 Research
 Open access
 Published:
Global attractivity of a discrete cooperative system incorporating harvesting
Advances in Difference Equations volumeÂ 2016, ArticleÂ number:Â 268 (2016)
Abstract
A discrete cooperative model incorporating harvesting that takes the form
is proposed and studied in this paper. By using the iterative method and the comparison principle of difference equations, a set of sufficient conditions which ensure the global attractivity of the interior equilibrium of the system is obtained. Numeric simulations show the feasibility of the main result.
1 Introduction
In [1], Wei and Li proposed and studied the following cooperative system incorporating harvesting:
where x and y denote the densities of two populations at time t. The parameters \(r_{1}\), \(r_{2}\), \(a_{1}\), \(a_{2}\), \(b_{1}\), \(b_{2}\), \(k_{1}\), \(k_{2}\), E, q are all positive constants. By applying the comparison theorem of differential equations and constructing a suitable Lyapunov function, they obtained sufficient conditions which ensure the persistent and stability of the positive equilibrium, respectively.
Recently, Xie et al. [2] revisited the dynamic behaviors of the system (1.1). By using the iterative method, they showed that the condition which ensures the existence of a unique positive equilibrium is enough to ensure the globally attractive of the positive equilibrium. Their result significantly improves the corresponding results of Wei and Li [1].
It is well known that the discrete time models governed by difference equations are more appropriate than the continuous ones when the populations have nonoverlapping generations; corresponding to system (1.1), we propose the following discrete cooperative model incorporating harvesting:
where \(x(k)\), \(y(k)\) are the population density of the species x and y at kgeneration. Throughout this paper, we assume that the coefficients of the system (1.2) satisfies:
 (H_{1}):

\(r_{i}\), \(b_{i}\), \(a_{i}\), E, q, \(i=1, 2\) are all positive constants, \(r_{1}>Eq\).
We mention here that under the assumption (H_{1}), system (1.2) admits a unique positive equilibrium \((x^{*},y^{*})\). Indeed, the positive equilibrium of system (1.2) satisfies
which is equivalent to
where
From \(A_{1}>0\), \(A_{3}<0\), \(B_{1}>0\), \(B_{3}<0\) one could easily see that system (1.3) admits a unique positive solution
The aim of this paper is, by further developing the analysis technique of Xie et al. [2], Yang et al. [3], and Chen and Teng [4], to obtain a set of sufficient conditions to ensure the global attractivity of the interior equilibrium of system (1.1). More precisely, we will prove the following result.
Theorem 1.1
In addition to (H_{1}), further assume that
 (H_{2}):

\(0< r_{1}qE\leq1\), \(r_{2}\leq1\),
hold, then system (1.2) admits a unique positive equilibrium \((x^{*},y^{*})\) which is globally attractive.
The rest of the paper is arranged as follows. With the help of several useful lemmas, we will prove TheoremÂ 1.1 in SectionÂ 2. Two examples together with their numeric simulations are presented in SectionÂ 3 to show the feasibility of our results. We end this paper by a brief discussion. For more work about cooperative systems, we can refer to [1â€“30] and the references therein.
2 Global attractivity
We will give a strict proof of TheoremÂ 1.1 in this section. To achieve this objective, we introduce several useful lemmas.
Lemma 2.1
[4]
Let \(f(u)=u\exp(\alpha\beta u)\), where Î± and Î² are positive constants, then \(f(u)\) is nondecreasing for \(u\in(0,\frac{1}{\beta}]\).
Lemma 2.2
[4]
Assume that the sequence \(\{u(k) \}\) satisfies
where Î± and Î² are positive constants and \(u(0)>0\). Then:

(i)
If \(\alpha<2\), then \(\lim_{k\rightarrow+\infty}{u(k)}=\frac{\alpha}{\beta}\).

(ii)
If \(\alpha\leq1\), then \(u(k)\leq\frac{1}{\beta}\), \(k=2,3,\ldots\)â€‰.
