- Research
- Open Access
- Published:
Homoclinic orbits for a class of second order dynamic equations on time scales via variational methods
Advances in Difference Equations volume 2017, Article number: 47 (2017)
Abstract
In this paper, we study the existence of nontrivial homoclinic orbits of a dynamic equation on time scales \(\mathbb{T}\) of the form
We construct a variational framework of the above-mentioned problem, and some new results on the existence of a homoclinic orbit or an unbounded sequence of homoclinic orbits are obtained by using the mountain pass lemma and the symmetric mountain pass lemma, respectively. The interesting thing is that the variational method and the critical point theory are used in this paper. It is notable that in our study any periodicity assumptions on \(p(t)\), \(q(t)\) and \(f(t,u)\) are not required.
1 Introduction
In the past decades, there has been an increasing interest in the study of dynamic equations on time scales, employing and developing a variety of methods (such as the variational method, the fixed point theory, the method of upper and lower solutions, the coincidence degree theory, and the topological degree arguments [1–13]) motivated, at least in part, by the fact that the existence of homoclinic and heteroclinic solutions is of utmost importance in the study of ordinary differential equations.
Although considerable attention has been dedicated to the existence of homoclinic and heteroclinic solutions for continuous or discrete ordinary differential equations, see [14–19] and the references therein, to the best of our knowledge, there is little work on homoclinic orbits for differential equations on time scales [20]. One of interesting and open problems on dynamic equations on time scales is to investigate discrete or continuous differential equations on time scales with one goal being the unified treatment of differential equations (the continuous case) and difference equations (the discrete case). In particular, not much work has been seen on the existence of solutions or homoclinic orbits to dynamic equations on time scales through the variational method and the critical point theory [20–23].
In this paper, we consider the existence of nontrivial homoclinic orbits to zero of equation on time scales \(\mathbb{T}\) of the form
where \(p(t): \mathbb{T}\rightarrow\mathbb{R}\) is nonzero and is Δ-differential, \(q: \mathbb{T}\rightarrow\mathbb{R}\) is Lebesgue integrable and \(f: \mathbb{T}\times {\mathbb{R}}\rightarrow\mathbb{R}\) is Lebesgue integrable with respect to t for △-a.e. \(t\in\mathbb{T}\). Providing that \(f(t,x)\) grows superlinearly both at origin and at infinity or is an odd function with respect to \(x \in\mathbb{R}\), we explore the existence of a nontrivial homoclinic orbit of the dynamic equation (1) by means of the mountain pass lemma and the existence of an unbounded sequence of nontrivial homoclinic orbits by using the symmetric mountain pass lemma. The interesting thing is that the variational method and the critical point theory are used in this paper. It is notable that in our study any periodicity assumptions on \(p(t)\), \(q(t)\) and \(f(t,u)\) are not required.
We say that a property holds for △-a.e. \(t\in A\subset\mathbb{T}\) or △-a.e. on \(A\subset\mathbb{T}\) whenever there exists a set \(E\subset A\) with the null Lebesgue △-measure such that this property holds for every \(t\in A\setminus E\).
Definition 1
We say that a solution u of equation (1) is homoclinic to zero if it satisfies \(u(t)\rightarrow0\) as \(t\rightarrow\pm\infty\), where \(t\in\mathbb{T}\). In addition, if \(u\neq0\), then u is called a nontrivial homoclinic solution.
Throughout this paper, we make the following assumptions:
- (H0):
-
\(\lim_{x\rightarrow0}\frac{f(t,x)}{x}=0\) uniformly for △-a.e. \(t\in\mathbb{T}\);
- (H1):
-
there exists a constant \(\beta>2\) such that
$$ xf(t,x)\leq\beta \int_{0}^{x}f(t,s)\,ds< 0\quad \text{for } \triangle \text{-a.e. } t\in\mathbb{T} \text{ and for all } x\in\mathbb{R}\setminus{\{0 \}} ; $$(2) - (H2):
-
\(p(t)>0\) for △-a.e. \(t\in\mathbb{T}\) and \(\int_{(-\infty,\infty )_{\mathbb{T}}}p^{2}(t)\Delta t<+\infty\);
- (H3):
-
\(q^{\sigma}(t)<0\) for △-a.e. \(t\in\mathbb{T}\), \(\lim_{|t|\rightarrow\infty }q^{\sigma}(t)=-\infty\) and \(\int_{(-\infty,\infty)_{\mathbb{T}}}|q^{\sigma}(t)|^{2}\Delta t<+\infty\).
