Delta _{t}u(x_{j},t_{n-k-1})\) is
According to Abelian summation method by part, we have
Using the backward difference for \(\partial u/ \partial x\) and the central difference for \(\partial^{2}u/\partial x^{2}\),
Hence, we obtain a numerical scheme for (3.1)
where
with the initial and boundary conditions
When \(n=0\) the numerical scheme of (3.9) becomes
Instead of equations (3.9) and (3.12), the difference scheme can be rewritten in the following matrix form:
where
We consider the stability of (3.13) in the following supremum norm:
Lemma 3.1
The coefficients \(\omega_{k;\alpha},r_{j},r\) satisfy
-
1.
\(r>r_{j}>0, j=1,2,\ldots,M\),
-
2.
\(\omega_{k;\alpha}>0\) and \(\omega_{k;\alpha}^{-1}=O(k^{\alpha}),k \to\infty\),
-
3.
\(\omega_{k;\alpha}>\omega_{k+1;\alpha}, k=0,1,2,\ldots,n-1\).
Proof
Theorem 3.1
The difference scheme (3.13) satisfies
where C is a positive constant.
Proof
We use mathematical induction to show it. Suppose that \(|u_{j_{0}}^{1}|=\max\{|u_{1}^{1}|,u_{2}^{1},\ldots, |u_{M-1}^{1}|\}\). Applying Lemma 3.1, we have
Hence, we obtain
where the positive constant C is \(\omega_{n}^{-1}\tau^{\alpha}\Gamma (2-\alpha)\). We assume that
We have \(m=n+1\). From (3.9) we obtain
Therefore
We complete the proof. □
Theorem 3.2
The numerical schemes (3.9) and (3.12) for FPDE are unconditionally stable.
Proof
Suppose that \(\tilde{u}_{j}^{n}\) is an approximate solution of the numerical schemes (3.9) and (3.12). Let \(\varepsilon_{j}^{n}=\tilde{u}_{j}^{n}-u_{j}^{n}\), \(\varepsilon _{j}^{n}\) satisfy
Applying Theorem 3.1, we obtain
 □
We denote the solution of IBVP (3.1) with \(u(x,t)\) and set \(z_{j}^{n}=u_{j}^{n}-u(j\Delta x,n\Delta t)\), and we see that \(z_{j}^{n}\) satisfies
Using \(\|z^{0}\|_{\infty}=0\) and Theorem 3.1, we have
Therefore, we obtain the global convergence theorem.
Theorem 3.3
The difference scheme (3.13) for approximating the partial differential equation (3.1) is a convergent scheme.
Some numerical examples are tested to verify the efficiency and stability of our proposed method.
Example
where the non-homogeneous term \(f(x,t)\) satisfies
The series solution can be yield by equation (2.1) and the exact analytical solution of (3.22) is given by
While \(\alpha=0\) (i.e., the anomalous diffusion exponent is large enough), the fractional Caputo operator is the identity operator and equation (1.7) is changed into the ordinary differential equation (ODE)
The maximum absolute errors between the exact solution and numerical solution
are shown in Table 1 and Table 2. From Table 1, we can see that the maximum absolute error increases drastically as the parameter β increases. While in Table 2, the maximum absolute error is almost constant when the fractional order α changes in (3.22). In Figure 1, the numerical results for the time fractional diffusion equation with different parameters \(\tau,h,\beta\) are provided. In Figure 2, the numerical results for the time fractional diffusion equation with different parameters \(\tau,h,\alpha\) are also given. We assume that \(u_{\alpha,\beta}(x,t)\) is the solution of (1.7). The robustness parameter \(\Re_{\alpha}\) used to quantify the shift of the solution \(u_{\alpha,\beta}(x,t)\) at x position t time when α changes then is
Similarly, \(\Re_{\beta}\) is defined by
It is difficult to calculate the robustness parameters as above because we usually cannot get its exact solution \(u_{\alpha,\beta}(x,t)\). As an alternative, we explore the effects of \(d_{\omega}\) and \(d_{s}\) on the maximum absolute error \(E_{\infty}\), through the robustness parameters \(\tilde{\Re}_{d_{s}}\) and \(\tilde{\Re}_{d_{\omega}}\), which are defined as follows:
As shown in Figure 3, it is observed that the maximum absolute error increases drastically as the spectral dimension \(d_{s}\) increases. However, in Figure 4, with a change in the anomalous diffusion exponent \(d_{\omega}\), the maximum absolute error is almost constant. It shows that the influence of the spectral dimension \(d_{s}\) on the maximum absolute error \(E_{\infty}\) is larger than that of the anomalous diffusion exponent \(d_{\omega}\). Moreover, it is interesting to see that \(\tilde{\Re}_{d_{s}}(\tau,h)\) decreases as the parameter \(d_{s}\) increases for fixed τ and h, and that \(\tilde{\Re}_{d_{s}}(\tau ,h)\) decreases as the parameters τ and h decrease for fixed \(d_{s}\). In strong contrast to this case, \(\tilde{\Re}_{d_{\omega}}(\tau ,h)\) is almost constant, namely zero. Figure 5 shows the numerical solution of the time fractional diffusion equation. In Figure 6 the absolute error between the exact solution and numerical solution is presented. All of our tests are performed with MATLAB.