Lemma 2.3
[25]
Suppose that the functions \(f,g:Z_{+}\times[0,\infty)\rightarrow[0,\infty)\) satisfy \(f(k,x)\leq g(k,x)\) (\(f(k,x)\geq g(k,x)\)) for \(k\in Z_{+}\) and \(x\in[0,\infty)\) and \(g(k,x)\) is nondecreasing with respect to x. If \(\{x(k) \}\) and \(\{u(k) \}\) are the nonnegative solutions of the following difference equations:
respectively, and \(x(0)\leq u(0)\) (\(x(0)\geq u(0)\)), then
Proof of TheoremÂ 1.1
Let \((x_{1}(k),x_{2}(k) )\) be an arbitrary solution of system (1.2) with \(x_{1}(0)>0\) and \(x_{2}(0)>0\). Denote
We claim that \(U_{1}=V_{1}=x^{*}\) and \(U_{2}=V_{2}=y^{*}\).
From the first equation of system (1.1), we obtain
Considering the auxiliary equation as follows:
Because of \(0< r_{1}Eq\leq1\), according to (ii) of LemmaÂ 2.2, we can obtain \(u(k)\leq\frac{1}{b_{1}}\) for all \(k\geq2\), where \(u(k)\) is arbitrary positive solution of (2.2) with initial value \(u(0)>0\). From LemmaÂ 2.1, \(f(u)=u\exp(r_{1}Eqb_{1}u)\) is nondecreasing for \(u\in(0,\frac{1}{b_{1}}]\). According to LemmaÂ 2.3 we can obtain \(x(k)\leq u(k)\) for all \(k\geq2\), where \(u(k)\) is the solution of (2.2) with the initial value \(u(2)= x(2)\). According to (i) of LemmaÂ 2.2, we can obtain
From the second equation of system (1.2), we obtain
Similar to the analysis of (2.1)(2.3), we have
Then, for sufficiently small constant \(\varepsilon>0\), without loss of generality, we may assume that \(\varepsilon<\frac{1}{2}\min \{ \frac{r_{1}Eq}{ b_{1}+ \frac{a_{1} }{ k_{1}} }, \frac{r_{2}}{b_{2}+\frac{a_{2}}{k_{2}}} \}\), it follows from (2.3) and (2.4) that there is an integer \(k_{1}>2\) such that
Equation (2.5) combined with the first equation of system (1.2) leads to
Considering the auxiliary equation as follows:
Because of \(0< r_{1}Eq\leq1\), according to (ii) of LemmaÂ 2.2, we can obtain
for all \(k\geq k_{1}\), where \(u(k)\) is arbitrary positive solution of (2.7) with initial value \(u(k_{1})>0\). From LemmaÂ 2.1,
is nondecreasing for
According to LemmaÂ 2.3 we can obtain \(x(k)\leq u(k)\) for all \(k\geq k_{1}+1\), where \(u(k)\) is the solution of (2.7) with the initial value \(u(k_{1}+1)= x(k_{1}+1)\). According to (i) of LemmaÂ 2.2, we can obtain
Equation (2.5) combined with the second equation of system (1.2) leads to
Similar to the analysis of (2.6)(2.8), we can obtain
Then, for sufficiently small constant \(\varepsilon>0\), it follows from (2.8) and (2.10) that there is an integer \(k_{2}>k_{1}\) such that, for all \(k>k_{2}\),
Obviously,
According to the first equation of system (1.2) and the positivity of \(y(k)\), we can obtain
Considering the auxiliary equation as follows:
Since \(0< r_{1}Eq\leq1\), according to (ii) of LemmaÂ 2.2, we can obtain \(u(k)\leq\frac{1}{b_{1}+\frac{a_{1} }{ k_{1}}}\) for all \(k\geq k_{2}\), where \(u(k)\) is arbitrary positive solution of (2.14) with initial value \(u(k_{2})>0\). From LemmaÂ 2.1, \(f(u)=u\exp \{ r_{1}Eq b_{1}u\frac{a_{1}u(k)}{ k_{1}} \}\) is nondecreasing for \(u\in (0,\frac{1}{b_{1}+\frac{a_{1} }{ k_{1}}} ]\). According to LemmaÂ 2.3 we can obtain \(x(k)\geq u(k)\) for all \(k\geq k_{2}\), where \(u(k)\) is the solution of (2.14) with the initial value \(u(k_{2})= x(k_{2})\). According to (i) of LemmaÂ 2.2, we have
From the second equation of system (1.2) and the positivity of \(x(k)\), we can obtain
Similar to the analysis of (2.13)(2.15), we have
Then, for the above \(\varepsilon>0\), there is an integer \(k_{3}>k_{2}\) such that, for all \(k>k_{3}\),
Equation (2.17) combined with the first equation of system (1.2) leads to
Similar to the analysis of (2.13)(2.15), we have
Equation (2.17) combined with the second equation of system (1.2) leads to
Similar to the analysis of (2.13)(2.15), we can obtain
Then, for the above \(\varepsilon>0\), it follows from (2.19) and (2.21) that there is an integer \(k_{4}>k_{3}\) such that, for all \(k>k_{4}\),
Obviously
Continuing the above steps, we can get four sequences \(\{M_{k}^{x } \}\), \(\{M_{k}^{y} \}\), \(\{m_{k}^{x} \}\), and \(\{m_{k}^{y} \}\) such that
and
Clearly, we have
Now, we will prove \(\{M_{k}^{x} \}\), \(\{M_{k}^{y} \}\) is monotonically decreasing, \(\{m_{k}^{x} \}\), \(\{m_{k}^{y} \}\) is monotonically increasing by means of inductive method.