Let \(F(t,x)=\int_{0}^{x}f(t,s)\,ds\), it follows from (2) that
which implies that there is a real function \(\alpha(t)> 0 \) such that
It follows from (2) and (3) that
Hence, we have the following remark.
Remark 1
-
(1)
\(u(t)\equiv0\) is a trivial homoclinic solution of equation (1).
-
(2)
\(f(t,x)\) grows superlinearly both at infinity and at origin.
The paper is structured as follows. In Section 2, we introduce two technical lemmas which will be used in the proofs of our main results. In Section 3, the variational structure of the dynamic equation (1) is presented. In Section 4, we summarize our main results on the existence homoclinic solution of the dynamic equation (1) on time scales and present two examples. We demonstrate the proofs in Section 5.
2 Preliminaries
In this section, we present two lemmas which can help us to better understand our main results and proofs. For the basic terminologies such as measure, absolute continuity, the Lebesgue integral and Sobolev’s spaces on time scales, we refer the reader to references [23–29].
Let us recall the mountain pass theorem [30] and the symmetric mountain pass theorem [31], respectively.
Lemma 1
[30]
Let X be a real Banach space and \(\varphi:X\rightarrow\mathbb{R} \) be a \(C^{1}\)-smooth functional. Suppose that φ satisfies the following conditions:
-
(i)
\(\varphi(0) = 0\);
-
(ii)
every sequence \(\{u_{j}\}_{j\in\mathbb{N}}\) in X such that \(\{\varphi(u_{j})\}_{j\in\mathbb{N} }\) is bounded in \(\mathbb{R}\) and \(\varphi'(u_{j})\rightarrow0\) in \(X^{*}\) as \(j\rightarrow+\infty\) contains a convergent subsequence as \(j\rightarrow+\infty\) (the PS condition);
-
(iii)
there exist constants ϱ and \(\alpha>0\) such that \(\varphi|_{\partial B_{\varrho}(0)}\geq\alpha\);
-
(iv)
there exists \(e \in X\setminus\bar{B}_{\varrho}(0)\) such that \(\varphi(e)\leq0\), where \(B_{\varrho}(0)\) is an open ball in X of radius ϱ centered at 0.
Then φ possesses a critical value \(c\geq\alpha\) given by
where
Lemma 2
[31]
Let X be a real Banach space and \(\varphi:X\rightarrow\mathbb{R} \) be a \(C^{1}\)-smooth functional. Suppose that φ satisfies the following conditions:
-
(i)
\(\varphi(0) = 0\);
-
(ii)
φ satisfies the PS condition;
-
(iii)
there exist constants ϱ and \(\alpha>0\) such that \(\varphi|_{\partial B_{\varrho}(0)}\geq\alpha\);
-
(iv)
for each finite-dimensional subspace \(\widetilde{E}\subset E\), there is \(\gamma=\gamma(\widetilde{E})\) such that \(\varphi\leq0\) on \(\widetilde{E}\setminus\beta_{\gamma}\).
Then φ possesses an unbounded sequence of critical values.
3 Variational framework
In this section, we state some basic notations, some lemmas which are closely related to our main results, and construct a variational framework of our problem.
For \(p \in\mathbb{R}\) and \(p \geq1\), we let the space
be equipped with the norm
Then \(L^{p}_{\Delta}((-\infty,\infty)_{\mathbb{T}},\mathbb{R})\) is a Banach space together with the inner product given by
where \((f, g)\in L^{p}_{\Delta}((-\infty,\infty)_{\mathbb{T}}, \mathbb{R})\times L^{p}_{\Delta}((-\infty,\infty)_{\mathbb{T}}, \mathbb{R})\).
Let
It is a Hilbert space with the norm defined by
for \(u\in H^{1,2}_{\Delta}\).
Define
Then E is a Hilbert space with the norm defined by
and the inner product is
Let
and \(L_{\Delta}^{\infty} ((-\infty,+\infty)_{\mathbb{T}}, \mathbb{R} )\) is called the essentially bounded space on time scales, which is equipped with the norm
where \(u(t)\) is bounded on \((-\infty,+\infty)_{\mathbb{T}}\setminus E_{0}\), and \(E_{0}\) is a set of measure zero in the space \((-\infty ,+\infty)_{\mathbb{T}}\).