4 Conclusion
In summary, we have presented the Sturm-Liouville problem and the series solution of the fractional sub-diffusion equation on fractals, and an implicit numerical scheme is also given. Furthermore, we have proved that the implicit numerical scheme is unconditionally stable and convergent. The computational examples show that the results from the numerical method agree quite well with the analytical solution. Previous research focuses only on analytical methods and numerical methods for fractional differential equation. However, the robustness analysis of the parameters, which is concerned with the fractional derivative order, is not considered. Through the numerical analysis, we found that the maximum error for the numerical solution is more sensitive to the spectral dimension in comparison with the anomalous diffusion exponent. The physical meaning is that the diffusion processes on fractals depend more on the value of the ratio of the fractal Hausdorff dimension to the anomalous diffusion exponent than on the anomalous diffusion exponent. This work is helpful for researchers dealing with similar fractional differential equations in physics and engineering.
References
Magin, RL, Ingo, C, Colon-Perez, L, Triplett, W, Mareci, TH: Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Microporous Mesoporous Mater. 178, 39-43 (2013)
Xiao, F, Hrabe, J, Hrabetova, S: Anomalous extracellular diffusion in rat cerebellum. Biophys. J. 108(9), 2384-2395 (2015)
Magin, RL, Abdullah, O, Baleanu, D, Zhou, XJ: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Res. 190(2), 255-270 (2008)
Havlin, S, Ben-Avraham, D: Diffusion in disordered media. Adv. Phys. 36(6), 695-798 (1987)
Bouchaud, J-P, Georges, A: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4), 127-293 (1990)
Ben-Avraham, D, Havlin, S: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)
Klages, R, Radons, G, Sokolov, IM: Anomalous Transport: Foundations and Applications. Wiley, New York (2008)
Chen, W, Sun, H, Zhang, X, Korosak, D: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754-1758 (2010)
Angstmann, C, Donnelly, I, Henry, B, Langlands, T, Straka, P: Generalized continuous time random walks, master equations, and fractional Fokker-Planck equations. SIAM J. Appl. Math. 75(4), 1445-1468 (2015)
Youssef, HM: Theory of fractional order generalized thermoelasticity. J. Heat Transf. 132(6), 061301 (2010)
Bustamante, C, Liphardt, J, Ritort, F: The nonequilibrium thermodynamics of small systems. arXiv preprint (2005). arXiv:cond-mat/0511629
Singh, J, Kumar, D, et al.: Numerical computation of fractional Lotka-Volterra equation arising in biological systems. Nonlinear Eng. 4(2), 117-125 (2015)
da Silva, M, Viswanathan, G, Cressoni, J: A two-dimensional non-Markovian random walk leading to anomalous diffusion. Phys. A, Stat. Mech. Appl. 421, 522-532 (2015)
Metzler, R, Klafter, J: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1-77 (2000)
Zaburdaev, V, Denisov, S, Klafter, J: Lévy walks. Rev. Mod. Phys. 87(2), 483 (2015)
Yuste, S, Abad, E, Lindenberg, K: Reaction-subdiffusion model of morphogen gradient formation. Phys. Rev. E 82(6), 061123 (2010)
Sokolov, IM, Schmidt, M, Sagués, F: Reaction-subdiffusion equations. Phys. Rev. E 73(3), 031102 (2006)
Metzler, R, Glöckle, WG, Nonnenmacher, TF: Fractional model equation for anomalous diffusion. Phys. A, Stat. Mech. Appl. 211(1), 13-24 (1994)
Podlubny, I: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, New York (1998)
Butera, S, Di Paola, M: Mellin transform approach for the solution of coupled systems of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 20(1), 32-38 (2015)
Butera, S, Di Paola, M: Fractional differential equations solved by using the Mellin transform. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2220-2227 (2014)
He, J-H: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167(1), 57-68 (1998)
Singh, J, Kumar, D, Kılıçman, A: Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform. Abstr. Appl. Anal. 2013, Article ID 934060 (2013)
Kumar, D, Singh, J, Kumar, S, Singh, B, et al.: Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng. J. 6(2), 605-611 (2015)
Singh, J, Kumar, D, Kılıçman, A: Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations. Abstr. Appl. Anal. 2014, Article ID 535793 (2014)
Hernandez-Martinez, E, Valdés-Parada, F, Alvarez-Ramirez, J, Puebla, H, Morales-Zarate, E: A Green’s function approach for the numerical solution of a class of fractional reaction-diffusion equations. Math. Comput. Simul. 121, 133-145 (2016)
Jiang, D, Yuan, C: The positive properties of the green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal., Theory Methods Appl. 72(2), 710-719 (2010)
Odibat, Z, Momani, S: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 27-34 (2006)
Klimek, M, Agrawal, OP: Fractional Sturm-Liouville problem. Comput. Math. Appl. 66(5), 795-812 (2013)
Sagan, H: Boundary and Eigenvalue Problems in Mathematical Physics. Wiley, New York (1966)
Zayernouri, M, Karniadakis, GE: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495-517 (2013)
Jiang, L, Kong, DX, Chen, ZH: Applied Partial Differential Equations. Higer Education Press, Beijing (2008)
Zhuang, P, Liu, F, Anh, V, Turner, I: Numerical treatment for the fractional Fokker-Planck equation. ANZIAM J. 48, 759-774 (2007)
Liu, F, Anh, V, Turner, I: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166(1), 209-219 (2004)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant NO. 11275259 and NO. 91330113.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
Each of the authors contributed to each part of this work equally and read and approved the final version of the manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zhang, W., Yi, M. Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals. Adv Differ Equ 2016, 217 (2016). https://doi.org/10.1186/s13662-016-0945-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-016-0945-9