First of all, from (2.12) and (2.23) it is clear that \(M_{2}^{x }< M_{1}^{x}\), \(M_{2}^{y }< M_{1}^{y}\), \(m_{2}^{x}>m_{1}^{x}\), \(m_{2}^{y}>m_{1}^{y}\). Now we assume that \(M_{i}^{x}< M_{i1}^{x}\), \(M_{i}^{y}< M_{i1}^{y}\) and \(m_{i}^{x}> m_{i1}^{x}\), \(m_{i}^{y}>m_{i1}^{y}\) hold, then
From (2.27) and the expression of \(M_{i}^{x}\), \(M_{i}^{y}\), it immediately follows that
We also have
From (2.30) and the expression of \(m_{i}^{x}\), \(m_{i}^{y}\), it immediately follows that
Equations (2.27)(2.32) show that \(\{M_{k}^{x} \}\) and \(\{ M_{k}^{y} \}\) are monotonically decreasing, \(\{m_{k}^{x} \}\) and \(\{m_{k}^{y} \}\) are monotonically increasing. Consequently, \(\lim_{k\rightarrow+\infty} \{M_{k}^{x } \}\), \(\lim_{k\rightarrow+\infty} \{M_{k}^{y } \}\), and \(\lim_{k\rightarrow+\infty} \{m_{k}^{x } \}\), \(\lim_{k\rightarrow+\infty} \{m_{k}^{y } \}\) both exist. Let
From (2.24) and (2.25), we have
Equations (2.35) and (2.36) are equivalent to
Equations (2.37) and (2.38) show that \((\overline{X}, \overline{Y})\) and \((\underline{X},\underline{Y})\) are all solutions of system (1.3). however, under the assumption of TheoremÂ 1.1, system (1.3) has unique positive solution \((x^{*},y^{*})\). Therefore
that is, \(E_{+}(x^{*},y^{*})\) is globally attractive. This ends the proof of TheoremÂ 1.1.â€ƒâ–¡
3 Examples
In this section, we shall give two examples to illustrate the feasibility of the main result.
Example 3.1
Consider the following cooperative system:
Corresponding to system (1.2), we have \(r_{1}=0.5\); \(r_{2}=0.5\); \(b_{1}=0.3\); \(b_{2}=0.2\); \(a_{1}=0.1\); \(a_{2}=0.1\); \(E=1\); \(q=0.1\); \(k_{1}=1\); \(k_{2}=0.2\); by calculating, we see that the positive equilibrium \(E_{+}(x_{1}^{*},x_{2}^{*})\approx(1.193266964,1.839765589)\), \(0< r_{1}qE =0.50.1=0.4<1\), \(r_{2} =0.5<1\), thus the coefficients of system (3.1) satisfy (H_{1}) and (H_{2}) in TheoremÂ 1.1. From TheoremÂ 1.1, the unique positive equilibrium \(E_{+}(x_{1}^{*},x_{2}^{*})\) is globally attractive. Numeric simulations also support our finding (see FiguresÂ 1 and 2).