Now, we list three technical lemmas which will be used in the proofs of our main results in the next section.
We have the following lemma.
Lemma 3
There exist positive constants \(C^{*}\) and L such that the following inequality holds:
Moreover, there exist \(0, a\in(-\infty,\infty)_{\mathbb{T}}\) are real such that \(\int_{(0,a)_{\mathbb{T}}}u(t)\Delta t=0\), then
where \(t\in(-\infty,+\infty)_{\mathbb{T}}\), holds.
Proof
Going to the components of \(u(t)\), we can assume that \(n=1\), and there exist \(0, a\in(0,+\infty)_{\mathbb{T}}\) are real. If \(u(t)\in H^{1,2}_{\Delta}\), then there exists \(\tau\in[0,a]_{\mathbb{T}}\) such that \(u(\tau)=\inf_{t\in[0,a]_{\mathbb{T}}}u(t)\), it follows that
Thus, there exists constant \(c_{3}>0\) such that \(|u(\tau)|\leq c_{3}\vert \int_{(0,a)_{\mathbb{T}}} u(t) \Delta t \vert \). Hence, for \(t \in (-\infty,\infty)_{\mathbb{T}}\), one can get
then
If \(\int_{(0,a)_{\mathbb{T}}}u(t)\Delta t=0\), then
which implies (6) holds. □
Lemma 4
Assume that the sequence \(\{u_{n}\}\subset E\) such that \(u_{n}\rightharpoonup u\) in E, then the sequence \(u_{n}\) satisfies \(u_{n}\rightarrow u\) in \(L^{2}_{\Delta}((-\infty,\infty)_{\mathbb{T}},\mathbb{R})\).
Proof
Without loss of generality, assume that \(u_{n}\rightharpoonup0\) in E for any \(\varepsilon>0\). It follows from (H3) that there exists negative \(T_{0}\in\mathbb{T}\) such that
Similarly, we also have there exists positive \(T_{1}\in\mathbb{T}\) such that
From (H2) and (H3), we have \(u_{n}\rightharpoonup u\) in \(E_{I}\), where
Hence, \(\{u_{n}\}\) is bounded in \(E_{I}\), which implies that \(\{u_{n}\}\) is bounded in \(L^{2}_{\Delta}((T_{0},T_{1})_{\mathbb{T}},\mathbb{R})\). Due to the uniqueness of the weak limit in \(L^{2}_{\Delta }((T_{0},T_{1})_{\mathbb{T}},\mathbb{R})\), one obtains \(u_{n}\rightarrow0\) on \((T_{0},T_{1})_{\mathbb{T}}\), then there is \(n_{0}\) such that
since
Let
then \(0< A_{1}<+\infty\).
According to (7), we have
Let
then \(0< A_{2}<+\infty\).
In view of (8), we have
Since ε is arbitrary, combining (9), (10) and (11), one has
□
In the following, we define and prove the variational framework of the dynamic equation (1).
Define the functional \(E\rightarrow\mathbb{R}\) by
where \(F(t,\xi)=\int_{0}^{\xi}f(t,s)\,ds\).
Lemma 5
The functional φ is continuously differentiable on E, and
Proof
Let us first consider the existence of the Gâteaux derivative.
For any \(v\in E \) and \(\varepsilon\in\mathbb{R}\) (\(0<|\varepsilon|<1\)), we have
Given \(u\in\mathbb{R}\), the mean value theorem indicates that there exists \(\lambda_{2}\in(0,1)\) such that
Note that
It follows from Lebesgue’s dominated convergence theorem on time scales that
Next, we show the continuity of the Gâteaux derivative.
Assume that the sequence \(\{u_{n}\}\subset E \) satisfies \(u_{n}\rightarrow u\) as \(n\rightarrow\infty\) in E. Using Lebesgue’s dominated convergence theorem on time scales and (H0) yields
It follows from Theorem 4.5 in [21] that \(E\hookrightarrow L^{2}_{\Delta} ((-\infty, \infty)_{\mathbb{T}},{\mathbb{R}} )\) is compact, then \(u_{n}\rightarrow u\) as \(n\rightarrow\infty\) in \(L^{2}_{\Delta} ((-\infty, \infty)_{\mathbb{T}},{\mathbb{R}} )\). For arbitrary \(v\in E\), there holds
Hölder’s inequality on time scales and Lemma 3 reduce to
Thus, from the above discussion, (13), (H1) and (H2), we have
which implies \(\varphi'(u_{n})\rightarrow\varphi'(u)\) as \(n\rightarrow\infty\). □
For any \(v^{\sigma}\in E\), the dynamic equation (1) gives
So, finding the homoclinic solutions to the zero of dynamic equation (1) is equivalent to finding the critical points of the associated functional φ defined in (12).
