- Research
- Open access
- Published:
Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent
Advances in Difference Equations volume 2016, Article number: 291 (2016)
Abstract
In this paper, we establish some interval oscillation criteria for a class of second-order nonlinear forced differential equations with variable exponent growth conditions. Our results not only give the sufficient conditions for the oscillation of equations with variable exponent growth conditions, but also they extend some existing results in the literature for equations with a Riemann-Stieltjes integral. Two examples are also considered to illustrate the main results.
1 Introduction
In this paper, we will establish some interval oscillation criteria for the following equation:
where \(p, q, \beta, e\in C[t_{0},+\infty)\) with \(p(t)>0\), \(\beta (t)>0\), \(a\in\mathbf{R}\), \(b\in(a,+\infty)\), \(g\in C([t_{0},+\infty )\times[a,b])\), \(\xi:[a,b]\rightarrow\mathbf{R}\) is strictly increasing, \(\gamma\in C([t_{0},+\infty)\times[a,b])\), and \(\gamma(t,\cdot )\) is strictly increasing on \([a,b]\) such that
Here \(\int_{a}^{b}f(s)\,\mathrm{d}\xi(s)\) denotes the Riemann-Stieltjes integral of the function f on \([a, b]\) with respect to ξ.
As usual, a nontrivial solution \(u(t)\) of equation (1) is called oscillatory if it has arbitrary large zeroes, otherwise it is called nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.
For the particular case when \(\gamma(t,s)=\alpha(s)\), \(a=0\), and \(\beta (t)\equiv1\), equation (1) reduces to the following equation:
which have been observed in Sun and Kong [1].
For the particular case when \(a=1\), \(b=l+m+1\), where \(l, m\in\mathbf {N}\) and for \(s\in[0,l+m+1)\), \(\xi(s)=\sum_{j=1}^{l+m}\chi(s-j)\) with
\(\gamma\in C([t_{0},+\infty)\times[0,l+m+1))\) such that
satisfying \(0<\alpha_{1}(t)<\cdots<\alpha_{m}(t)<\beta(t)<\theta_{1}(t)<\cdots<\theta _{l}(t)\), \(\beta(t)\leq\alpha_{1}(t)+1\), \(t\in[t_{0},+\infty)\),
Then equation (1) reduces to the following equation with variable exponent growth conditions:
For the particular case when \(p(t)\equiv1\), \(q(t)\equiv0\), \(m=1\), \(\alpha_{1}(t)\equiv\alpha\neq1\), \(\beta(t)\equiv1\), \(B_{i}(t)\equiv0\), \(i=1,2,\ldots,l\), equation (3) reduces to the well-known Emden-Fowler equation,
In the past 50 years, extensive work has been done and great progress has been made on oscillation of equation (4) and more general equations (see [1–24] and the references therein). On the other hand, with wide use in the nonlinear elasticity theory and electrorheological fluids (see [25, 26]), the differential equations and variational problems with variable exponent growth conditions have been investigated by many authors in recent years (see [27–37]). However, we notice that no criteria were found for equation (1) even for the special case of equation (3) to be oscillatory so far in the literature. The purpose of this paper is to establish some interval oscillation results for equation (1) which involves variable exponent growth conditions. Clearly, our work is of significance because equation (1) allows an infinite number of nonlinear terms and even a continuum of nonlinearities determined by the function ξ.
The organization of this article is as follows. After this introduction, in Section 2, we establish interval oscillation criteria of both the El-Sayed type and the Kong type for equation (1). In Section 3, we give two examples to illustrate our main results.
2 Main results
In the sequel, we denote by \(L_{\xi}[a, b]\) the set of Riemann-Stieltjes integrable functions on \([a, b]\) with respect to ξ. We further assume that for any \(t\in[t_{0},+\infty)\), \(\gamma(t,\cdot), 1/\gamma(t,\cdot)\in L_{\xi}[a, b]\).
