- Research
- Open access
- Published:
Global attractivity of a discrete competition model of plankton allelopathy with infinite deviating arguments
Advances in Difference Equations volume 2016, Article number: 303 (2016)
Abstract
We consider a discrete competition model of plankton allelopathy with infinite deviating arguments of the form
By using an iterative method we investigate the global attractivity of the interior equilibrium point of the system.
1 Introduction
The aim of this paper is to investigate the stability property of the following two-species discrete competition model of plankton allelopathy with infinite deviating arguments:
together with the initial conditions
where the coefficients \(K_{i}, \alpha_{i}\), \(\beta_{ij}\), and \(\gamma_{i}, i,j=1,2 \), are all positive constants, \(\sum_{j=1}^{+\infty }K_{ij}(n)=1\), and \(\sum_{j=1}^{+\infty}f_{ij}(n)=1\).
During the last decades, many scholars proposed and studied the competitive system with the effect of toxic substances, and numerous excellent results have been obtained; see [1–34] and the references therein.
The main motivation for this work comes from a paper by Chen, Xie, and Wang [6], where they studied the stability property of the following competition model of plankton allelopathy with infinite delay:
In [6], it was shown that if the coefficients satisfy the inequality
then \(x_{1}(t)\rightarrow x_{1}^{*}\) and \(x_{2}(t)\rightarrow x_{2}^{*}\) as \(t \rightarrow+\infty\).
Its well known that discrete-time models governed by difference equations are more appropriate than the continuous ones when the populations have nonoverlapping generations. By applying the idea of Chen [14] we could establish the corresponding discrete-type competition system (1.1). For system (1.1), we may conjecture that under assumption (1.4), the system can admit a unique globally attractive positive equilibrium. Unfortunately, this may not be true. Indeed, for the most simple single-species model, that is, the continuous logistic model
the system admits a unique positive equilibrium, which is globally attractive, whereas for the discrete model
to ensure that the model admits a unique positive equilibrium, some additional restriction on the coefficients is needed; otherwise, the system may admit chaotic behavior, which could not be observed in the continuous-time case. Also, in the study of the stability property of the mutualism model, Yang, Xie, and Chen [35] showed that some additional condition should be added to ensure the global stability of the system. Hence, it becomes an interesting and challenging task to investigate the stability property of system (1.1).
The aim of this paper is to obtain a set of sufficient conditions that ensure the global attractivity of system (1.1). More precisely, we prove the following result.
Theorem 1.1
Assume that (1.4) holds and that \(K_{i}\leq1, i=1, 2\). Then the unique interior equilibrium \(E^{*}(x_{1}^{*},x_{2}^{*})\) of system (1.1) is globally attractive, that is,
We will prove this theorem in the next section.
2 Proof of the main result
The interior positive equilibrium \(E^{*}(x_{1}^{*},x_{2}^{*})\) of system (1.1) satisfies the following equations:
Concerning with the positive solution of system (2.1), similarly to the analysis of Lemma 2.1 in [1], we have the following:
Lemma 2.1
If (1.4) holds, then system (1.1) has a unique interior positive equilibrium \(E^{*}(x_{1}^{*},x_{2}^{*})\).
Lemma 2.2
[36]
Let \(f(u)=u\exp(\alpha-\beta u)\), where α and β are positive constants. Then \(f(u)\) is nondecreasing for \(u\in(0,\frac{1}{\beta}]\).
Lemma 2.3
[36]
Assume that a sequence \(\{u(k) \}\) satisfies
where α and β are positive constants, and \(u(0)>0\). Then:
-
(i)
if \(\alpha<2\), then \(\lim_{k\rightarrow+\infty}{u(k)}=\frac{\alpha}{\beta}\);
-
(ii)
if \(\alpha\leq1\), then \(u(k)\leq\frac{1}{\beta},k=2,3,\ldots\) .
Lemma 2.4
[37]
Suppose that functions \(f,g:Z_{+}\times[0,\infty)\rightarrow[0,\infty)\) satisfy \(f(k,x)\leq g(k,x)\ (f(k,x)\geq g(k,x))\) for \(k\in Z_{+}\) and \(x\in[0,\infty)\) and that \(g(k,x)\) is nondecreasing with respect to x. Suppose that \(\{x(k) \}\) and \(\{ u(k) \}\) are nonnegative solutions of the difference equations
respectively, and \(x(0)\leq u(0)\ (x(0)\geq u(0))\). Then
Lemma 2.5
[14]
Let \(x:Z\rightarrow R\) be a nonnegative bounded sequence, and let \(H: N\rightarrow R\) be a nonnegative sequence such that \(\sum_{n=0}^{\infty}H(n)=1\). Then
Lemma 2.6
Let \(f(x)=\frac{a-bx}{c+dx}\), \(x>0\), be the strictly decreasing function of x, where \(a, b, c, d\) are positive constants.