4 Main results
In this section, we state the results of the existence of nontrivial homoclinic orbits of the dynamic equation (1) on time scales. As an elementary illustration, two examples are given to show the usefulness of these criteria.
Theorem 1
If conditions (H0), (H1), (H2) and (H3) are satisfied, then the dynamic equation (1) has one nontrivial homoclinic orbit to 0 such that
Example 2
Let
Consider the following second order boundary value problem on time scales \(\mathbb{T}\) of the form
Since \(\int_{0}^{x}f(t,s)\,ds=-\frac{t}{8}x^{4}\), one can check that all conditions of Theorem 1 are fulfilled. It follows from Theorem 1 that the dynamic equation (1) has one nontrivial homoclinic orbit to 0.
Theorem 3
If conditions (H0), (H1), (H2), (H3) and the following condition are satisfied
- (H4):
-
\(f(t,-x)=-f(t,x)\) for all \(x\in\mathbb{R}\) and △-a.e. \(t\in\mathbb{T}\),
then the dynamic equation (1) has an unbounded sequence in E of a homoclinic orbit to 0.
Example 4
Let \(a,b>0\) be real numbers,
and
Consider the following second order boundary value problem on time scales \(P_{1}\cup P_{2}\) of the form
Since \(\int_{0}^{x}f(t,s)\,ds=-\frac{t}{12}x^{6}\), one can check that all conditions of Theorem 3 are fulfilled. It follows from Theorem 3 that the dynamic equation (1) has an unbounded sequence in E of a homoclinic orbit to 0.
5 Proof of theorems
In this section, we show our main results on the existence of nontrivial homoclinic orbits of the dynamic equation (1) on time scales.
Proof of Theorem 1
Since we have already known that \(\varphi\in C^{1}(E,\mathbb{R})\) and \(\varphi(0)=0\), in the following we prove that all the other conditions of Lemma 1 are fulfilled with respect to the functional φ.
Firstly, we claim that φ satisfies the PS condition.
Assume that there exist a sequence \(\{u_{n}\} \subset E\) and a constant c such that
we show that \(\{u_{n}\}\) has a convergent subsequence in E.
It follows from (16) and (H2) that there is a constant \(d\geq0\) such that
which implies that \(\{u_{n}\}\) is bounded in E. Hence, there is a subsequence (still denoted by \(\{u_{n}\}\), \(u_{n}\rightharpoonup u_{0}\) in E). It follows from Lemma 4 that \(u_{n}\rightarrow u_{0}\) in \(L^{2}_{\Delta}((-\infty,\infty)_{\mathbb{T}},\mathbb{R})\). Now, according to (H0), \(u_{n},u_{0}\in E\), for any \(\varepsilon >0\), we have that there exist constants \(\delta_{1}>0\), \(\delta_{2}>0\) and \(L\in\mathbb{T}\) such that
which implies that
Since
let
where \(I_{K}\) is an indicator function of interval K and
It follows from the uniform continuity of \(f(t,x)\) in x and \(u_{n}\rightarrow u_{0}\) in \(L_{\Delta,\mathrm{loc}}^{2}(\mathbb{T}, \mathbb{R}^{n})\) that
Combining Hölder’s inequality on time scales, (17) and (18) leads to
By using the same technique, we obtain
where \(M_{1}\), \(M_{2}\) depend on the bounds for \(u_{n}\) and \(u_{0}\) in E. Then
since
Equations (20) and (21) imply that \(u_{n}\rightarrow u_{0}\) in E. Consequently, φ satisfies the PS condition.
Secondly, we prove that there exist constants ϱ and \(\alpha>0\) such that φ satisfies the assumption (iii) of Lemma 1.