Lemma 2.1
Suppose that \(\gamma\in C([t_{0},+\infty)\times [a,b])\), and for any \(t\in[t_{0},+\infty)\), \(\gamma(t,\cdot)\) is strictly increasing on \([a,b]\), \(\beta\in C[t_{0},+\infty)\) such that
Let \(h=\sup\{s\in(a,b):\gamma(t,s)\leq\beta(t), t\in[t_{0},+\infty) \}\), and
Then, for any function θ satisfying \(\theta(t)\in (m_{1}(t),m_{2}(t))\) for \(t\in[t_{0},+\infty)\), there exists \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow(0, +\infty)\) satisfying for any \(t\in[t_{0},+\infty)\), \(\eta(t,\cdot)\in L_{\xi}[a,b]\), such that
and
Proof
Define
and
Note that, for any \(t\in[t_{0},+\infty)\), \(1/\gamma(t,\cdot)\in L_{\xi}[a, b]\). Thus, for any \(t\in[t_{0},+\infty)\), \(\eta_{i}(t,\cdot)\in L_{\xi}[a, b]\), and
Moreover, by the choice of h, we can easily get, for any \(t\in [t_{0},+\infty)\),
Therefore, for any \(\theta(t)\in(m_{1}(t),m_{2}(t))\), \(t\in[t_{0},+\infty)\), there exists a function \(p^{*}:[t_{0},+\infty)\rightarrow(0,1)\) such that
Let
then \(\eta(t,s)>0\) for \((t,s)\in[t_{0},+\infty)\times[a,b]\), and for any \(t\in[t_{0},+\infty)\), \(\eta(t,\cdot)\in L_{\xi}[a,b]\). From (10)-(13), we get
Also from (9) and (13), we have
This completes the proof of Lemma 2.1. □
Remark 2.1
We will see from the proof of Lemma 2.1 that the function η can be constructed explicitly for any nondecreasing function ξ.
Remark 2.2
If we take \(\gamma(t,s)=\alpha(s)\), \(a=0\), and \(\beta(t)\equiv1\), then Lemma 2.1 reduces to Lemma 2.1 in [1].
Lemma 2.2
Let functions \(\theta:[t_{0},+\infty )\rightarrow(0,+\infty)\), \(w:[t_{0},+\infty)\times[a,b]\rightarrow [0,+\infty)\), \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow(0,+\infty)\) satisfy for any \(t\in[t_{0},+\infty)\), \(\omega(t,\cdot)\in L_{\xi}[a,b]\), \(\eta(t,\cdot)\in L_{\xi}[a,b]\), and
Then, for any \(t\in[t_{0},+\infty)\),
where we use the convention that \(\ln0=-\infty\) and \(e^{-\infty}= 0\).
Proof
Without loss of generality we assume that, for any \(t\in[t_{0},+\infty)\),
For otherwise
and hence (15) is obviously satisfied. It is easy to check that \(\ln t\leq t-1\) for \(t\geq0\), and then, for any \((t,s)\in[t_{0},+\infty)\times[a,b]\),
Multiplying (16) by \(\eta(t,s)\), we obtain
by integrating the inequality (17) over \(\mathrm{d}\xi(s)\) and applying (14), we get
that is
Dividing (19) by \(\theta(t)\), we have
which implies (15). This completes the proof of Lemma 2.2. □
Following El-Sayed [38], for \(c,d\in[t_{0},+\infty)\) with \(c< d\), we define the function class \(\mathcal{V}(c, d):= \{v\in C^{1}[c, d]: v(c)=0=v(d), v\not\equiv0\}\). Our first result provides an oscillation criterion for equation (1) of the El-Sayed type.
Theorem 2.1
Suppose that for any \(T>t_{0}\), there exist \(T\leq a_{1}< b_{1}\leq a_{2}< b_{2}\) such that, for \(i=1,2\),
We further assume that, for \(i=1,2\), there exist functions \(v_{i}\in\mathcal{V}(a_{i}, b_{i})\) and θ satisfying \(\theta(t)\in (m_{1}(t),\beta(t)]\) for \(t\in[t_{0},+\infty)\), and a continuous function \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow (0,+\infty)\) satisfying (5) and (6), where \(m_{1}(t)\) is defined as in Lemma 2.1 such that
where
Here we use the convention that \(\ln0=-\infty\) and \(e^{-\infty}= 0\), and \(0^{0}=1\). Then equation (1) is oscillatory.
Proof
Assume, for the sake of contradiction, that equation (1) has an extendible solution \(u(t)\) which is eventually positive or negative. Without loss of generality, we may assume that \(u(t)>0\) for all \(t\geq t_{0}\). When \(u(t)\) is eventually negative, the proof is carried out in the same way using the interval the interval \([a_{2}, b_{2}]\) instead of \([a_{1}, b_{1}]\). Define
Then, for \(t\geq t_{0}\), ω satisfies
(I) We first consider the case when \(\theta(t)\equiv\beta(t)\).