Example 3.2
Consider the following competition system:
Here all the other coefficients are as that of ExampleÂ 3.1, only we change \(r_{i}=0.5\) to \(r_{i}=1.5\), \(i=1, 2\). By calculating, we see that the positive equilibrium \(E_{+}(x_{1}^{*},x_{2}^{*})\approx(4.474828147,6.775338254)\), and \(r_{1}qE =1.50.1=1.4>1\), \(r_{2} =1.5>1\), thus the coefficients of system (3.2) do not satisfy (H_{2}) in TheoremÂ 1.1, and the stability property of this positive equilibrium could not be judged by TheoremÂ 1.1. However, numeric simulations (see FiguresÂ 3 and 4) show that in this case, the positive equilibrium still is globally attractive.
4 Discussion
In [2], Xie et al. studied the stability property of the system (1.1), their result shows that once the system (1.1) admits a unique positive equilibrium, it is globally attractive. In this paper, we try to consider the discrete type of system (1.1), we first establish the corresponding system (1.2), then, by developing the analysis technique of [2â€“4], we also obtain a set of sufficient conditions which ensure the global attractivity of the positive equilibrium. Our result shows that the intrinsic growth rate plays an important role in the stability property of the system.
It brings to our attention that conditions for the continuous system are very simple (one only requires \(r_{1}>qE\)), while conditions for the discrete one is very strong, since one requires \(r_{1}qE\leq1\) and \(r_{2}\leq1\). This motivated us to study the case \(r_{i}>1\), numeric simulation (ExampleÂ 3.2) shows that in this case, the system still possible admits a unique globally attractive positive equilibrium, and we conjecture that TheoremÂ 1.1 still holds under the condition \(r_{1}Eq<2\), \(r_{2}<2\); we leave this for future study.
At the end of the paper, we would like to point out that one of the reviewers of this paper said â€˜Population models with stochastic noises may also be important and interesting. In fact, many authors have studied stochastic population models with stochastic noises, for example, Beddington and May [31], Liu and Bai [32, 33]. I suggest the authors take stochastic noises into account in their future study.â€™ We do agree with the opinion of the reviewers, and we hope we could do some relevant work in the future.
References
Wei, FY, Li, CY: Permanence and globally asymptotic stability of cooperative system incorporating harvesting. Adv. Pure Math. 3, 627632 (2013)
Xie, XD, Chen, FD, Xue, YL: Note on the stability property of a cooperative system incorporating harvesting. Discrete Dyn. Nat. Soc. 2014, Article ID 327823 (2014)
Yang, K, Xie, XD, Chen, FD: Global stability of a discrete mutualism model. Abstr. Appl. Anal. 2014, Article ID 709124 (2014)
Chen, GY, Teng, ZD: On the stability in a discrete twospecies competition system. J. Appl. Math. Comput. 38, 2536 (2012)
Li, YK, Xu, GT: Positive periodic solutions for an integrodifferential model of mutualism. Appl. Math. Lett. 14, 525530 (2001)
Chen, LJ, Chen, LJ, Li, Z: Permanence of a delayed discrete mutualism model with feedback controls. Math. Comput. Model. 50, 10831089 (2009)
Chen, LJ, Xie, XD: Permanence of an nspecies cooperation system with continuous time delays and feedback controls. Nonlinear Anal., Real World Appl. 12, 3438 (2001)
Li, YK, Zhang, T: Permanence of a discrete Nspecies cooperation system with timevarying delays and feedback controls. Math. Comput. Model. 53, 13201330 (2011)
Chen, LJ, Xie, XD: Feedback control variables have no influence on the permanence of a discrete Nspecies cooperation system. Discrete Dyn. Nat. Soc. 2009, Article ID 306425 (2009)
Chen, FD, Liao, XY, Huang, ZK: The dynamic behavior of Nspecies cooperation system with continuous time delays and feedback controls. Appl. Math. Comput. 181, 803815 (2006)