Proof
Since
the conclusion of Lemma 2.6 immediately follows. □
Now we are in the position to prove the main result of this paper.
Proof of Theorem 1.1
Let \((x_{1}(k),x_{2}(k) )\) be an arbitrary solution of system (1.1) with initial condition (1.2). Denote
We claim that \(U_{1}=V_{1}=x_{1}^{*}\) and \(U_{2}=V_{2}=x_{2}^{*}\).
Condition (1.4) implies that there exists a small enough positive constant \(\varepsilon>0\) such that
By the first equation of system (1.1) we have
Consider the following auxiliary equation:
Because of \(K_{1}\leq1\), according to (ii) of Lemma 2.3, we obtain \(u(k)\leq\frac{1}{\alpha_{1}}\) for all \(k\geq2\), where \(u(k)\) is an arbitrary positive solution of (2.5) with initial value \(u(0)>0\). By Lemma 2.2, \(f(u)=u\exp(K_{1}-\alpha_{1}u)\) is nondecreasing for \(u\in(0,\frac{1}{\alpha_{1}}]\). According to Lemma 2.4, we obtain \(x_{1}(k)\leq u(k)\) for all \(k\geq2\), where \(u(k)\) is the solution of (2.5) with initial value \(u(2)= x(2)\). According to (i) of Lemma 2.3, we obtain
From (2.6) and Lemma 2.5 we have
Hence, for \(\varepsilon>0\) defined by (2.2)-(2.3), it follows from (2.6)-(2.8) that there exists \(k_{1}>2\) such that
From the second equation of system (1.1) we have
Similarly to the analysis of (2.4)-(2.9), for the same \(\varepsilon >0\), it follows from the second equation of system (1.1) that there exists \(k_{2}>k_{1}\) such that
Inequalities (2.11), together with the first equation of system (1.1), show that, for \(k>k_{2}\),
Inequality (2.2) shows that, under assumption (1.4), for the same \(\varepsilon>0\), we have \(0< K_{1}-\beta_{12}M_{2}^{(1)} <K_{1}\leq1\). Thus, similarly to the analysis of (2.4)-(2.6), we obtain
From (2.13) and Lemma 2.5 we have
that is, for \(\varepsilon>0\) defined by (2.2), there exists \(k_{3}>k_{2}\) such that
It follows from (2.9) and the second equation of system (1.1) that
From (2.17), similarly to the analysis of (2.12)-(2.16), for \(\varepsilon>0\) defined by (2.2), there exists \(k_{4}>k_{3}\) such that
From (2.18) and the first equation of system (1.1) we have
It follows from (2.2) and (2.18) that
Therefore, similarly to the analysis of (2.4)-(2.6), we have
From (2.21) and Lemma 2.5 we have
Hence, for \(\varepsilon>0\) defined by (2.2)-(2.3), it follows from (2.21)-(2.23) that there exists \(k_{5}>k_{4}\) such that
It follows from the second equation of system (1.1) that
Similarly to the analysis of (2.19)-(2.24), there exists \(k_{6}>k_{5}\) such that
Inequalities (2.26), together with the first equation of system (1.1), imply
Inequality (2.2) shows that, under assumption (1.4), for the same \(\varepsilon>0\), we have \(0< K_{1}-\beta_{12}M_{2}^{(2)} <K_{1}-\beta_{12}M_{2}^{(1)} <K_{1}\leq 1\). Thus, similarly to the analysis of (2.4)-(2.6), we obtain
From (2.28) and Lemma 2.5 we have
that is, for \(\varepsilon>0\) defined by (2.2), there exists \(k_{7}>k_{6}\) such that
It follows from (2.24) and the second equation of system (1.1) that
From (2.32), similarly to the analysis of (2.25)-(2.31), for \(\varepsilon>0\) defined by (2.2), there exists \(k_{8}>k_{7}\) such that
Repeating the previous procedure, we get four sequences \(M_{i}^{(n)}, m_{i}^{(n)}, i=1,2, n=1,2,\ldots\) , such that, for \(n\geq2\),
Using Lemma 2.6 and induction, similarly to the analysis on p. 7160 of [1], we can show that the sequences \(M_{i}^{(n)}, i=1,2\), are strictly decreasing and the sequences \(m_{i}^{(n)}, i=1,2\), are strictly increasing. Also,
Therefore,
Letting \(n\rightarrow+\infty\) in (2.34), we obtain
Equalities (2.36) are equivalent to
Note that \((\overline{x}_{1},\underline{x}_{2})\) and \((\underline{x}_{1},\overline{x}_{2})\) are positive solutions of (2.1). By Lemma 2.1, system (2.1) has a unique positive solution \(E^{*}(x_{1}^{*},x_{2}^{*})\). Hence, we conclude that
that is,
Thus, the unique interior equilibrium \(E^{*}(x_{1}^{*},x_{2}^{*})\) is globally attractive. This completes the proof of Theorem 1.1. □
3 Example
In this section, we give an example to illustrate the feasibility of main result.