From (21) and (24) we have, for \(t\in[a_{1}, b_{1}]\),
Since \(\eta(t,s)\) satisfying (5) and (6) with \(\theta(t)\equiv\beta (t)\), it follows that
Therefore, by (26) and Lemma 2.2, we get, for \(t\in[a_{1}, b_{1}]\),
where \(Q(t)\) is defined by (23) with \(\theta(t)\equiv\beta(t)\). Multiplying both sides of (28) by \(v^{2}_{1}(t)\), integrating every term from \(a_{1}\) to \(b_{1}\), and using integration by parts, we find
From (22), we see that
which implies from the definition of w that \(v'_{1}(t)/v_{1}(t)\equiv u'(t)/u(t)\) and hence \(v_{1}(t)\equiv u(t)\), \(t\in[a_{1},b_{1}]\) for some constant \(c\neq0\). This contradicts the assumption that \(v_{1}(a_{1})=v_{1}(b_{1})=0\) and \(u(t)\)is positive on \([a_{1},b_{1}]\).
(II) Next we consider the case when \(\theta(t)\in (m_{1}(t),\beta(t))\). From (6), we have
If we let
then from the Young inequality (\(pA+qB\geq A^{p}B^{q}\), where \(p+q=1\), \(p,q>0\), \(A\geq0\), \(B\geq0\)), we get
From (6), (30), (31), (33), (34), and Lemma 2.2, we see that, for \(t\in [a_{1}, b_{1}]\),
Then from (24) and the above inequality, we have
where \(Q(t)\) is defined by (23) with \(\theta(t)\in(m_{1}(t),\beta(t))\). The rest of the proof is similar to that of part (I) and hence is omitted. This completes the proof of Theorem 2.1. □
Following Philos [39] and Kong [40], we say that a function \(H = H(t,s)\) belongs to a function class H, denoted by \(H\in \mathbf{H}\), if \(H \in C (D,[0,\infty)) \), where \(D = \{{(t,s):t\geq s\geq t_{0}}\} \), and H satisfies
and has continuous partial derivatives \({\partial H}/{\partial t}\) and \({\partial H}/{\partial s}\) on D such that
where \(h_{1}, h_{2} \in L_{\mathrm{loc}} (D,\mathbf{R})\).
Next, we use the function class H to establish an oscillation criterion for equation (1) of the Kong type.
Theorem 2.2
Suppose that for any \(T>0\), there exist nontrivial subintervals \([a_{1}, b_{1}]\) and \([a_{2}, b_{2}]\) of \([T, +\infty)\) such that (21) holds for \(i=1,2\). We further assume that, for \(i=1,2\), there exist a constant \(c_{i}\in(a_{i}, b_{i})\) and functions \(H\in \mathbf{H}\) and θ satisfying \(\theta(t)\in(m_{1}(t),\beta(t)]\) for \(t\in[t_{0},+\infty)\), and a continuous function \(\eta:[t_{0},+\infty)\times[a,b]\rightarrow (0,+\infty)\) satisfying (5) and (6), where \(m_{1}(t)\) is defined as in Lemma 2.1 such that
where \(Q(t)\) is defined by (23). Then equation (1) is oscillatory.
Proof
Proceeding as in the proof of Theorem 2.1, we get
see (28) and (35) for the cases when \(\theta(t)\equiv\beta(t)\) and \(\theta(t)\in(m_{1}(t),\beta(t))\), respectively. Let \(c_{i}\in(a_{i}, b_{i})\) be such that (38) holds. Multiplying both sides of (39) by \(H(t, a_{1})\), integrating it from \(a_{1}\) to \(c_{1}\), and using integration by parts we have
It follows from (36), (37), and (40) that
Similarly, multiplying both sides of (39) by \(H(b_{1},t)\) and integrating it from \(c_{1}\) to \(b_{1}\), we get
By dividing (41) and (42) by \(H(c_{1}, a_{1})\) and \(H(b_{1}, c_{1})\), respectively, and then adding them together, from (38) we have
and
We can reach a contradiction from either of the above. For instance, (43) implies that
It follows from the definition of w and (37) that
and hence \(u(t)\equiv c\sqrt{H(t,a_{1})}\) on \([a_{1},c_{1}]\) for some constant \(c\neq0\). This contradicts the assumption that \(H(a_{1},a_{1})=0\) and \(u(a_{1})>0\). This completes the proof of Theorem 2.2. □
3 Examples
In this section, we will work out two numerical examples to illustrate our main results. Here we use the convention that \(\ln0=-\infty\) and \(e^{-\infty}= 0\).