It follows from Lemma 4 that there exists \(\alpha_{0}>0\) such that
On the other hand, according to (H2) and (H3), we have that there exists \(\alpha_{1}>0\) such that
where
(H0) implies that there is \(\delta>0\) such that
Let \(\rho=\frac{\delta}{\alpha_{1}}\) and \(\|u\|_{E}\leq\rho\), we have \(\|u\|_{\infty}\leq\frac{\delta}{\alpha_{1}}\alpha_{1}=\delta\), then
which implies that
Hence, if \(\|u\|_{E}=\rho\), we have
Choosing \(\varepsilon=\frac{1}{4}\alpha^{2}_{0}\), we have
Thirdly, we claim that there exists \(e \in X\setminus\bar{B}_{\rho}(0)\) such that φ satisfies the assumption (iv) of Lemma 1.
Let \(\overline{u}\in E\) be such that \(|\overline{u}(t)|\geq1\), for any \(\sigma\geq1\), it follows from (3) that
which implies that there exists \(\sigma\geq1\) such that \(\|\sigma \overline{u}\|>\rho\) and \(\varphi(\sigma\overline{u})\leq 0=\varphi(0)\).
Hence, all the conditions of Lemma 1 are satisfied, the desired results follow. □
Proof of Theorem 3
It follows from (H4) that φ is even. In addition, we have already proved that \(\varphi\in C^{1}(E,\mathbb{T})\), \(\varphi(0)=0\) and φ satisfies the Palais-Smale condition. We prove that all the other conditions of the symmetric mountain pass theorem are satisfied with respect to the functional φ. We have already showed that φ satisfies condition (iii) of the symmetric mountain pass theorem in the proof of Theorem 3.
In the following, we claim that φ satisfies condition (iv) of the symmetric mountain pass theorem.
Let \(\widetilde{E}\subset E \) be a finite-dimensional subspace. Consider \(u\in\widetilde{E}\subset E\) with \(u\neq0\). It follows from (3) that
and
We also have
where \(c=c(\widetilde{E})\).
Define \(m=\inf_{\|u\|_{\infty}=2} (\int_{(1,\infty)_{\mathbb{T}}}\alpha(t)|u(t)|^{\beta}\Delta t+\int_{(-\infty,-1)_{\mathbb{T}}}\alpha(t)|u(t)|^{\beta}\Delta t )\), if \(m=0\), we have \(\|u\| =0\) for △-a.e. \(t\in\{t\mid|u(t)|>1\}\), which contradicts \(\|u\|_{\infty}=2\), then \(m>0\), and we have
Since \(\beta>2\), there exists a constant \(C_{1}\) such that \(\varphi (u)\leq0\) if \(\|u\|_{\infty}\geq C\).
Consequently, it follows from Lemma 2 that the functional φ possesses an unbounded sequence of critical values \(\{c_{j}\}\) with \(c_{j}=\varphi(u_{j})\), where \(u_{j}\) satisfies
which implies that
(H1) implies that
Then \(\{u_{j}\}\) is unbounded in E because of \(c_{j}\rightarrow\infty\) as \(j\rightarrow\infty\). The proof is completed. □
References
Bohner, M, Peterson, A: Dynamic Equation on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
Dong, XY, Bai, ZB, Zhang, SQ: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, 5 (2017)
Geng, F, Zhu, D: Multiple results of p-Laplacian dynamic equations on time scales. Appl. Math. Comput. 193, 311-320 (2007)
Li, S, Su, YH, Feng, Z: Positive solutions to p-Laplacian multi-point BVPs on time scales. Dyn. Partial Differ. Equ. 7, 46-64 (2010)
Pang, Y, Bai, Z: Upper and lower solution method for a fourth-order four-point boundary value problem on time scales. Appl. Math. Comput. 215, 2243-2247 (2009)
Su, YH: Existence theory for positive solutions of p-Laplacian multi-point BVPs on time scales. Turk. J. Math. 35, 219-248 (2011)
Su, YH: Arbitrary positive solutions to a multi-point p-Laplacian boundary value problem involving the derivative on time scales. Math. Comput. Model. 53, 1742-1747 (2011)
Su, YH: Multiple positive pseudo-symmetric solutions of p-Laplacian dynamic equations on time scales. Math. Comput. Model. 49, 1664-1681 (2009)
Su, YH, Feng, Z: Positive solution to a singular p-Laplacian BVPs in Banach space. Dyn. Partial Differ. Equ. 8, 149-171 (2011)
Yuan, X, Zhou, D, Xu, F, Su, YH: Existence of solution of BVPs for p-Laplacian dynamic equations involving derivative. J. Xuzhou Inst. Technol. Nat. Sci. 1, 96-99 (2010) (in Chinese)