Chen, FD: Permanence of a discrete Nspecies cooperation system with time delays and feedback controls. Appl. Math. Comput. 186, 2329 (2007)
Chen, FD: Permanence for the discrete mutualism model with time delays. Math. Comput. Model. 47, 431435 (2008)
Chen, FD, Yang, JH, Chen, LJ, Xie, XD: On a mutualism model with feedback controls. Appl. Math. Comput. 214, 581587 (2009)
Chen, FD, Xie, XD, Chen, XF: Dynamic behaviors of a stagestructured cooperation model. Commun. Math. Biol. Neurosci. 2015, Article ID 4 (2015)
Chen, FD, Xie, XX: Study on the Dynamic Behaviors of Cooperative System. Science Press, Beijing (2014)
Chen, FD, Pu, LQ, Yang, LY: Positive periodic solution of a discrete obligate LotkaVolterra model. Commun. Math. Biol. Neurosci. 2015, Article ID 14 (2015)
Li, YK: Positive periodic solutions of a discrete mutualism model with time delays. Int. J. Math. Math. Sci. 2005(4), 499506 (2005)
Liu, ZJ, Tan, RH, Chen, YP, Chen, LS: On the stable periodic solutions of a delayed twospecies model of facultative mutualism. Appl. Math. Comput. 196, 105117 (2008)
Li, XP, Yang, WS: Permanence of a discrete model of mutualism with infinite deviating arguments. Discrete Dyn. Nat. Soc. 2010, Article ID 931798 (2010)
Li, Z: Permanence for the discrete mutualism model with delays. J. Math. Study 43(1), 5154 (2010)
Muhammadhaji, A, Teng, ZD: Global attractivity of a periodic delayed nspecies model of facultative mutualism. Discrete Dyn. Nat. Soc. 2013, Article ID 580185 (2013)
Xu, CJ, Wu, YS: Permanence in a discrete mutualism model with infinite deviating arguments and feedback controls. Discrete Dyn. Nat. Soc. 2013, Article ID 397382 (2013)
Xie, XD, Chen, FD, Yang, K, Xue, Y: Global attractivity of an integrodifferential model of mutualism. Abstr. Appl. Anal. 2014, Article ID 928726 (2014)
Xie, XD, Miao, ZS, Xue, YL: Positive periodic solution of a discrete LotkaVolterra commensal symbiosis model. Commun. Math. Biol. Neurosci. 2015, Article ID 2 (2015)
Wang, L, Wang, MQ: Ordinary Difference Equation. Xinjing University Press, Urmuqi (1989)
Yang, WS, Li, XP: Permanence of a discrete nonlinear Nspecies cooperation system with time delays and feedback controls. Appl. Math. Comput. 218, 35813586 (2011)
Xue, YL, Xie, XD, Chen, FD, Han, RY: Almost periodic solution of a discrete commensalism system. Discrete Dyn. Nat. Soc. 2015, Article ID 295483 (2015)
Miao, ZS, Xie, XD, Pu, LQ: Dynamic behaviors of a periodic LotkaVolterra commensal symbiosis model with impulsive. Commun. Math. Biol. Neurosci. 2015, Article ID 3 (2015)
Wu, RX, Li, L, Zhou, XY: A commensal symbiosis model with Holling type functional response. J. Math. Comput. Sci. 16(3), 364371 (2016)
Yang, K, Miao, ZS, Chen, FD, Xie, XD: Influence of single feedback control variable on an autonomous HollingII type cooperative system. J. Math. Anal. Appl. 435(1), 874888 (2016)
Beddington, JR, May, RM: Harvesting natural populations in a randomly fluctuating environment. Science 197, 463465 (1997)
Liu, M, Bai, C: Analysis of a stochastic tritrophic foodchain model with harvesting. J. Math. Biol. 73, 597625 (2016)
Liu, M, Bai, C: Optimal harvesting of a stochastic mutualism model with Levy jumps. Appl. Math. Comput. 276, 301309 (2016)
Acknowledgements
The authors are grateful to anonymous referees for their excellent suggestions, which greatly improve the presentation of the paper. The research was supported by the Natural Science Foundation of Fujian Province (2015J01012, 2015J01019, 2015J05006) and the Scientific Research Foundation of Fuzhou University (XRC1438).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authorsâ€™ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chen, F., Wu, H. & Xie, X. Global attractivity of a discrete cooperative system incorporating harvesting. Adv Differ Equ 2016, 268 (2016). https://doi.org/10.1186/s136620160996y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s136620160996y