Example 3.1
We consider the following equation:
where \(q(t)=\lambda\sin4t\), \(a=0\), \(b=1\), \(\gamma(t,s)=2se^{-t}\), \(g(t,s)=\cos t\), \(\beta(t)=e^{-t}\), \(\xi(s)=s\), \(e(t)=-f(t)\cos2t\), and \(\lambda>0\) is a constant and \(f(t)\in C[0,\infty)\) is any nonnegative function. For any \(T\in\mathbf{R}\), we choose \(k\in\mathbf{Z}\) large enough for \(2k\pi\geq T\) and let \(a_{1}= 2k\pi\), \(a_{2}=b_{1}=2k\pi+\frac{\pi}{4}\), and \(b_{2}=2k\pi+\frac {\pi}{2}\). Then \(m_{1}(t)=\ln2e^{-t}\) and (21) holds. Set
It is easy to verify that (5) and (6) are valid, and for \(t\in[a_{i}, b_{i}]\), \(i=1,2\), Let \(v(t)=\sin4t\). Note that, for \(i=1,2\),
where
and
Thus, by Theorem 2.1 we see that equation (45) is oscillatory for \(\int _{0}^{\frac{\pi}{4}}F(\lambda,\delta,t)\sin^{2}4t\,\mathrm{d}t\geq2\pi\).
Example 3.2
We consider the following equation:
where \(q(t)=\lambda\sin t \), \(a=0 \), \(b=1 \), \(\gamma(t,s)=2s(\cos\frac {t}{2}) \), \(g(t,s)=\cos t \), \(\beta(t)=\cos\frac{t}{2} \), \(\xi(s)=s \), \(\lambda>0\) is a constant. For any \(T\in\mathbf{R}\), we choose \(k\in\mathbf{Z}\) large enough for \(2k\pi\geq T\) and let \(a_{1}= 2k\pi\), \(a_{2}=b_{1}=2k\pi+\frac{\pi}{4}\), \(b_{2}=2k\pi+\frac{\pi }{2}\), \(c_{1}=2k\pi+\frac{\pi}{8}\), and \(c_{2}=2k\pi+\frac{3\pi}{8}\). Assume that \(e(t)\in C[0,\infty)\) is any function satisfying \((-1)^{i}e(t)\geq0\) on \([a_{i}, b_{i}]\) for \(i=1,2\). Then (21) holds. Set
It is easy to verify that (5) and (6) are valid, and for \(t\in[a_{i}, b_{i}]\), \(i=1,2\),
We choose \(H(t,s)=(t-s)^{2}\), then by Theorem 2.2 we see that equation (46) is oscillatory if
and
References
Sun, YG, Kong, QK: Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals. Comput. Math. Appl. 62, 243-252 (2011)
Agarwal, RP, Grace, SR, Regan, DO: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic, Dordrecht (2002)
Butler, GJ: Oscillation theorems for a nonlinear analogue for Hill’s equation. Q. J. Math. 27, 159-171 (1976)
Butler, GJ: Integral averages and oscillation of second order nonlinear differential equations. SIAM J. Math. Anal. 11, 190-200 (1980)
Kartsatos, AG: On the maintenance of oscillation of nth order equations under the effect of a small forcing term. J. Differ. Equ. 10, 355-363 (1971)
Kartsatos, AG: Maintenance of oscillations under the effect of a periodic forcing term. Proc. Am. Math. Soc. 33, 377-383 (1972)
Keener, MS: Solutions of a certain linear nonhomogeneous second order differential equations. Appl. Anal. 1, 57-63 (1971)
Kwong, MK, Wong, JSW: Linearization of second order nonlinear oscillation theorems. Trans. Am. Math. Soc. 279, 705-722 (1983)
Ou, CH, Wong, JSW: Forced oscillation of nth order functional differential equations. J. Math. Anal. Appl. 262, 722-731 (2001)
Rankin, SM: Oscillation theorems for second order nonhomogeneous linear differential equations. J. Math. Anal. Appl. 53, 550-553 (1976)
Agarwal, RP, Anderson, DR, Zafer, A: Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities. Comput. Math. Appl. 59, 977-993 (2010)
Liu, HD, Meng, FW, Liu, PC: Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl. Math. Comput. 219, 2739-2748 (2012)
Nazr, AH: Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential. Proc. Am. Math. Soc. 126, 123-125 (1998)
Li, C, Chen, S: Oscillation of second-order functional differential equations with mixed nonlinearities and oscillatory potentials. Appl. Math. Comput. 210, 504-507 (2009)
Zheng, ZW, Wang, X, Han, HM: Oscillation criteria for forced second order differential equations with mixed nonlinearities. Appl. Math. Lett. 22, 1096-1101 (2009)