Example 3.1
Consider the system
Corresponding to system (1.1), we have \(K_{1}=0.9, \alpha_{1}=0.6, \beta_{12}=0.4, \gamma_{1}=0.1, K_{2}=0.8, \alpha_{2}=0.8, \beta_{21}=0.3, \gamma_{2}=0.1\). Hence,
Also,
Hence, all the conditions of Theorem 1.1 are satisfied, and it follows from Theorem 1.1 that system (3.1) admits a unique globally attractive positive equilibrium. Figure 1 supports this assertion.
4 Conclusions
Stimulated by the work of Chen, Xie, and Wang [6], we propose a discrete competition model of plankton allelopathy with infinite deviating arguments. We focus our attention on the stability property of the positive equilibrium of the system since it represents the stable coexistence of the two species. With the additional restriction on the coefficients of the system \(K_{i}\leq1\), \(i=1, 2\), using the iterative method again, we finally proved that the positive equilibrium is globally attractive. Also, since the conditions of Theorem 1.1 are independent of delay and the coefficients of the toxic substance term, we can draw the conclusion that, under the assumptions of Theorem 1.1, the delay and toxic substance are harmless for the stability of the interior equilibrium of system (1.1).
References
Li, Z, Chen, FD, He, MX: Global stability of a delay differential equations model of plankton allelopathy. Appl. Math. Comput. 218(13), 7155-7163 (2012)
Li, Z, Chen, FD: Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances. Appl. Math. Comput. 182, 684-690 (2006)
Li, Z, Chen, FD: Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances. J. Comput. Appl. Math. 231, 143-153 (2009)
Li, Z, Chen, FD: Extinction in two dimensional discrete Lotka-Volterra competitive system with the effect of toxic substances. Dyn. Contin. Discrete Impuls. Syst. 15(2), 165-178 (2008)
Li, Z, Chen, FD, He, MX: Asymptotic behavior of the reaction-diffusion model of plankton allelopathy with nonlocal delays. Nonlinear Anal., Real World Appl. 12(3), 1748-1758 (2011)
Chen, FD, Xie, XD, Wang, HN: Global stability in a competition model of plankton allelopathy with infinite delay. J. Syst. Sci. Complex. 28(5), 1070-1079 (2015)
Chen, FD, Li, Z, Chen, XX, Laitochová, J: Dynamic behaviors of a delay differential equation model of plankton allelopathy. J. Comput. Appl. Math. 206(2), 733-754 (2007)
Chen, FD, Shi, CL: Global attractivity in an almost periodic multi-species nonlinear ecological model. Appl. Math. Comput. 180(1), 376-392 (2006)
Chen, FD: Permanence in nonautonomous multi-species predator-prey system with feedback. Appl. Math. Comput. 173(2), 694-709 (2006)
Chen, FD: On a periodic multi-species ecological model. Appl. Math. Comput. 171(1), 492-510 (2005)
Chen, FD, Xie, XD, Miao, ZS, Pu, LQ: Extinction in two species nonautonomous nonlinear competitive system. Appl. Math. Comput. 274, 119-124 (2016)
Chen, FD, Li, Z, Xie, XD: Permanence of a nonlinear integro-differential prey-competition model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2290-2297 (2008)
Chen, FD, Gong, XJ, Chen, WL: Extinction in two-dimensional discrete Lotka-Volterra competitive system with the effect of toxic substances (II). Dyn. Contin. Discrete Impuls. Syst. 20(4), 1-10 (2013)
Chen, FD: Permanence in a discrete Lotka-Volterra competition model with deviating arguments. Nonlinear Anal., Real World Appl. 9(5), 2150-2155 (2008)
Chen, LJ, Sun, JT, Chen, FD, Zhao, L: Extinction in a Lotka-Volterra competitive system with impulse and the effect of toxic substances. Appl. Math. Model. 40(3), 2015-2024 (2016)
Chen, LJ, Chen, FD, et al.: Extinction in a discrete Lotka-Volterra competitive system with the effect of toxic substances and feedback controls. Int. J. Biomath. 08(1), 149-161 (2015)