Zhang, QG, Sun, HR: Variational approach for Sturm-Liouville boundary value problems on time scales. J. Appl. Math. Comput. 36(1-2), 219-232 (2011)
Victoria, OE, Tania, PC: Variational approach to second-order impulsive dynamic equations on time scales. Bound. Value Probl. 2013, 119 (2013)
Zhang, QG, He, XP, Sun, HR: Positive solutions for Sturm-Liouville BVPs on time scales via sub-supersolution and variational methods. Bound. Value Probl. 2013, 123 (2013)
Alves, CO, Carriäo, PC, Faria, LFO: Existence of homoclinic solutions for a class of second order ordinary differential equations. Nonlinear Anal., Real World Appl. 12, 2416-2428 (2011)
Belozyorov, VY: On existence of homoclinic orbits for some types of autonomous quadratic systems of differential equations. Appl. Math. Comput. 217, 4582-4595 (2011)
Chen, H, He, Z: Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems. Adv. Differ. Equ. 2014, 161 (2014)
Cabada, A, Li, C, Tersian, S: On homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients. Adv. Differ. Equ. 2010, 195376 (2010)
Marcelli, C, Papalini, F: Heteroclinic connections for fully non-linear non-autonomous second-order differential equations. J. Differ. Equ. 241, 160-183 (2007)
Wu, HH, Sun, SJ: Multiple positive solutions for a fourth order boundary value via variational method. J. Shandong Univ. Sci. Technol. Nat. Sci. 33(2), 96-99 (2014) (in Chinese)
Su, YH, Feng, Z: Homoclinic orbits and periodic solutions for a class of Hamiltonian systems on time scales. J. Math. Anal. Appl. 411, 37-62 (2014)
Su, YH, Yao, J, Feng, Z: Sobolev spaces on time scales and applications to semilinear Dirichlet problems. Dyn. Partial Differ. Equ. 12(3), 241-263 (2015)
Su, YH, Feng, Z: A non-autonomous Hamiltonian system on time scales. Nonlinear Anal. 75, 4126-4136 (2012)
Zhou, J, Li, Y: Sobolev’s spaces on time scales and its applications to a class of second order Hamiltonian systems on time scales. Nonlinear Anal. 73, 1375-1388 (2010)
Agarwal, RP, Espinar, VO, Perera, K, Vivero, DR: Basic properties of Sobolev’s spaces on bounded time scales. Adv. Differ. Equ. 67, 368-381 (2006)
Cabada, A, Vivero, DR: Criterions for absolutely continuity on time scales. J. Differ. Equ. Appl. 11, 1013-1028 (2005)
Davidson, FA, Rynne, BP: Eigenfunction expansions in \(L^{p}\) spaces for boundary value problems on time-scales. J. Math. Anal. Appl. 335, 1038-1051 (2007)
Hilger, S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 18, 18-56 (1990)
Guseinov, G: Integration on time scales. J. Math. Anal. Appl. 285, 107-127 (2003)
Lakshmikantham, V, Sivasundaram, S, Kaymakcalan, B: Dynamic Systems on Measure Chains. Math. Appl., vol. 370. Kluwer Academic, Dordrecht (1996)
Ambrosetti, A, Rabinowitz, PH: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973)
Rabinowitz, PH: Minimax Method in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65. Am. Math. Soc., Providence (1986)
Acknowledgements
This work is partially supported by the Natural Science Foundation of China (Nos. 11361047, 11501560), the Natural Science Foundation of JiangSu Province (No. BK20151160), the Six Talent Peaks Project of Jiangsu Province (2013-JY-003) and 333 High-Level Talents Training Program of Jiangsu Province (BRA2016275).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Su, YH., Yan, X., Jiang, D. et al. Homoclinic orbits for a class of second order dynamic equations on time scales via variational methods. Adv Differ Equ 2017, 47 (2017). https://doi.org/10.1186/s13662-017-1098-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1098-1
MSC
- 34B15
- 34C25
- 34N05
Keywords
- time scales
- variational structure
- homoclinic orbits
- critical point theorem