Sun, YG, Saker, SH: Forced oscillation of higher-order nonlinear differential equations. Appl. Math. Comput. 173, 1219-1226 (2006)
Wong, JSW: Second order nonlinear forced oscillations. SIAM J. Math. Anal. 19, 667-675 (1988)
Yang, QG: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential. Appl. Math. Comput. 136, 49-64 (2003)
Agarwal, RP, Grace, SR: Forced oscillation of nth order nonlinear differential equations. Appl. Math. Lett. 13(7), 53-57 (2003)
Došlý, O, Veselý, M: Oscillation and non-oscillation of Euler type half-linear differential equations. J. Math. Anal. Appl. 429, 602-621 (2015)
Došlý, O, Yamaoka, N: Oscillation constants for second-order ordinary differential equations related to elliptic equations with p-Laplacian. Nonlinear Anal. 113, 115-136 (2015)
Tunc, E, Avci, H: Oscillation criteria for a class of second order nonlinear differential equations with damping. Bull. Math. Anal. Appl. 4, 40-50 (2012)
Hasil, P, Veselý, M: Oscillation of half-linear differential equations with asymptotically almost periodic coefficients. Adv. Differ. Equ. 2013, 122 (2013)
Vítovec, J: Critical oscillation constant for Euler-type dynamic equations on time scales. Appl. Math. Comput. 243, 838-848 (2014)
Zhikov, VV: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29, 33-36 (1987)
Růžička, M: Electro-Rheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)
Chen, Y, Levine, S, Rao, M: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383-1406 (2006)
Acerbi, E, Mingione, G: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121-140 (2001)
Acerbi, E, Mingione, G: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213-259 (2002)
Antontsev, S, Shmarev, S: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 65(4), 728-761 (2006)
Chabrowski, J, Fu, YQ: Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306, 604-618 (2005)
Fan, XL, Zhao, D: The quasi-minimizer of integral functionals with \(m(x)\) growth conditions. Nonlinear Anal. 39, 807-816 (2000)
Fan, XL, Zhang, QH: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843-1852 (2003)
Hamidi, AE: Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl. 300, 30-42 (2004)
Kopaliani, T: Interpolation theorems for variable exponent Lebesgue spaces. J. Funct. Anal. 257, 3541-3551 (2009)
Mihăilescu, M, Moroşanu, G, Stancu-Dumitru, D: Equations involving a variable exponent Grushin-type operator. Nonlinearity 24, 2663-2680 (2011)
Zhang, QH, Liu, XP, Qiu, ZM: Existence of solutions and multiple solutions for a class of weighted \(p(r)\)-Laplacian system. J. Math. Anal. Appl. 355, 620-633 (2009)
El-Sayed, MA: An oscillation criterion for a forced second order linear differential equation. Proc. Am. Math. Soc. 118, 813-817 (1993)
Philos, CG: Oscillation theorems for linear differential equation of second order. Arch. Math. Log. 53, 483-492 (1989)
Kong, QK: Interval criteria for oscillation of second order linear ordinary differential equations. J. Math. Anal. Appl. 229, 258-270 (1999)
Acknowledgements
The authors thank the reviewers for their helpful and valuable suggestions and comments on this paper. This research was supported by the National Natural Science Foundation of China (No. 11171178) and the Science and Technology Project of High Schools of Shandong Province (No. J14LI09) (China).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Liu, H., Meng, F. Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv Differ Equ 2016, 291 (2016). https://doi.org/10.1186/s13662-016-0983-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-016-0983-3