Chen, FD, Wang, HN: Dynamic behaviors of a Lotka-Volterra competitive system with infinite delays and single feedback control. Abstr. Appl. Anal. 2016, Article ID 43 (2016)
Chen, FD, Xie, XD: Periodicity and stability of a nonlinear periodic integro-differential prey-competition model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 12(6), 876-885 (2007)
Liu, ZJ, Chen, LS: Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays. J. Comput. Appl. Math. 197(2), 446-456 (2006)
Zhao, L, Xie, XD, Yang, LY, Chen, FD: Dynamic behaviors of a discrete Lotka-Volterra competition system with infinite delays and single feedback control. Abstr. Appl. Anal. 2014, Article ID 867313 (2014)
Xie, XD, Xue, YL, Wu, RX, et al.: Extinction of a two species competitive system with nonlinear inter-inhibition terms and one toxin producing phytoplankton. Adv. Differ. Equ. 2016, Article ID 258 (2016)
Bandyopadhyay, M: Dynamical analysis of a allelopathic phytoplankton model. J. Biol. Syst. 14(2), 205-217 (2006)
Yue, Q: Extinction for a discrete competition system with the effect of toxic substances. Adv. Differ. Equ. 2016, Article ID 1 (2016)
Kar, TK, Chaudhuri, KS: On non-selective harvesting of two competing fish species in the presence of toxicity. Ecol. Model. 161, 125-137 (2003)
Samanta, GP: A two-species competitive system under the influence of toxic substances. Appl. Math. Comput. 216(1), 291-299 (2010)
Chen, F, Wu, H, Xie, XD: Global attractivity of a discrete cooperative system incorporating harvesting. Adv. Differ. Equ. 2016, Article ID 268 (2016)
Abbas, S, Banerjee, M, Hungerbuhler, N: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J. Math. Anal. Appl. 367(1), 249-259 (2010)
Zhen, J, Ma, Z: Periodic solutions for delay differential equations model of plankton allelopathy. Comput. Math. Appl. 44(3-4), 491-500 (2002)
Tian, CR, Zhang, L, Ling, Z: The stability of a diffusion model of plankton allelopathy with spatio-temporal delays. Nonlinear Anal., Real World Appl. 10, 2036-2046 (2009)
Tian, CR, Lin, ZG: Asymptotic behavior of solutions of a periodic diffusion system of plankton allelopathy. Nonlinear Anal., Real World Appl. 11, 1581-1588 (2010)
Pu, L, Xie, XD, Chen, FD, et al.: Extinction in two-species nonlinear discrete competitive system. Discrete Dynamics in Nature & Society 2016(1), 1-10 (2016)
Wu, RX, Li, L: Extinction of a reaction-diffusion model of plankton allelopathy with nonlocal delays. Commun. Math. Biol. Neurosci. 2015, Article ID 8 (2015)
Chen, XF, Wang, JH: A predator-prey model with effect of toxicity and with stochastic perturbation. Commun. Math. Biol. Neurosci. 2015, Article ID 11 (2015)
Li, L, Wu, RX: Extinction of a delay differential equation model of plankton allelopathy. Commun. Math. Biol. Neurosci. 2015, Article ID 13 (2015)
Yang, K, Xie, XD, Chen, FD: Global stability of a discrete mutualism model. Abstr. Appl. Anal. 2014, Article ID 709124 (2014)
Chen, GY, Teng, ZD: On the stability in a discrete two-species competition system. J. Appl. Math. Comput. 38, 25-36 (2012)
Wang, L, Wang, MQ: Ordinary Difference Equations. Xinjing Univ. Press, Urmuqi (1989)
Acknowledgements
The research was supported by the Natural Science Foundation of Fujian Province (2015J01019).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Xie, X., Xue, Y. & Wu, R. Global attractivity of a discrete competition model of plankton allelopathy with infinite deviating arguments. Adv Differ Equ 2016, 303 (2016). https://doi.org/10.1186/s13662-016-1032-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-016-1032-y